Advances in Model-Based Optimization with AMPL

Robert Fourer, Gleb Belov, Filipe Brandão

[4er, gleb,fdabrandao]@ampl.com
AMPL Optimization Inc. www.ampl.com -+1 773-336-AMPL

32nd European Conference on Operational Research
Espoo, Finland - 3-6 July 2022
Session TC-17: Modelling Tools I

Advances in
 Model-Based Optimization with AMPL

The ideal of model-based optimization is to describe your problem the way you think about it, and then let the computer do the work of getting a solution. Recent enhancements aim to bring the AMPL modeling language and system closer to this ideal. Using a variety of modeling language extensions, common formulations are described more naturally, with the AMPL translator, the AMPL-solver interface, or the solver itself doing most of the needed transformations.

Extensions described in this presentation include quadratic expressions, logical operators and constraints, simple near-linear and nonlinear functions, and combinations of these together with linear terms. All are supported by a new C++ AMPL-solver interface library that can be adapted to handle the multiple detection and transformation strategies required by large-scale solvers.

New Developments in AMPL

Availability

* Community Edition
* unlimited free use with free solvers
* New licensing for cloud machines and docker containers
* New implementation of the NEOS Server client (Kestrel)

Modeling language

* Snapshot utility
* New plug-in framework for user-defined functions, table handlers, other utilities

Data

* Extended and faster ODBC support for database software
* Direct support for .csv and .xlsx (spreadsheet) files
* Support for two-dimensional spreadsheet tables

New Developments in AMPL

Examples

* Free AMPL Model Colaboratory supporting Google Colab, Kaggle, etc.
* Portfolio optimization and deployment in the amplpy API

Solvers

* Callbacks from AMPL APIs
* New interface library . . .

New Solver Interface Library (MP)

Design

* C++ library for building efficient, configurable solver drivers
* Support for features of AMPL's C interface library (ASL)
* Extensive toolset for problem transformations

Special relevance to MIP solvers . . .

Typical User Complaint

```
Thank you so much for replying.
Let me show my "if-then" constraint in a more clear way as follows:
set veh := {1..16 by 1};
param veh_ind {veh};
param theory_time {veh};
param UP := 400000;
var in_lane_veh {veh} integer >=1, <=2;
var in_in_time {veh} >=0, <=UP;
Note that "in_lane_veh {veh}" are integer variables which equal 1 or 2,
and "in_in_time {veh}" are continuous variables.
subject to IfConstr {i in 1..card(veh)-1, j in i+1..card(veh):
    veh_ind[i] = veh_ind[j] and theory_time[i] <= theory_time[j]}:
        in_lane_veh[i] = in_lane_veh[j] ==> in_in_time[j] >= in_in_time[i] + l_veh/V;
When I run my program, there appears the following statement:
CPLEX 20.1.0.0: logical constraint _slogcon[1] is not an indicator constraint.
```


Typical Reply

To reformulate this model in a way that your MIP solver would accept, you could define some more binary variables,

```
var in_lane_same {veh,veh} binary;
```

with the idea that in_lane_same[i,j] should be 1 if and only if in_lane_veh[i] = in_lane_veh[j]. Then the desired relation could be written as two constraints:
in_lane_veh[i] = in_lane_veh[j] ==> in_lane_same[i,j] = 1
in_lane_same[i,j] = 1 ==> in_in_time[j] >= in_in_time[i] + l_veh/v;
The second one is an indicator constraint, but you would just need to replace the first one by equivalent linear constraints.

Given that in_lan_veh can only be either 1 or 2, those constraints could be

```
in_lane_same[i,j] >= 3 - in_lane_veh[i] - in_lane_veh[j]
```

in_lane_same[i,j] >= in_lane_veh[i] + in_lane_veh[j] - 3

New Solver Interface Library (MP)

Interface design

* C++ library for building efficient, configurable solver drivers
* Support for features of current C interface library
* Extensive toolset for problem transformations

Special relevance to MIP solvers . . .

