Advances in Model-Based Optimization with AMPL

Robert Fourer, Gleb Belov, Filipe Brandão

[4er,gleb,fdabrandao]@ampl.com

AMPL Optimization Inc. www.ampl.com - +1 773-336-AMPL

ICCOPT / MOPTA 2022:

International Conference on Continuous Optimization Modeling and Optimization: Theory and Applications Bethlehem, PA — 25-28 July 2022

Software Cluster, Wednesday, 2:20-3:40 pm

Advances in Model-Based Optimization with AMPL

The ideal of model-based optimization is to describe your problem the way you think about it, and then let the computer do the work of getting a solution. Recent enhancements aim to bring the AMPL modeling language and system closer to this ideal. Using a variety of modeling language extensions, common formulations are described more naturally, with the AMPL translator, the AMPL-solver interface, or the solver itself doing most of the needed transformations.

Extensions described in this presentation include quadratic expressions, logical operators and constraints, simple near-linear and nonlinear functions, and combinations of these together with linear terms. All are supported by a new C++ AMPL-solver interface library that can be adapted to handle the multiple detection and transformation strategies required by large-scale solvers.

New Developments in AMPL

Availability

- Community Edition
 - ***** unlimited free use with free solvers
- New licensing for cloud machines and docker containers
- New implementation of the NEOS Server client (Kestrel)

Modeling language

- Snapshot utility
- New plug-in framework for user-defined functions, table handlers, other utilities

Data

- Extended and faster ODBC support for database software
- Direct support for .csv and .xlsx (spreadsheet) files
 - * Support for two-dimensional spreadsheet tables

New Developments in AMPL

Examples

- Free AMPL Model Colaboratory
 - * AMPL in Jupyter notebooks using Google Colab, Kaggle, etc.
- Portfolio optimization and deployment in the amplpy API

Solvers

- Callbacks from AMPL APIs
- ✤ New interface library . . .

New Solver Interface Library (MP)

Design

✤ C++ library for building efficient, configurable solver drivers

Complementary to AMPL's C interface library (ASL)

Extensive toolset for problem transformations

Motivation . . .

Typical User Complaint

```
Thank you so much for replying.
Let me show my "if-then" constraint in a more clear way as follows:
set veh := {1..16 by 1};
param veh ind {veh};
param theory_time {veh};
param UP := 400000;
var in lane veh {veh} integer >=1, <=2;</pre>
var in in time {veh} >=0, <=UP;</pre>
Note that "in lane veh {veh}" are integer variables which equal 1 or 2,
and "in_in_time {veh}" are continuous variables.
subject to IfConstr {i in 1..card(veh)-1, j in i+1..card(veh):
  veh ind[i] = veh ind[j] and theory time[i] <= theory time[j]}:</pre>
    in lane veh[i] = in lane veh[j] ==> in in time[j] >= in in time[i] + 1 veh/V;
When I run my program, there appears the following statement:
CPLEX 20.1.0.0: logical constraint slogcon[1] is not an indicator constraint.
```

Typical Reply

To reformulate this model in a way that your MIP solver would accept, you could define some more binary variables,

```
var in_lane_same {veh,veh} binary;
```

with the idea that in_lane_same[i,j] should be 1 if and only if in_lane_veh[i] = in_lane_veh[j]. Then the desired relation could be written as two constraints:

in_lane_veh[i] = in_lane_veh[j] ==> in_lane_same[i,j] = 1
in_lane_same[i,j] = 1 ==> in_in_time[j] >= in_in_time[i] + l_veh/V;

The second one is an indicator constraint, but you would just need to replace the first one by equivalent linear constraints.

Given that in_lan_veh can only be either 1 or 2, those constraints could be

```
in_lane_same[i,j] >= 3 - in_lane_veh[i] - in_lane_veh[j]
in_lane_same[i,j] >= in_lane_veh[i] + in_lane_veh[j] - 3
```

7

New Solver Interface Library (MP)

Interface design

- ✤ C++ library for building efficient, configurable solver drivers
- Support for features of current C interface library
- Extensive toolset for problem transformations

Motivation . . .

