Advances in Model-Based Optimization with AMPL

Robert Fourer

4er@ampl.com

AMPL Optimization Inc. www.ampl.com – +1 773-336-AMPL

INFORMS Annual Meeting

Indianapolis, Indiana — 15-19 October 2022 Technology Tutorials Track

Advances in Model-Based Optimization with AMPL

Optimization has been fundamental to OR and Analytics for as long as there have been computers, yet we are still finding ways to make optimization software more natural to use, faster to run, and easier to integrate with application systems. This presentation offers a quick tour of ways that AMPL's modeling framework has been enhanced to support optimization in today's challenging applications. Topics include:

- Expressing objectives and constraints more directly and understandably
- Exchanging data and results more directly and efficiently, with spreadsheets and with database systems
- Building better interfaces to applications using snapshots, callbacks, and other new features of AMPL's APIs for popular programming languages
- Deploying optimization in cloud environments and containers

To complement these feature advances, the presentation concludes by describing ways that AMPL is making model-based optimization more accessible, through the new Community Edition, a rewritten NEOS Server client, and free Model Colaboratory examples for teaching and learning optimization.

Outline

Model-based optimization

New in model-based optimization with AMPL

- * *more natural:* Writing models more like you think about them
- * *faster, easier:* Exchanging data and results directly and efficiently with spreadsheets and database systems
- *faster:* Interfacing to enterprise systems through APIs for popular programming languages
- * *easier:* Deploying optimization in containers and in the cloud

New ways to try AMPL now

- Community Edition
- NEOS Server client
- Model Colaboratory

Example: Multi-Product Network Flow

Motivation

Ship products efficiently to meet demands

Context

- a transportation network
 nodes O representing cities
 - * arcs \longrightarrow representing roads
- ✤ supplies ---> at nodes
- ♦ demands ---> at nodes
- ✤ capacities on arcs
- ✤ shipping costs on arcs

Example: Multi-Product Network Flow

Decide

how much of each product to ship on each arc

So that

- ✤ shipping costs are kept low
- shipments on each arc respect capacity of the arc
- supplies, demands, and shipments are in balance at each node

7

Example with complications: Multi-Product Network Flow

Decide also

whether to use each arc

So that

- variable plus fixed shipping costs are kept low
- ✤ shipments are not too small
- ✤ not too many arcs are used

8

Model-Based Optimization

Formulate a minimum shipping cost model

- *decision variables:* What arcs are used and how much is shipped
- * *objective:* Total fixed and variable costs
- *constraints:* Equations that the variables must satisfy to meet the requirements of the problem

Apply model-based optimization software

- *modeling language:* Write a formulation that a computer system can read
- *data:* Read costs, capacities, supplies, demands, and limits that define a specific case to be solved
- *solver:* Send to an off-the-shelf optimization engine that accepts a broad class of problems

Multi-Product Flow **Formulation** (data)

Given

- *P* set of products
- *N* set of network nodes
- $A \subseteq N \times N$ set of arcs connecting nodes

and

- u_{ij} capacity of arc from *i* to *j*, for each $(i, j) \in A$
- *s*_{*pj*} supply/demand of product *p* at node *j*, for each *p* ∈ *P*, *j* ∈ *N* > 0 implies supply, < 0 implies demand
- c_{pij} cost per unit to ship product *p* on arc (*i*, *j*), for each *p* ∈ *P*, (*i*, *j*) ∈ *A*
- d_{ij} fixed cost for using the arc from *i* to *j*, for each $(i, j) \in A$
- m smallest total shipments on any arc that is used
- *n* largest number of arcs that may be used

Multi-Product Flow

Linearized Formulation (variables, objective)

Determine

- $\begin{aligned} X_{pij} & \text{amount of commodity } p \text{ to be shipped on arc } (i,j), \\ & \text{for each } p \in P, (i,j) \in A \end{aligned}$
- Y_{ij} 1 if any amount is shipped from node *i* to node *j*, 0 otherwise, for each (*i*, *j*) ∈ *A*

to minimize

 $\sum_{p \in \mathbb{P}} \sum_{(i,j) \in \mathbb{A}} c_{pij} X_{pij} + \sum_{(i,j) \in \mathbb{A}} d_{ij} Y_{ij}$

total cost of shipments

Multi-Product Flow Linearized Formulation (constraints)