* AMPL has logical and "not linear" expressions
for writing models the way you think of them
* Current MIP interfaces have very limited support for these
* New interfaces, built with MP, \}
allow these expressions to be used and combined freely

Outline

Example

* Multi-product network flow with complications
* Model-based optimization
* Linearized MIP formulation: in math and in AMPL

Formulating models more like you think about them

* Example: Natural vs. linearized formulations
* Supported operators, functions, expressions
* Implementation issues
* Efficiency issues

New C++ interface

* General use with COPT, HiGHS
* Special alternatives for Gurobi

Example:

Multi-Product Network Flow

Motivation

* Ship products efficiently to meet demands

Context

* a transportation network * nodes \bigcirc representing cities
$*$ arcs \longrightarrow representing roads
* supplies $--->$ at nodes
* demands ---> at nodes
* capacities on arcs
* shipping costs on arcs

Example:
 Multi-Product Network Flow

Decide

* how much of each product to ship on each arc

So that
$\%$ shipping costs are kept low

* shipments on each arc respect capacity of the arc
* supplies, demands, and shipments are in balance at each node

Example with complications: Multi-Product Network Flow

Decide also

* whether to use each arc

So that

* variable plus fixed shipping costs are kept low
* shipments are not too small
* not too many arcs are used

Model-Based Optimization

Formulate a minimum shipping cost model

* decision variables: What arcs are used and how much is shipped
* objective: Total fixed and variable costs
* constraints: Equations that the variables must satisfy to meet the requirements of the problem

Apply model-based optimization software

* modeling language: Write a formulation that a computer system can read
* data: Read costs, capacities, supplies, demands, and limits that define a specific case to be solved
* solver: Send to an off-the-shelf optimization engine that accepts a broad class of problems

Multi-Product Flow

Formulation (data)

Given
P set of products
N set of network nodes
$A \subseteq N \times N$ set of arcs connecting nodes
and
$u_{i j} \quad$ capacity of arc from i to j, for each $(i, j) \in A$
$s_{p j}$ supply/demand of product p at node j, for each $p \in P, j \in N$
>0 implies supply, < 0 implies demand
$c_{p i j}$ cost per unit to ship product p on $\operatorname{arc}(i, j)$, for each $p \in P,(i, j) \in A$
$d_{i j}$ fixed cost for using the arc from i to j, for each $(i, j) \in A$
$m \quad$ smallest total shipments on any arc that is used
n largest number of arcs that may be used

Multi-Product Flow

Linearized Formulation (variables, objective)

Determine

$X_{p i j}$ amount of commodity p to be shipped on $\operatorname{arc}(i, j)$,
for each $p \in P,(i, j) \in A$
$Y_{i j} 1$ if any amount is shipped from node i to node j, 0 otherwise, for each $(i, j) \in A$
to minimize

$$
\sum_{p \in P} \sum_{(i, j) \in A} c_{p i j} X_{p i j}+\sum_{(i, j) \in A} d_{i j} Y_{i j}
$$

total cost of shipments

Multi-Product Flow

Linearized Formulation (constraints)

Subject to

$$
\sum_{p \in P} X_{p i j} \leq u_{i j} Y_{i j}, \quad \text { for all }(i, j) \in A
$$

when the arc from node i to node j is used for shipping, total shipments must not exceed capacity, and $Y_{i j}$ must be 1

$$
\sum_{p \in P} X_{p i j} \geq m Y_{i j}, \quad \text { for all }(i, j) \in A
$$

when the arc from node i to node j is used for shipping, total shipments from i to j must be at least m

$$
\sum_{(i, j) \in A} X_{p i j}+s_{p j}=\sum_{(j, i) \in A} X_{p j i}, \text { for all } p \in P, j \in N
$$

shipments in plus supply/demand must equal shipments out

$$
\sum_{(i, j) \in A} Y_{i j} \leq n
$$

At most n arcs can be used

Multi-Product Flow

Linearized Model in AMPL

Symbolic data, variables, objective

```
set PRODUCTS;
set NODES;
set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;
param inflow {PRODUCTS,NODES};
param min_ship >= 0;
param max_arcs >= 0;
param var_cost {PRODUCTS,ARCS} >= 0;
var Flow {PRODUCTS,ARCS} >= 0;
param fix_cost {ARCS} >= 0;
var Use {ARCS} binary;
minimize TotalCost:
    sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] +
    sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];
```