- AMPL has logical and "not linear" expressions for *writing models the way you think of them*
- Current interfaces have very limited support for these
- New interfaces, built with MP, allow these expressions to be used and combined freely

... initial emphasis on MIP solvers

Outline

Example

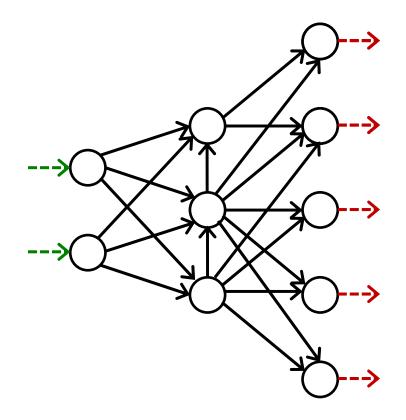
- Multi-product network flow *with complications*
- Model-based optimization
- ✤ Linearization for MIP solvers: in math and in AMPL

Formulating models more like you think about them

- *Example:* Natural vs. linearized formulations
- Supported operators, functions, expressions
- Implementation issues
- ✤ Efficiency issues

New C++ interface

- ✤ General use with COPT, HiGHS
- ✤ Special alternatives for Gurobi

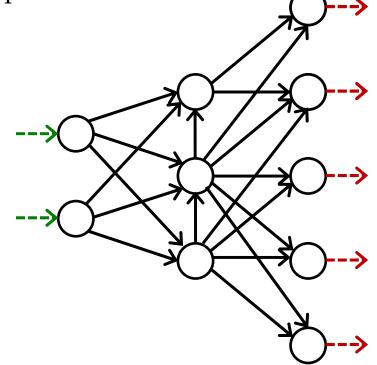

Example: Multi-Product Network Flow

Motivation

Ship products efficiently to meet demands

Context

- a transportation network
 nodes O representing cities
 - * arcs \longrightarrow representing roads
- ✤ supplies ---> at nodes
- ♦ demands ---> at nodes
- ✤ capacities on arcs
- ✤ shipping costs on arcs

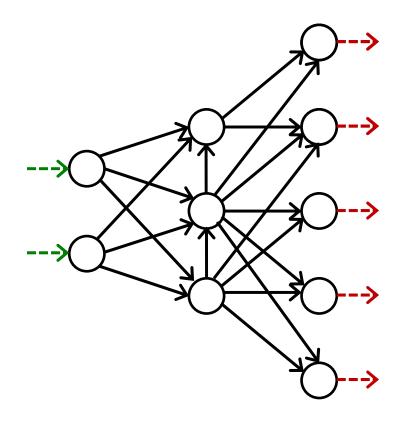

Example: Multi-Product Network Flow

Decide

how much of each product to ship on each arc

So that

- ✤ shipping costs are kept low
- shipments on each arc respect capacity of the arc
- supplies, demands, and shipments are in balance at each node


Example with complications: Multi-Product Network Flow

Decide also

whether to use each arc

So that

- variable plus fixed shipping costs are kept low
- shipments are not too small
- ✤ not too many arcs are used

Model-Based Optimization

Formulate a minimum shipping cost model

- *decision variables:* What arcs are used and how much is shipped
- * *objective:* Total fixed and variable costs
- *constraints:* Equations that the variables must satisfy to meet the requirements of the problem

Apply model-based optimization software

- *modeling language:* Write a formulation that a computer system can read
- *data:* Read costs, capacities, supplies, demands, and limits that define a specific case to be solved
- *solver:* Send to an off-the-shelf optimization engine that accepts a broad class of problems

Multi-Product Flow **Formulation** (data)

