
Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023 1

Python and AMPL:
Build Prescriptive Analytics Applications Quickly with

Pandas, Colab, Streamlit, and amplpy

INFORMS Business Analytics Conference
Aurora, Colorado — 17 April 2023

Technology Tutorial

Filipe Brandão, Robert Fourer
{fdabrandao,4er}@ampl.com

AMPL Optimization Inc.
www.ampl.com — +1 773-336-AMPL

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023 2

Python and AMPL:
Build Prescriptive Analytics Applications Quickly
with Pandas, Colab, Streamlit, and amplpy

Python and its vast ecosystem are great for
data pre-processing, solution analysis, and
visualization, but Python’s design as a
general-purpose programming language
makes it less than ideal for expressing the
complex optimization problems typical of
prescriptive analytics. AMPL is a
declarative language that is designed for
describing optimization problems and that
integrates naturally with Python.

In this presentation, you’ll learn how the
combination of AMPL modeling with
Python environments and tools has made
optimization software more natural to use,
faster to run, and easier to integrate with
enterprise systems. Following a quick
introduction to model-based optimization,

we will show how AMPL and Python work
together in a range of contexts:

• Installing AMPL and solvers as Python
packages

• Importing and exporting data naturally
from/to Python data structures such as
Pandas dataframes

• Developing AMPL model formulations
directly in Jupyter notebooks

• Using AMPL and open-source solvers
for free on Google Colab, with no arbitrary
problem size limits

• Turning Python scripts into prescriptive
analytics applications in minutes with
Pandas, Streamlit, and amplpy

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Mathematical Optimization
In concept,

 Given an objective function of some decision variables
 Choose values of the variables to

make the objective as large or as small as possible
 Subject to constraints on the values of the variables

In practice,
 A paradigm for a very broad variety of decision problems
 A valuable approach to making decisions

3

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Optimization in
Operations Research and Analytics

Given a recurring need to make many interrelated decisions
 Purchases, production and shipment amounts, assignments, . . .

Consistently make highly desirable choices

By applying ideas from mathematical optimization
 Ways of describing problems (models)
 Ways of solving problems (algorithms)

4

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Optimization in Practice
Large numbers of decision variables

 Thousands to millions

An objective function
 To be minimized or maximized

Various constraint types
 10-20 distinct types
 Thousands to millions of each type
 Few variables involved in each constraint

Solved many times
 In development

 different model formulations & solver strategies

 In deployment
 different data scenarios

5

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

and for Optimization
Python

 Executable, general-purpose programming language
+ Vast ecosystem for

data pre-processing, solution analysis, and visualization
– Awkward for defining optimization problems

AMPL
 Declarative, specialized modeling language
+ Designed for defining optimization models
+ Integrates with Python’s ecosystem

6

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Outline
Example: Network design with redundancy

 Defining the problem in a way that people understand
 in words — in algebra — in AMPL

 Adding data and solving
 interactive prototyping environment

Integrating with Python
 Interfacing with Python using amplpy
 Installing AMPL and solvers as Python packages
 Developing AMPL models directly in Jupyter notebooks
 Using AMPL and solvers free on Google Colab
 Importing and exporting data naturally

from/to Python data structures such as Pandas dataframes
 Turning Python scripts into prescriptive analytics applications

in minutes with Pandas, amplpy, and Streamlit

7

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Motivation
 Build a least-cost network

that withstands any single-node failure

Context
 a flow network

 nodes representing locations
 links connecting nodes

Example:
Network Design with Redundancy

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Motivation
 Build a least-cost network

that withstands any single-node failure

Context
 a flow network

 nodes representing cities
 links connecting nodes
 arcs representing flows

 production at nodes
demands at nodes

 flow capacities on arcs
costs of building links

Example:
Network Design with Redundancy

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Network Redundancy
Decide

 which links to build

So that
 total construction cost is kept low

and
 flows on each arc respect capacities
 only built arcs have flows
 supplies, demands, and shipments are in balance at each node

and
 there is still a feasible flow when any one node fails

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Given sets
𝑁 network nodes
𝐿 ⊆ 𝑁 ൈ 𝑁 (undirected) links connecting nodes
𝐴 ൌ 𝐿 ∪ ሼሺ𝑗, 𝑖ሻ: ሺ𝑖, 𝑗ሻ ∈ 𝐿ሽ (directed) arcs from node to node

11

Algebraic Formulation
Network Redundancy

https://colab.research.google.com/github/ampl/amplcolab/blob/master/authors/
fdabrandao/military/electric_grid_with_redundancy.ipynb

set N; # nodes
set L within N cross N; # links (undirected)
set A = L union setof {(i,j) in L} (j,i); # arcs (directed)