Multi-Product Flow

Linearized Model in AMPL

Constraints

```
subject to Capacity {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];
subject to Min_Shipment {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
subject to Conservation {p in PRODUCTS, j in NODES}:
    sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
    sum {(j,i) in ARCS} Flow[p,j,i];
subject to Max_Used:
    sum {(i,j) in ARCS} Use[i,j] <= max_arcs;
```

$$
\sum_{p \in P} X_{p i j} \leq u_{i j} Y_{i j}, \text { for all }(i, j) \in A
$$

Multi-Product Flow

Data Instance in AMPL Text Format

Data: Limits

```
set PRODUCTS := Bands Coils ;
set NODES := Detroit Denver Boston 'New York' Seattle ;
param: ARCS: capacity:
    Boston 'New York' Seattle :=
    Detroit 100 80 120
    Denver 120 120 120 ;
param inflow:
            roit Denver Boston 'New York' Seattle :=
Bands \(50 \quad 60 \quad-50 \quad-50 \quad-10\)
    Coils 60 40 -40 -30 -30;
param min_ship := 15 ;
param max_arcs := 4 ;
```

Multi-Product Flow

Data Instance in AMPL Text Format

Data: Costs

```
param var_cost:
    [Bands,*,*] Boston 'New York' Seattle :=
            Detroit 10 20 60
            Denver 40 40 30
    [Coils,*,*] Boston 'New York' Seattle :=
            Detroit 20 20 80
            Denver 60 70 30 ;
param fix_cost default 75 ;
```


Multi-Product Flow

Optimization: MIP Solver (gurobi)

Formulating (MIP) Models More Like You Think About Them

Describe an optimization problem

* In a form you find natural or convenient
* Using existing AMPL expressions, functions, and operators

Send the problem to a solver

* In a form the solver will accept
* Relying on the AMPL-solver interface to translate

Get back a result

* In the form you originally used

Formulating

Positive Shipments Incur Fixed Costs

Linearized formulation

```
sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];
```

Natural formulation

```
sum {(i,j) in ARCS}
    if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j]
```


Formulating

Shipments Can't Be Too Small

Linearized formulation

```
sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];
```

Natural formulation

```
sum {p in PRODUCTS} Flow[p,i,j] = 0 or
min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j]
```


Formulating

Can't Use Too Many Arcs

Linearized formulation

```
sum {(i,j) in ARCS} Use[i,j] <= max_arcs;
```

Natural formulation

```
atmost max_arcs {(i,j) in ARCS}
    (sum {p in PRODUCTS} Flow[p,i,j] > 0);
```


Formulating

Optimization: Same MIP Solver (x-gurobi)

Formulating

Extensions for MIP Solvers

Conditional operators

* if constraint then var-expr1 [else var-expr2]
* constraint1 ==> constraint2 [else constraint3]
constraint1 <== constraint 2
constraint1 <==> constraint2

```
minimize TotalCost:
    sum {j in JOBS, k in MACHINES}
        if MachineForJob[j] = k then cost[j,k];
```

```
subject to Multi_Min_Ship {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] >= 1 ==>
        minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];
```


Formulating

Extensions for MIP Solvers

Logical operators

* constraint1 or constraint2 constraint1 and constraint2 not constraint2
* exists \{indexing\} constraint-expr forall \{indexing\} constraint-expr

```
subject to SatDefn {(i1,i2) in PREFS}:
    Sat[i1,i2] = 1 <==>
        Pos[i1]-Pos[i2] = 1 or Pos[i2]-Pos[i1] = 1;
```

```
subj to HostNever {j in BOATS}:
    isH[j] = 1 ==> forall {t in TIMES} H[j,t] = j;
```


Formulating

Extensions for MIP Solvers

Piecewise-linear functions and operators

* << breakpoint-list ; slope-list >> variable
<< breakpoint-list; slope-list >> (variable, zero-point)
* abs (var-expr)

```
min(var-expr-list) min {indexing} var-expr
```