Subject to

 $\sum_{p \in P} X_{pij} \le u_{ij} Y_{ij},$

for all $(i, j) \in A$

when the arc from node *i* to node *j* is used for shipping, total shipments must not exceed capacity, and Y_{ij} must be 1

$$\sum_{p \in P} X_{pij} \ge m Y_{ij}$$

for all $(i, j) \in A$

when the arc from node i to node j is used for shipping, total shipments from i to j must be at least m

 $\sum_{(i,j)\in A} X_{pij} + s_{pj} = \sum_{(j,i)\in A} X_{pji}, \text{ for all } p \in P, j \in N$

shipments in plus supply/demand must equal shipments out

 $\sum_{(i,j)\in A} Y_{ij} \leq n$

At most *n* arcs can be used

Multi-Product Flow Linearized Model in AMPL

Symbolic data, variables, objective

```
set PRODUCTS;
set NODES;
set ARCS within {NODES, NODES};
param capacity {ARCS} >= 0;
param inflow {PRODUCTS, NODES};
param min_ship >= 0;
param max_arcs >= 0;
param var_cost {PRODUCTS,ARCS} >= 0;
var Flow {PRODUCTS,ARCS} >= 0;
param fix_cost {ARCS} >= 0;
var Use {ARCS} binary;
minimize TotalCost:
   sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] +
   sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];
```

Multi-Product Flow Linearized Model in AMPL

Constraints

```
subject to Capacity {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];
    subject to Min_Shipment {(i,j) in ARCS}:
        sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
    subject to Conservation {p in PRODUCTS, j in NODES}:
        sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
        sum {(j,i) in ARCS} Flow[p,j,i];
    subject to Max_Used:
        sum {(i,j) in ARCS} Use[i,j] <= max_arcs;</pre>
```

 $\sum_{p \in P} X_{pij} \le u_{ij} Y_{ij}$, for all $(i, j) \in A$

Multi-Product Flow Data Instance in AMPL Text Format

Limits

```
set PRODUCTS := Bands Coils :
set NODES := Detroit Denver Boston 'New York' Seattle ;
param: ARCS: capacity:
       Boston 'New York' Seattle :=
 Detroit 100
                  80
                         120
 Denver 120 120 120 ;
param inflow:
       Detroit Denver Boston 'New York' Seattle :=
 Bands
          50
                60
                   -50 -50
                                      -10
 Coils 60 40 -40 -30 -30;
param min_ship := 15 ;
param max_arcs := 4 ;
```

Multi-Product Flow Data Instance in AMPL Text Format

Costs

param var_cost: [Bands,*,*]: Boston 'New York' Seattle := Detroit 10 20 60 Denver 40 40 30 [Coils,*,*]: Boston 'New York' Seattle := Detroit 20 20 80 Denver 60 70 30; param fix_cost default 75 ;

Multi-Product Flow Optimization by a "MIP" Solver (gurobi)

File Edit Commands	Window Help				
1 🗳 🔛 🕼					
🗄 Current D	Console	A 🔳 🗟 🖻		🖻 netflow3.mod 🖾 🖻 netflow3.dat	
🗄 👻 🔶 🙀	AMPL				^
C:\Users\Robert\Desktop	<pre>ampl: model netflow3.mod; ampl: data netflow3.dat;</pre>		^	set PRODUCTS; set NODES;	
 netflow3.dat netflow3.mod x-netflow3.mod 	<pre>ampl: ampl: option solver gurobi ampl: solve; Set parameter Username Gurobi 9.5.2: optimal solu 6 simplex iterations 1 branch-and-cut nodes plus 3 simplex iterations ampl: ampl: option display_eps ampl: display Flow; Flow [Bands,*,*] (tr) : Denver Detroit Boston 0 50 'New York' 50 0 Seattle 10 0 [Coils,*,*] (tr) : Denver Detroit Boston 0 40 'New York' 10 20 Seattle 30 0 ; ampl:</pre>	ntion; objective 5900 for intbasis	ð;	<pre>set NoDES; set ARCS within {NODES,NODES}; param capacity {ARCS} >= 0; param inflow {PRODUCTS,NODES}; param min_ship >= 0; param max_arcs >= 0; param var_cost {PRODUCTS,ARCS} >= 0; var Flow {PRODUCTS,ARCS} >= 0; var Use {ARCS} binary; minimize TotalCost: sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j]; subject to Capacity {(i,j) in ARCS}: sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use subject to Capacity {(i,j) in ARCS}: sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j] subject to Min_Shipment {(i,j) in ARCS}: sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j] subject to Conservation {p in PRODUCTS, j in NODES}: sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] = sum {(i,j) in ARCS} Flow[p,i,i]; subject to Max_Used: sum {(i,j) in ARCS} Use[i,j] <= max_arcs; sum {(i,j) in ARCS} Use[i,j] <= max_arcs; } } </pre>	e[i,j];
	<		>	<	>