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Given data
𝑏௜ demand/production at node 𝑖, for each 𝑖 ∈ 𝑁

> 0 implies demand, < 0 implies production

𝑐௜௝ cost to build a link connecting 𝑖 and 𝑗, for each ሺ𝑖, 𝑗ሻ ∈ 𝐿
𝑢 upper limit (capacity) on amount sent along any arc

12

Algebraic Formulation
Network Redundancy

param demsup {N}; # demand (positive) or production (negative)
param cost {L}; # cost to build a link
param capacity; # capacity of links

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Determine
𝑦𝑖𝑗 1 if a link is built from 𝑖 to 𝑗, 0 otherwise

for each ሺ𝑖, 𝑗ሻ ∈ 𝐿
𝑓𝑖𝑗 flow from 𝑖 to 𝑗 when there is no failure, for each 𝑖, 𝑗 ∈ 𝐴
𝑓௜௝௥ flow from 𝑖 to 𝑗 when node 𝑟 has failed,

for each ሺ𝑖, 𝑗ሻ ∈ 𝐴 and 𝑟 ∈ 𝑁

13

Algebraic Formulation
Network Redundancy

var Build {L} binary; # Build[i,j] = 1 iff link btw i & j is built

var Flow {A} >= 0; # Flow[i,j] is flow from i to j

var FlRm {A,N} >= 0; # FlRm[i,j,rm] is flow from i to j
when node rm is removed

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Minimize
∑ 𝑐௜௝𝑦௜௝ሺ௜,௝ሻ∈௅

total cost of all links built

14

Algebraic Formulation
Network Redundancy

minimize TotalBuildCost:

sum {(i,j) in L} cost[i,j] * Build[i,j];

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Subject to
∑ 𝑓௝௜ሺ௝,௜ሻ∈஺ െ ∑ 𝑓௜௝௜,௝ ∈஺ ൒ 𝑏௜, for all 𝑖 ∈ 𝑁

flow in minus flow out must be ൒ demand, or
flow out minus flow in must be ൑ production

𝑓௜௝ ൑ 𝑢𝑦௜௝, 𝑓௝௜ ൑ 𝑢𝑦௜௝ for all ሺ𝑖, 𝑗ሻ ∈ 𝐿

when a link is built from 𝑖 to 𝑗, flow may not exceed capacity;
when no link is built from 𝑖 to 𝑗, there can be no flow

15

Algebraic Formulation
Network Redundancy

subject to Balance {i in N}:

sum {(j,i) in A} Flow[j,i] — sum {(i,j) in A} Flow[i,j] >= demsup[i];

subject to ArcExists1 {(i,j) in L}:

Flow[i,j] <= capacity * Build[i,j];

subject to ArcExists2 {(i,j) in L}:

Flow[j,i] <= capacity * Build[i,j];

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Subject to
∑ 𝑓௝௜ሺ௝,௜ሻ∈஺ െ ∑ 𝑓௜௝௜,௝ ∈஺ ൒ 𝑏௜, for all 𝑖 ∈ 𝑁

flow in minus flow out must be ൒ demand, or
flow out minus flow in must be ൑ production

𝑓௜௝ ൑ 𝑢𝑦௜௝, 𝑓௝௜ ൑ 𝑢𝑦௜௝ for all ሺ𝑖, 𝑗ሻ ∈ 𝐿

when a link is built from 𝑖 to 𝑗, flow may not exceed capacity;
when no link is built from 𝑖 to 𝑗, there can be no flow

16

Algebraic Formulation
Network Redundancy

subject to Balance {i in N}:

sum {(j,i) in A} Flow[j,i] — sum {(i,j) in A} Flow[i,j] >= demsup[i];

subject to ArcExists1 {(i,j) in L}:

Build[i,j] = 0 ==> Flow[i,j] = Flow[j,i] = 0;

subject to ArcExists2 {(i,j) in L}:

Build[i,j] = 1 ==> Flow[i,j] <= capacity and Flow[j,i] <= capacity;

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Subject to
∑ 𝑓௝௜ሺ௝,௜ሻ∈஺ െ ∑ 𝑓௜௝௜,௝ ∈஺ ൒ 𝑏௜, for all 𝑖 ∈ 𝑁

flow in minus flow out must be ൒ demand, or
flow out minus flow in must be ൑ production

𝑓௜௝ ൑ 𝑢𝑦௜௝, 𝑓௝௜ ൑ 𝑢𝑦௜௝ for all ሺ𝑖, 𝑗ሻ ∈ 𝐿

when a link is built from 𝑖 to 𝑗, flow may not exceed capacity;
when no link is built from 𝑖 to 𝑗, there can be no flow