$\max (v a r$-expr-list) $\max \{$ indexing $\}$ var-expr

```
minimize Total_Cost:
    sum {i in ORIG, j in DEST}
        <<{p in 1..npiece[i,j]-1} limit[i,j,p];
        {p in 1..npiece[i,j]} rate[i,j,p]>> Trans[i,j];
```

```
maximize WeightSum:
```

 sum \(\{\mathrm{t}\) in TRAJ\} \(\max \{\mathrm{n}\) in NODE\} weight [\(\mathrm{t}, \mathrm{n}]\) * Use[n];

Formulating

Extensions for MIP Solvers

Counting operators

* count \{indexing\} (constraint-expr)
* atmost k \{indexing\} (constraint-expr)
atleast k \{indexing\} (constraint-expr)
exactly k \{indexing\} (constraint-expr)
* numberof k in (var-expr-list)

```
subject to Limit_Used:
    count {(i,j) in ARCS}
        (sum {p in PRODUCTS} Flow[p,i,j] > 0) <= max_arcs;
```

subj to CapacityOfMachine $\{\mathrm{k}$ in MACHINES $\}$:
numberof k in (\{j in JOBS\} MachineForJob [j]) <= cap[k];

Formulating

Extensions for MIP Solvers

Comparison operators

$$
\begin{aligned}
& \text { var-expr } 1!=\text { var-expr } 2 \\
& \text { var-expr } 1>\text { var-expr } 2 \\
& \text { var-expr } 1<\text { var-expr } 2 \\
& \text { alldiff }(\text { var-expr-list }) \\
& \text { alldiff }\{\text { indexing }\} \text { var-expr }
\end{aligned}
$$

```
subj to Different_Colors {(c1, c2) in Neighbors}:
    Color[c1] != Color[c2];
```

subject to OnePersonPerPosition:
alldiff \{i in 1..nPeople\} Pos[i];

Formulating

Extensions for MIP Solvers

Complementarity operators

* single-inequality 1 complements single-inequality 2
* double-inequality complements var-expr var-expr complements double-inequality

```
subject to Pri_Compl {i in PROD}:
    max(500.0, Price[i]) >= O complements
        sum {j in ACT} io[i,j] * Level[j] >= demand[i];
```

```
subject to Lev_Compl {j in ACT}:
    level_min[j] <= Level[j] <= level_max[j] complements
        cost[j] - sum {i in PROD} Price[i] * io[i,j];
```


Formulating

Extensions for MIP Solvers

Nonlinear expressions and operators

* var-expr1 * var-expr2
var-expr1 / var-expr2
var-expr ${ }^{-} k$
* $\exp (v a r-e x p r) \log (v a r-e x p r)$
$\sin (v a r-e x p r) \cos (v a r-e x p r) \tan (v a r-e x p r)$

```
subj to Eq {i in J} :
    x[i+neq] / (b[i+neq] * sum {j in J} x[j+neq] / b[j+neq]) =
    c[i] * x[i] / (40 * b[i] * sum {j in J} x[j] / b[j]);
```

```
minimize Chichinadze:
    x[1] 2 - 12*x[1] + 11 + 10*cos(pi*x[1]/2)
    + 8*sin(pi*5*x[1]) - exp(-(x[2]-.5)^2/2)/sqrt(5);
```


Formulating

Extensions for MIP Solvers

Discrete variable domains

* var varname \{indexing\} in set-expr;

```
var Buy {f in FOODS} in {0,10,30,45,55};
var Ship {(i,j) in ARCS}
    in {0} union interval[min_ship,capacity[i,j]];
```

```
var Work {j in SCHEDS} integer
    in {0} union interval[least, max {i in SHIFT_LIST[j]} req[i]];
```


Formulating

Implementation Issues

Is an expression repeated?

* Detect common subexpressions

```
subject to Shipment_Limits {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] = 0 or
min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];
```


Is there a simplified formulation?

* Yes for min-max, no for max-min

```
minimize Max_Cost:
    max {i in PEOPLE} sum {j in PROJECTS} cost[i,j] * Assign[i,j];
```

```
maximize Max_Value:
    sum {t in T} max {n in N} weight[t,n] * Value[n];
```


Formulating

Implementation Issues (cont'd)

Does an exact linearization exist?