Formulating Models More Like You Think About Them

Describe an optimization problem

- * In a form *you find natural or convenient*
- Using readily recognized expressions

Send it to a solver

- ✤ In a form the solver will accept
- Relying on the modeling software to translate

Get back a result

✤ In the form you originally used

Formulating Positive Shipments Incur Fixed Costs

Linearized formulation

sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j]

Natural formulation

sum {(i,j) in ARCS}
if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j]

Formulating Shipments Can't Be Too Small

Linearized formulation

```
sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];</pre>
```

Natural formulation

sum {p in PRODUCTS} Flow[p,i,j] = 0 or min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j]</pre>

Formulating Can't Use Too Many Arcs

Linearized formulation

sum {(i,j) in ARCS} Use[i,j] <= max_arcs;</pre>

Natural formulation

count {(i,j) in ARCS} (sum {p in PRODUCTS} Flow[p,i,j] > 0) <= max_arcs;</pre>

Formulating Optimization by Same MIP Solver (x-gurobi)

sole model x-netflow3.mod; data netflow3.dat; option solver x-gurobi; solve; bi 9.5.2: Set parameter Username	<pre> x-netflow3.mod ⋈ A netflow3.dat set PRODUCTS; set NODES; set ARCS within {NODES,NODES}; param capacity {ARCS} >= 0; </pre>	
<pre>model x-netflow3.mod; data netflow3.dat; option solver x-gurobi; solve; bi 9.5.2: Set parameter Username</pre>	<pre>set PRODUCTS; set NODES; set ARCS within {NODES,NODES};</pre>	- E
data netflow3.dat; option solver x-gurobi; solve; bi 9.5.2: Set parameter Username	<pre>set NODES; set ARCS within {NODES,NODES};</pre>	^
data netflow3.dat; option solver x-gurobi; solve; bi 9.5.2: Set parameter Username	<pre>set NODES; set ARCS within {NODES,NODES};</pre>	
<pre>x-Gurobi 9.5.2: optimal solution; display Total_Cost; Cost = 5900 option display_eps .000001, display_1col 0; display Flow; Bands,*,*] (tr) Denver Detroit := 0 50 ork' 50 0 e 10 0 s,*,*] (tr) Denver Detroit := 0 40 ork' 10 20 e 30 0</pre>	<pre>param inflow {PRODUCTS,NODES}; param min_ship >= 0; param max_arcs >= 0; param fix_cost {ARCS} >= 0; param var_cost {PRODUCTS,ARCS} >= 0; var Flow {PRODUCTS,ARCS} >= 0; minimize Total_Cost: sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] + sum {(i,j) in ARCS} if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j]; subject to Shipment_Limits {(i,j) in ARCS}: sum {p in PRODUCTS} Flow[p,i,j] = 0 or min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j]; subject to Conservation {p in PRODUCTS, j in NODES}: sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] = sum {(j,i) in ARCS} Flow[p,j,i]; } </pre>	
	<pre>subject to Limit_Used: count {(i,j) in ARCS} (sum {p in PRODUCTS} Flow[p,i,j] > 0) <= max_arcs;</pre>	
	Cost = 5900 option display_eps .000001, display_1col 0; display Flow; Bands,*,*] (tr) Denver Detroit := 0 50 ork' 50 0 e 10 0 s,*,*] (tr) Denver Detroit := 0 40 ork' 10 20	<pre>Cost = 5900 param fix_cost {ARCS} >= 0; param fix_cost {PRODUCTS,ARCS} >= 0; param var_cost {PRODUCTS,ARCS} >= 0; var Flow {PRODUCTS, flow [p,i,j] > 0 then fix_cost[i,j]; subject to Conservation {p in PRODUCTS, j in NODES}; sum {(i,j) in ARCS} Flow [p,i,j] = sum {(j,i) in ARCS} Flow [p,j,i]; subject to Limit_Used: count {(i,j) in ARCS}</pre>

```
minimize total_fuelcost:
    sum{(i,j) in A} sum{k in V} X[i,j,k] *
    ((if H[i,k] <= 300 then dMor[i,j] else
    if H[i,k] <= 660 then dAft[i,j] else
    if H[i,k] <= 901 then dEve[i,j]) * 5 +
    (if H[i,k] <= 300 then tMor[i,j] else
    if H[i,k] <= 660 then tAft[i,j] else
    if H[i,k] <= 901 then tEve[i,j]) * 0.0504);</pre>
```

```
subj to NoPersonIsolated
        {l in TYPES['loc'], r in TYPES['rank'], j in 1..numberGrps}:
    sum {i in LOCRANK[l,r]} Assign[i,j] = 0 or
    sum {i in LOCRANK[l,r]} Assign[i,j] +
        sum {a in ADJACENT[r]} sum {i in LOCRANK[l,a]} Assign[i,j] >= 2;
```