17

Algebraic Formulation
Network Redundancy

subject to Balance {i in N}:

sum {(j,i) in A} Flow[j,i] — sum {(i,j) in A} Flow[i,j] >= demsup[i];

subject to ArcExists1 {(i,j) in L}:

Flow[i,j] <= capacity * Build[i,j];

subject to ArcExists2 {(i,j) in L}:

Flow[j,i] <= capacity * Build[i,j];

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Subject to
∑ 𝑓௜௝௥ሺ௝,௜ሻ∈஺ െ ∑ 𝑓௝௜௥௜,௝ ∈஺ ൒ 𝑏௜, for all 𝑟 ∈ 𝑁, 𝑖 ∈ 𝑁 \ ሼ𝑟ሽ

when node 𝑟 fails,
same flow balance constraints at other nodes

𝑓௜௝௥ ൑ 𝑢𝑦௜௝, 𝑓௝௜௥ ൑ 𝑢𝑦௜௝ for all 𝑟 ∈ 𝑁, 𝑖, 𝑗 ∈ 𝐿

when node 𝑟 fails,
same capacity/no-flow constraints at links

18

Algebraic Formulation
Network Redundancy

subject to BalanceRm {rm in N, i in N diff {rm}}:

sum{(j,i)in A}FlRm[j,i,rm]- sum{(i,j)in A}FlRm[i,j,rm]>=demsup[i];

subject to ArcExistsRm1 {(i,j) in L, rm in N}:

FlRm[i,j,rm] <= capacity * Build[i,j];

subject to ArcExistsRm2 {(i,j) in L, rm in N}:

FlRm[j,i,rm] <= capacity * Build[i,j];

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Subject to
∑ 𝑓௜௥௥ሺ௜,௥ሻ∈஺ ൅ ∑ 𝑓௥௝௥௥,௝ ∈஺ ൌ 0, for all 𝑟 ∈ 𝑁

when node 𝑟 fails, there is no flow into it or out of it

19

Algebraic Formulation
Network Redundancy

subject to RemoveNode {rm in N}:

sum {(i,rm) in A} FlRm[i,rm,rm] +
sum {(rm,j) in A} FlRm[rm,j,rm] = 0;

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

AMPL Environments
Stand-alone interactive

 Model definition statements
 Model and solver management commands
 Scripting facilities

Python integrated
 Application programming interface (API)
 AMPL and solvers as Python packages
 AMPL in Jupyter notebooks

 Models in notebook cells
 Optimization applications in collaboratories

20

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Data Instance

21

param: N: demsup :=
1 -900 4 -450 7 200 10 250 13 300 16 150 19 100
2 -500 5 -750 8 300 11 300 14 300 17 250 20 250
3 -1200 6 -1200 9 200 12 250 15 250 18 300 21 250 ;

param: L: cost :=
6 18 223.607 5 16 291.548 2 11 200.000 18 19 100.000
1 2 300.000 7 12 373.363 3 14 353.553 2 3 141.421
6 15 344.819 4 18 316.228 10 12 330.151 6 17 180.278
17 20 250.000 6 16 158.114 5 11 223.607 2 9 351.283
18 20 158.114 8 9 550.091 19 21 254.951 3 9 281.780
1 11 360.555 16 18 254.951 4 19 360.555 1 7 150.000
12 16 445.982 9 14 380.000 2 8 200.998 4 14 254.951
11 13 360.555 18 21 291.548 14 20 360.555 1 10 270.740
16 17 150.000 17 21 403.113 13 17 320.156 12 15 353.553
19 20 212.132 6 19 200.000 5 17 250.000 13 15 378.021
12 13 284.429 9 11 418.808 7 10 121.655 5 18 316.228
1 8 101.980 3 11 141.421 8 10 372.156 7 8 250.799
5 13 200.000 17 18 111.803 15 17 432.897 4 20 158.114
13 16 254.951 20 21 223.607 10 13 466.154 4 21 254.951
11 14 380.789 7 13 427.200 8 11 297.321 15 16 284.429
3 8 323.110 17 19 180.278 ;

param capacity := 1000;

Network Redundancy

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

First Try

22

Stand-Alone Interactive

ampl: model netredun.mod;
ampl: data netredun.dat;

ampl: option solver gurobi;
ampl: solve;

Gurobi 10.0.0: infeasible problem
753 simplex iterations
1 branching nodes

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Second Try: Solved

23

Stand-Alone Interactive

ampl: model netredun.mod;
ampl: data netredun.dat;

ampl: option solver gurobi;
ampl: solve;

Presolve eliminates 269 constraints and 248 variables.
Adjusted problem:
2542 variables:

62 binary variables
2480 linear variables

2921 constraints, all linear; 9920 nonzeros
2921 inequality constraints

1 linear objective; 62 nonzeros.