Given

- *P* set of products
- *N* set of network nodes
- $A \subseteq N \times N$ set of arcs connecting nodes

and

- u_{ij} capacity of arc from *i* to *j*, for each $(i, j) \in A$
- s_{pj} supply/demand of product *p* at node *j*, for each *p* ∈ *P*, *j* ∈ *N* > 0 implies supply, < 0 implies demand
- $\begin{array}{l} c_{pij} \ \mbox{cost per unit to ship product } p \ \mbox{on arc } (i,j), \\ \ \ \mbox{for each } p \in P, (i,j) \in A \end{array}$
- d_{ij} fixed cost for using the arc from *i* to *j*, for each $(i, j) \in A$
- m smallest total shipments on any arc that is used
- *n* largest number of arcs that may be used

Multi-Product Flow

Linearized Formulation (variables, objective)

Determine

- $\begin{aligned} X_{pij} & \text{amount of commodity } p \text{ to be shipped on arc } (i,j), \\ & \text{for each } p \in P, (i,j) \in A \end{aligned}$
- Y_{ij} 1 if any amount is shipped from node *i* to node *j*, 0 otherwise, for each (*i*, *j*) ∈ *A*

to minimize

 $\sum_{p \in \mathbb{P}} \sum_{(i,j) \in \mathbb{A}} c_{pij} X_{pij} + \sum_{(i,j) \in \mathbb{A}} d_{ij} Y_{ij}$

total cost of shipments

Multi-Product Flow Linearized Formulation (constraints)

Subject to

 $\sum_{p \in \mathbb{P}} X_{pij} \le u_{ij} Y_{ij},$

for all $(i, j) \in A$

when the arc from node *i* to node *j* is used for shipping, total shipments must not exceed capacity, and Y_{ij} must be 1

$$\sum_{p \in P} X_{pij} \ge m Y_{ij}$$

for all $(i, j) \in A$

when the arc from node i to node j is used for shipping, total shipments from i to j must be at least m

 $\sum_{(i,j)\in A} X_{pij} + s_{pj} = \sum_{(j,i)\in A} X_{pji}, \text{ for all } p \in P, j \in N$

shipments in plus supply/demand must equal shipments out

 $\sum_{(i,j)\in A} Y_{ij} \leq n$

At most *n* arcs can be used

Multi-Product Flow Linearized Model in AMPL

Symbolic data, variables, objective

```
set PRODUCTS;
set NODES;
set ARCS within {NODES, NODES};
param capacity {ARCS} >= 0;
param inflow {PRODUCTS, NODES};
param min_ship >= 0;
param max_arcs >= 0;
param var_cost {PRODUCTS,ARCS} >= 0;
var Flow {PRODUCTS,ARCS} >= 0;
param fix_cost {ARCS} >= 0;
var Use {ARCS} binary;
minimize TotalCost:
   sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] +
   sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];
```

Multi-Product Flow Linearized Model in AMPL

Constraints

```
subject to Capacity {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];
    subject to Min_Shipment {(i,j) in ARCS}:
        sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
    subject to Conservation {p in PRODUCTS, j in NODES}:
        sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
        sum {(j,i) in ARCS} Flow[p,j,i];
    subject to Max_Used:
        sum {(i,j) in ARCS} Use[i,j] <= max_arcs;</pre>
```

```
\sum_{p \in P} X_{pij} \le u_{ij} Y_{ij}, for all (i, j) \in A
```

Multi-Product Flow Data Instance in AMPL Text Format

Data: Limits

```
set PRODUCTS := Bands Coils ;
set NODES := Detroit Denver Boston 'New York' Seattle ;
param: ARCS: capacity:
      Boston 'New York' Seattle :=
Detroit
         100
                 80
                        120
Denver 120 120
                        120 ;
param inflow:
       Detroit Denver Boston 'New York' Seattle :=
 Bands
          50
                60
                   -50 -50
                                    -10
 Coils 60 40 -40 -30 -30;
param min_ship := 15 ;
param max_arcs := 4 ;
```