* Yes if constraint set is "closed"
* No if constraint set is "open"

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0;
```

subj to Use_Definition $\{(i, j)$ in ARCS $\}$:
Flow[i,j] $=0==$ Use[i,j] $=0$ else Use[i,j] = 1;

Formulating

Implementation Issues (cont'd)

Does an exact linearization exist?

* Yes if constraint set is "closed"
* No if constraint set is "open"

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] >= 0;
```

subj to Use_Definition $\{(i, j)$ in ARCS $\}$:
Use[i,j] $=0$ ==> Flow[i,j] = 0 else Flow[i,j] > 0;

Formulating

Solver Efficiency Issues

Bounds on subexpressions

* Define auxiliary variables that can be bounded

```
var x {1..2}<= 2,>= -2;
minimize Goldstein-Price:
    (1 + (x[1] + x[2] + 1)~2
        * (19-14*x[1] + 3*x[1]~2-14*x[2] + 6*x[1]*x[2] + 3*x[2]~2))
* (30 + (2*x[1] - 3*x[2])~2
    * (18-32*x[1] + 12*x[1]~2 + 48*x[2] - 36*x[1]*x[2] + 27*x[2]~2));
```

```
var t1 >= 0, <= 25; subj to t1def: t1 = (x[1] + x[2] + 1) ~2;
var t2 >= 0, <= 100; subj to t2def: t2 = (2*x[1] - 3*x[2])^2;
minimize Goldstein-Price:
    (1 + t1
        * (19-14*x[1] + 3*x[1]~2-14*x[2] + 6*x[1]*x[2] + 3*x[2]^2))
* (30 + t2
    * (18-32*x[1] + 12*x[1]^2 + 48*x[2] - 36*x[1]*x[2] + 27*x[2]^2));
```


Formulating

Solver Efficiency Issues (cont'd)

Simplification of logic

* Replace an iterated exists with a sum

```
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if exists {p in PRODUCTS} Flow[p,i,j] > O then fix_cost[i,j];
```

```
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if sum {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```


Formulating

Solver Efficiency Issues (cont'd)

Creation of common subexpressions

* Substitute a stronger bound from a constraint

```
subject to Shipment_Limits {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] = 0 or
    min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if sum {p in PRODUCTS} Flow[p,i,j] > 0
            then fix_cost[i,j];
```

```
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if sum {p in PRODUCTS} Flow[p,i,j] >= min_ship
        then fix_cost[i,j];
```

. . . consider automating all these improvements

MP Interface

General use with COPT, HiGHS

Read objectives \& constraints from AMPL

* Store initially as linear coefficients + expression trees
* Analyze to determine if linearizable

Generate linearizations

* Walk trees to build linearizations (flatten)
* Define auxiliary variables (often zero-one)
* Generate equivalent constraints

Solve
$*$ Send to solver through its API

* Convert optimal solution back to the original AMPL variables
* Write solution to AMPL
. . . generalizes to quadratic expressions

MP Interface

Special alternatives in "x-Gurobi"

Apply our linearization (count)

* Use Gurobi's linear API

Have Gurobi linearize (or, abs)

* Simplify and "flatten" the expression tree
* Use Gurobi's "general constraint" API
* addGenConstrOr (resbinvar, [binvars]) tells Gurobi: resbinvar $=1$ iff at least one item in [binvars] = 1
* addGenConstrAbs (resvar, argvar) tells Gurobi: resvar $=\mid$ argvar \mid

Have Gurobi piecewise-linearize (log)

* Replace univariate nonlinear functions by p-l approximations
* Use Gurobi's "function constraint" API
* addGenContstrLog (xvar, yvar)
tells Gurobi: yvar = a piecewise-linear approximation of $\log (x v a r)$

Learn More

https://dev.ampl.com

* new AMPL development projects
https://github.com/ampl/
* all AMPL open-source projects
https://github.com/ampl/mp
* MP solver interface
https://colab.ampl.com/
* AMPL Colaboratory links