Gurobi 10.0.0: optimal solution; objective 4495.012
461159 simplex iterations
1796 branching nodes

ampl: display _ampl_time, _solve_elapsed_time;
_ampl_time = 0.140625
_solve_elapsed_time = 16.859

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Results: # of Links Built and Used

24

Stand-Alone Interactive

ampl: print count {(i,j) in L} (Build[i,j] > 0);
21

ampl: print count {(i,j) in L}
ampl? (Build[i,j] > 0 and Flow[i,j] + Flow[j,i] > 0);
17

ampl: display {(i,j) in L: Build[i,j] > 0}
ampl? diff {(i,j) in L: Flow[i,j] + Flow[j,i] > 0};

(2,11) (9,14) (2,8) (4,20) ;

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Results: # of Links Used in Each Scenario

25

Stand-Alone Interactive

ampl: option display_1col 0, omit_zero_rows 1;

ampl: display {rm in N} count {(i,j) in L}
ampl? (Build[i,j] > 0 and FlRm[i,j,rm] + FlRm[j,i,rm] > 0);

1 18 4 18 7 16 10 16 13 17 16 15 19 17
2 17 5 19 8 17 11 16 14 15 17 16 20 16
3 19 6 19 9 16 12 15 15 17 18 15 21 15

ampl: display {(i,j) in L} count {rm in N}
ampl? (Build[i,j] = 1 and FlRm[i,j,rm] + FlRm[j,i,rm] > 0);

1 7 17 4 20 18 12 15 18
1 8 19 5 13 19 13 16 19
2 8 8 6 15 18 16 17 11
2 11 8 6 17 19 17 18 18
3 9 19 7 10 19 18 19 18
3 11 19 9 14 18 19 21 15
4 14 17 10 12 16 20 21 16 ;

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Modeling in AMPL vs. Modeling in Python
Pyomo, gurobipy, DOcplex, CVXPY, PuLP, etc.

 Optimization model is also defined by Python statements
 Combines modeling and programming

. . . puts everything in one language

AMPL
 Optimization model is written in AMPL statements
 Separates modeling and programming
 Allows a much cleaner statement of the modeling

. . . facilitates development and maintenance

26

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Min-Cost Flow in Pyomo

27

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Min-Cost Flow in Pyomo (cont’d)

28

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Min-Cost Flow in Pyomo (cont’d)

29

https://github.com/Pyomo/PyomoGallery/blob/master/pandas_min_cost_flow/min_cost_flow.py

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Min-Cost Flow Model in AMPL

30

Sets

set Nodes;
set Arcs within Nodes cross Nodes;

Parameters

param cost {Arcs};
param upperBound {Arcs} >= 0 default Infinity;
param lowerBound {Arcs} >= 0 default 0;
param imbalance {Nodes};

Variables

var Flow {(i,j) in Arcs} >= lowerBound[i,j], <= upperBound[i,j];

Objective function

minimize TotalCost: sum {(i,j) in Arcs} cost[i,j] * Flow[i,j];

Flow balance constraints

subject to FlowBal {i in Nodes}:

sum {(j,i) in Arcs} Flow[j,i] -
sum {(i,j) in Arcs} Flow[i,j] = imbalance[i];

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Pyomo Complications for a Harder Case

31

https://github.com/Pyomo/PyomoGallery/blob/master/pandas_min_cost_flow/min_cost_flow.py

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Maximum in gurobipy

32

production_change_cost = gp.quicksum(3 * gp.max_(0,(x[i] -x[i-1] for i in periods)) \

+ 0.8 * gp.max_(0,(x[i-1] - x[i] for i in periods)))

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Maximum in gurobipy (reply)

33

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Maximum in AMPL

34

param T > 0;

var x {0..T} >= 0;

var production_change_cost =
3 * max(0, {i in 1..T} x[i] - x[i-1]) +
0.8 * max(0, {i in 1..T} x[i-1] - x[i]);

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

gurobipy Efficiency Concerns

35

https://github.com/Pyomo/PyomoGallery/blob/master/pandas_min_cost_flow/min_cost_flow.py

. . . AMPL has a single fast sum operator

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

AMPL Integration with Python
https://dev.ampl.com/ampl/python/

36

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

AMPL Model in a Python Notebook
https://colab.research.google.com/github/ampl/amplcolab
/blob/master/authors/fdabrandao/military/electric_grid_
with_redundancy.ipynb

37

Integration with Python

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

Minimal Notebook to Get Started
https://try.ampl.com

38

Integration with Python

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023

AMPL Model in a Streamlit Application
https://nqueens-with-ampl.streamlit.app/

39

Integration with Python

Python and AMPL
INFORMS Business Analytics Conference — 17 April 2023 40