Formulating

Supported Extensions and Solvers

Operators and functions

- Conditional: if-then-else; ==>, <==, <==>
- Logical: or, and, not; exists, forall
- Piecewise linear: abs; min, max; <
breakpoints; slopes>>
- Counting: count; atmost, atleast, exactly; number of
- * Comparison: >, <, !=; alldiff</pre>
- Complementarity: complements
- Nonlinear: *, /, ^; exp, log; sin, cos, tan; sinh, cosh, tanh
- ✤ Set membership: in

Solvers

✤ Gurobi, COPT, HiGHS, Xpress coming soon, . . .

Modeling guide

https://amplmp.readthedocs.io/en/latest/rst/model-guide.html

Formulating How It Works with MIP Solvers

Read problem instance from AMPL nl file

- Store initially as linear coefficients + expression trees
- ✤ Analyze trees to determine if linearizable

Generate linearizations

- Walk trees to build linearizations (flatten)
- Define auxiliary variables (usually zero-one)
- ✤ Generate equivalent constraints

Solve

- Send to solver through its API
- Convert optimal solution back to the original AMPL variables
- Write solution to AMPL

Formulating Special Alternatives in x-Gurobi

Apply our linearization (count)

✤ Use Gurobi's linear API

Have Gurobi linearize (or, abs)

- Simplify and "flatten" the expression tree
- ✤ Use Gurobi's "general constraint" API
 - * addGenConstrOr (resbinvar, [binvars])
 tells Gurobi: resbinvar = 1 iff at least one item in [binvars] = 1
 - * addGenConstrAbs (resvar, argvar)
 tells Gurobi: resvar = |argvar|

Have Gurobi piecewise-linearize (log)

- Replace univariate nonlinear functions by p-l approximations
- ✤ Use Gurobi's "function constraint" API
 - * addGenContstrLog (xvar, yvar)
 tells Gurobi: yvar = a piecewise-linear approximation of log(xvar)

Formulating Implementation Issues

Is an expression repeated?

Detect common subexpressions

```
subject to Shipment_Limits {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] = 0 or
min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];</pre>
```

Is there a simplified formulation?

✤ Yes for min-max — no for max-max

```
minimize Max_Cost:
    max {i in PEOPLE} sum {j in PROJECTS} cost[i,j] * Assign[i,j];
```

```
maximize Max_Value:
    sum {t in T} max {n in N} weight[t,n] * Value[n];
```

Formulating Implementation Issues (cont'd)

Does an exact linearization exist?