Multi-Product Flow Data Instance in AMPL Text Format

Data: Costs

param var_cost: [Bands,*,*] Boston 'New York' Seattle := 10 Detroit 20 60 Denver 40 40 30 [Coils,*,*] Boston 'New York' Seattle := Detroit 20 20 80 70 Denver 60 30; param fix_cost default 75 ;

Multi-Product Flow Optimization: MIP Solver (gurobi)

ile Edit Commands	Window Help						
* 🗳 🔛 🕼							
Current D	📮 Console 🛛 😂 📕		A netflow3.mod 🖾 🖪 n	etflow3.dat			
C:\Users\Robert\Deskto ampl.exe ampl.lic amplx.dll amplx.dll amplw.ddl netflow1.dat netflow1.mod netflow1.run netflow1.run netflow2.run netflow2.run netflow3.dat sw.exe tableproxy32.exee x-netflow3.mod x-netflow3.mo	AMPL ampl: model netflow3.mod; ampl: data netflow3.dat; ampl: data netflow3.dat; ampl: option solver gurobi; ampl: solve; Set parameter Username Gurobi 9.5.1: optimal solution; objective 6 simplex iterations 1 branch-and-cut nodes plus 3 simplex iterations for intbasis ampl: ampl: option display_eps .000001, display ampl: ampl: display Flow; Flow [Bands,*,*] (tr) : Denver Detroit := Boston 0 50 'New York' 50 0 Seattle 10 0	5900	<pre>set PRODUCTS; set NODES; set ARCS within {I param capacity {AI param inflow {PROD param min_ship >= param max_arcs >= param var_cost {PI var Flow {PRODUCT: param fix_cost {AI var Use {ARCS} bin minimize TotalCost sum {p in PRODU sum {(i,j) in / subject to Capacit sum {p in PRODU sum {p in PRODU subject to Min_Sh: sum {p in PRODU subject to Conserv sum {(i,j) in / subject to Conserv sum {(i,j) in / subject to Max_Use</pre>	<pre>NODES,NODES}; RCS} >= 0; DUCTS,NODES}; 0; 0; RODUCTS,ARCS} >= S,ARCS} >= 0; nary; t: UCTS, (i,j) in AR ARCS} fix_cost[i, ty {(i,j) in ARCS} IUCTS} Flow[p,i,j] ipment {(i,j) in UCTS} Flow[p,i,j] vation {p in PROD ARCS} Flow[p,i,j] ARCS} Flow[p,j,i]</pre>	<pre>SCS} var_cost[p,i,] j] * Use[i,j]; s}: <= capacity[i,j] ARCS}: >= min_ship * Use PUCTS, j in NODES} + inflow[p,j] = ;</pre>	* Use[i,j]; e[i,j];	+
	<	>	<				>

Formulating (MIP) Models More Like You Think About Them

Describe an optimization problem

- * In a form *you find natural or convenient*
- ✤ Using existing AMPL expressions, functions, and operators

Send the problem to a solver

- ✤ In a form *that solver will accept*
- ✤ Relying on the AMPL-solver interface to translate

Get back a result

✤ In the form you originally used

Formulating Positive Shipments Incur Fixed Costs

Linearized formulation

sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];

Natural formulation

sum {(i,j) in ARCS}
if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j]

Formulating Shipments Can't Be Too Small

Linearized formulation

```
sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];</pre>
```

Natural formulation

sum {p in PRODUCTS} Flow[p,i,j] = 0 or min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j]</pre>

Formulating Can't Use Too Many Arcs

Linearized formulation

sum {(i,j) in ARCS} Use[i,j] <= max_arcs;</pre>

Natural formulation

atmost max_arcs {(i,j) in ARCS}
 (sum {p in PRODUCTS} Flow[p,i,j] > 0);

Formulating Optimization: Same MIP Solver (x-gurobi)

Current D □ <	e Edit Commands	Window Help						
<pre>AMPL ampl: work work within {NODES, NODES}; amplic ampli amplic amplic amplic amplic amplic amplic amplic amp</pre>	· 🗳 🔛 👘							
<pre>ampl: model x-netflow3.mod; ampl: data netflow3.dat; ampl: data netflow3.dat; ampl: solve; ampl: solve; ampl: solve; minos.exe netflow1.dat netflow1.dat netflow1.dat netflow1.dat netflow1.ktx netflow3.mod netflow3.mod sw.exe netflow3.mod x-n</pre>	Current D 🗖 🗖	🖳 Console	R 🔳 🗎 🕯		🖻 x-netflow3.mod 🖾	A netflow3.dat		
<pre>UsersRobert/Desktor; amplexe amplic am</pre>	🗄 🔸 🥎 🧔							1
subject to Limit_Used: atmost max_arcs {(i,j) in ARCS}	Users\Robert\Desktop ampl.exe ampl.lic minos.exe netflow1.dat netflow1.dat netflow1.run netflow1.run netflow1.run netflow2.run netflow2.run netflow3.dat netflow3.dat netflow3.mod sw.exe tableproxy32.exe	<pre>ampl: data netflow3.dat; ampl: ampl: option solver x-gurob2 ampl: solve; x-Gurobi 9.5.1: Set paramete x-Gurobi 9.5 ampl: ampl: display Total_Cost; Total_Cost = 5900 ampl: option display_eps .00 ampl: ampl: display Flow; Flow [Bands,*,*] (tr) : Denver Detroit Boston 0 50 'New York' 50 0 Seattle 10 0 [Coils,*,*] (tr) : Denver Detroit Boston 0 40 'New York' 10 20 Seattle 30 0 ;</pre>	r Username 5.1: optimal solutio 00001, display_1col :=		<pre>set NODES; set ARCS within param capacity param inflow {F param min_ship param max_arcs param fix_cost param var_cost var Flow {PRODU minimize Total_ sum {p in PRC sum {(i,j) in if exists { subject to Ship sum {p in PRC min_ship <= s subject to Cons sum {(i,j) in</pre>	<pre>{ARCS} >= 0; PRODUCTS,NODES}; >= 0; >= 0; {ARCS} >= 0; {PRODUCTS,ARCS} >= 0; {PRODUCTS,ARCS} >= 0; UCTS,ARCS} >= 0; Cost: DOUCTS, (i,j) in ARCS} van n ARCS} {p in PRODUCTS} Flow[p,i,j] pment_Limits {(i,j) in ARCS} poment_Limits {(</pre>	<pre>i] > 0 then fix_cost[i,j]; is}: ,i,j] <= capacity[i,j]; j in NODES}:</pre>	÷
		ampl:			atmost max_ar	rcs {(i,j) in ARCS}));	
				~				

Conditional operators

✤ if constraint then var-expr1 [else var-expr2]

constraint1 ==> constraint2 [else constraint3]
 constraint1 <== constraint2
 constraint1 <==> constraint2

```
minimize TotalCost:
    sum {j in JOBS, k in MACHINES}
    if MachineForJob[j] = k then cost[j,k];
```

subject to Multi_Min_Ship {i in ORIG, j in DEST}:
 sum {p in PROD} Trans[i,j,p] >= 1 ==>
 minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];</pre>

Logical operators

- constraint1 or constraint2 constraint1 and constraint2 not constraint2
- * exists {indexing} constraint-expr
 forall {indexing} constraint-expr

```
subject to NoMachineConflicts
    {m1 in 1..nMach, m2 in m1+1..nMach, j in 1..nJobs}:
    Start[m1,j] + duration[m1,j] <= Start[m2,j] or
    Start[m2,j] + duration[m2,j] <= Start[m1,j];</pre>
```

```
subj to HostNever {j in BOATS}:
    isH[j] = 1 ==> forall {t in TIMES} H[j,t] = j;
```

Piecewise-linear functions and operators

- ✤ abs(var-expr)

min(var-expr-list) min {indexing} var-expr
max(var-expr-list) max {indexing} var-expr

```
minimize Total_Cost:
    sum {i in ORIG, j in DEST}
    <<{p in 1..npiece[i,j]-1} limit[i,j,p];
        {p in 1..npiece[i,j]} rate[i,j,p]>> Trans[i,j];
```

```
maximize WeightSum:
    sum {t in TRAJ} max {n in NODE} weight[t,n] * Use[n];
```

Counting operators

- * count {indexing} (constraint-expr)
- * atmost k {indexing} (constraint-expr)
 atleast k {indexing} (constraint-expr)
 exactly k {indexing} (constraint-expr)
- * number of k in (var-expr-list)

```
subject to Limit_Used:
    count {(i,j) in ARCS}
    (sum {p in PRODUCTS} Flow[p,i,j] > 0) <= max_arcs;</pre>
```

```
subj to CapacityOfMachine {k in MACHINES}:
    numberof k in ({j in JOBS} MachineForJob[j]) <= cap[k];</pre>
```

Comparison operators

- * var-expr1 != var-expr2
 var-expr1 > var-expr2
 var-expr1 < var-expr2</pre>
- * alldiff(var-expr-list)
 alldiff {indexing} var-expr

subj to Different_Colors {(c1,c2) in Neighbors}: Color[c1] != Color[c2];

subject to OnePersonPerPosition:
 alldiff {i in 1..nPeople} Pos[i];

Complementarity operators

- \$ single-inequality1 complements single-inequality2
- double-inequality complements var-expr var-expr complements double-inequality

```
subject to Pri_Compl {i in PROD}:
    max(500.0, Price[i]) >= 0 complements
    sum {j in ACT} io[i,j] * Level[j] >= demand[i];
```

```
subject to Lev_Compl {j in ACT}:
    level_min[j] <= Level[j] <= level_max[j] complements
    cost[j] - sum {i in PROD} Price[i] * io[i,j];</pre>
```

Nonlinear expressions and operators

- * var-expr1 * var-expr2
 var-expr1 / var-expr2
 var-expr ^ k
- * exp(var-expr) log(var-expr)
 sin(var-expr) cos(var-expr) tan(var-expr)

```
subj to Eq {i in J} :
    x[i+neq] / (b[i+neq] * sum {j in J} x[j+neq] / b[j+neq]) =
    c[i] * x[i] / (40 * b[i] * sum {j in J} x[j] / b[j]);
```

```
minimize Chichinadze:
    x[1]<sup>2</sup> - 12*x[1] + 11 + 10*cos(pi*x[1]/2)
    + 8*sin(pi*5*x[1]) - exp(-(x[2]-.5)<sup>2</sup>/2)/sqrt(5);
```

Discrete variable domains

```
* var varname {indexing} in set-expr;
```

var Buy {f in FOODS} in {0,10,30,45,55};

```
var Ship {(i,j) in ARCS}
```

```
in {0} union interval[min_ship,capacity[i,j]];
```

var Work {j in SCHEDS} integer
in {0} union interval[least, max {i in SHIFT_LIST[j]} req[i]];

Formulating Implementation Issues

Is an expression repeated?

Detect common subexpressions

```
subject to Shipment_Limits {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] = 0 or
min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];</pre>
```

Is there an easy reformulation?

✤ Yes for min-max, no for max-min

```
minimize Max_Cost:
    max {i in PEOPLE} sum {j in PROJECTS} cost[i,j] * Assign[i,j];
```

```
maximize Max_Value:
    sum {t in T} max {n in N} weight[t,n] * Value[n];
```

Formulating Implementation Issues (cont'd)

Does an exact linearization exist?

- ✤ Yes if constraint set is "closed"
- ✤ No if constraint set is "open"

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0;
```

```
subj to Use_Definition {(i,j) in ARCS}:
    Flow[i,j] = 0 ==> Use[i,j] = 0 else Use[i,j] = 1;
```

Formulating Implementation Issues (cont'd)

Does an exact linearization exist?

- ✤ Yes if constraint set is "closed"
- ✤ No if constraint set is "open"

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] >= 0;
```

```
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] > 0;
```

Formulating Solver Efficiency Issues

Bounds on subexpressions

✤ Define auxiliary variables that can be bounded

```
var x {1..2} <= 2, >= -2;
minimize Goldstein-Price:
  (1 + (x[1] + x[2] + 1)^2
    * (19 - 14*x[1] + 3*x[1]^2 - 14*x[2] + 6*x[1]*x[2] + 3*x[2]^2))
* (30 + (2*x[1] - 3*x[2])^2
    * (18 - 32*x[1] + 12*x[1]^2 + 48*x[2] - 36*x[1]*x[2] + 27*x[2]^2));
```

```
var t1 >= 0, <= 25; subj to t1def: t1 = (x[1] + x[2] + 1)^2;
var t2 >= 0, <= 100; subj to t2def: t2 = (2*x[1] - 3*x[2])^2;
minimize Goldstein-Price:
  (1 + t1
    * (19 - 14*x[1] + 3*x[1]^2 - 14*x[2] + 6*x[1]*x[2] + 3*x[2]^2))
* (30 + t2
    * (18 - 32*x[1] + 12*x[1]^2 + 48*x[2] - 36*x[1]*x[2] + 27*x[2]^2));
```

Formulating **Solver Efficiency Issues** (cont'd)

Simplification of logic

Replace an iterated exists with a sum

```
minimize TotalCost: ...
sum {(i,j) in ARCS}
if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```

```
minimize TotalCost: ...
sum {(i,j) in ARCS}
if sum {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```

Formulating **Solver Efficiency Issues** (cont'd)

Creation of common subexpressions

Substitute a stronger bound from a constraint

```
subject to Shipment_Limits {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] = 0 or
    min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];
    minimize TotalCost: ...
    sum {(i,j) in ARCS}
    if sum {p in PRODUCTS} Flow[p,i,j] > 0
        then fix_cost[i,j];
```

```
minimize TotalCost: ...
sum {(i,j) in ARCS}
if sum {p in PRODUCTS} Flow[p,i,j] >= min_ship
then fix_cost[i,j];
```

... consider automating all these improvements

MP Interface General use with COPT, HiGHS

Read objectives & constraints from AMPL

- Store initially as linear coefficients + expression trees
- ✤ Analyze trees to determine if linearizable

Generate linearizations

- Walk trees to build linearizations (flatten)
- Define auxiliary variables (usually zero-one)
- ✤ Generate equivalent constraints

Solve

- Send to solver through its API
- Convert optimal solution back to the original AMPL variables
- ✤ Write solution to AMPL

MP Interface Special Alternatives in *x*-Gurobi

Apply our linearization (count)

✤ Use Gurobi's linear API

Have Gurobi linearize (or, abs)

- Simplify and "flatten" the expression tree
- ✤ Use Gurobi's "general constraint" API
 - * addGenConstrOr (resbinvar, [binvars])
 tells Gurobi: resbinvar = 1 iff at least one item in [binvars] = 1
 - * addGenConstrAbs (resvar, argvar)
 tells Gurobi: resvar = |argvar|

Have Gurobi piecewise-linearize (log)

- Replace univariate nonlinear functions by p-l approximations
- ✤ Use Gurobi's "function constraint" API
 - * addGenContstrLog (xvar, yvar)
 tells Gurobi: yvar = a piecewise-linear approximation of log(xvar)

Learn More