- ✤ Depends on constraint set: yes if "closed" no if "open"
- ✤ Usually yes for >= or <= but no for > or < . . .</p>

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0;
```

```
subj to Use_Definition {(i,j) in ARCS}:
    Flow[i,j] = 0 ==> Use[i,j] = 0 else Use[i,j] = 1;
```

Formulating Implementation Issues (cont'd)

Does an exact linearization exist?

- ✤ Depends on constraint set: yes if "closed" no if "open"
- ✤ Usually yes for >= or <= but no for > or < . . .</p>

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] >= 0;
```

subj to Use_Definition {(i,j) in ARCS}:
 Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] > 0;

Formulating Implementation Issues (cont'd)

Does an exact linearization exist?

- ✤ Depends on constraint set: yes if "closed" no if "open"
- ✤ Usually yes for >= or <= but no for > or < . . .</p>

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] >= 0;
```

subj to Use_Definition {(i,j) in ARCS}:
 Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] >= 1e-4;

Formulating Solver Efficiency Issues

Bounds on subexpressions

✤ Define auxiliary variables that can be bounded

```
var x {1..2} <= 2, >= -2;
minimize Goldstein-Price:
  (1 + (x[1] + x[2] + 1)^2
    * (19 - 14*x[1] + 3*x[1]^2 - 14*x[2] + 6*x[1]*x[2] + 3*x[2]^2))
* (30 + (2*x[1] - 3*x[2])^2
    * (18 - 32*x[1] + 12*x[1]^2 + 48*x[2] - 36*x[1]*x[2] + 27*x[2]^2));
```

```
var t1 >= 0, <= 25; subj to t1def: t1 = (x[1] + x[2] + 1)^2;
var t2 >= 0, <= 100; subj to t2def: t2 = (2*x[1] - 3*x[2])^2;
minimize Goldstein-Price:
  (1 + t1
    * (19 - 14*x[1] + 3*x[1]^2 - 14*x[2] + 6*x[1]*x[2] + 3*x[2]^2))
* (30 + t2
    * (18 - 32*x[1] + 12*x[1]^2 + 48*x[2] - 36*x[1]*x[2] + 27*x[2]^2));
```

Formulating **Solver Efficiency Issues** (cont'd)

Simplification of logic

Replace an iterated exists with a sum

```
minimize TotalCost: ...
sum {(i,j) in ARCS}
if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```

```
minimize TotalCost: ...
sum {(i,j) in ARCS}
if sum {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```

Formulating **Solver Efficiency Issues** (cont'd)

Creation of common subexpressions

Substitute a stronger bound from a constraint

```
subject to Shipment_Limits {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] = 0 or
    min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];
    minimize TotalCost: ...
    sum {(i,j) in ARCS}
    if sum {p in PRODUCTS} Flow[p,i,j] > 0
        then fix_cost[i,j];
```

```
minimize TotalCost: ...
sum {(i,j) in ARCS}
if sum {p in PRODUCTS} Flow[p,i,j] >= min_ship
then fix_cost[i,j];
```

... consider automating all these improvements

Exchanging data and results with spreadsheets and database systems

Direct spreadsheet (.xlsx) file interface

- ✤ Works with all .xlsx files on Windows, Linux, macOS
- Supports "two-dimensional" spreadsheet tables

Direct comma-separated value (.csv) file interface

New ODBC interface for database systems

- Support for Microsoft ODBC, unixODBC, iODBC
- ✤ Faster operation
- Extended update features

Direct Spreadsheet Interface

"1D" spreadsheet ranges

	~ ~ ~ 🗳	÷	netflow1.xls		Search (Alt+Q)		Robert Fou	ırer	☞	- 🗆	×
File	Home	Insert	Draw	Page Layout	Formulas	Data	Review	View	Help A	crobat	ß	\square
Capac	ity 👻	: ×	✓ fx	FROM								``
A	В	С	D	E	F	G	Н	I	J	K	L	
1												
2	ITEMS		FROM	то	capacity		ITEMS	FROM	то	cost		
3	Bands		Detroit	Boston	100		Bands	Detroit	Boston	10		
4	Coils		Detroit	New York	80		Bands	Detroit	New York	20		
5			Detroit	Seattle	120		Bands	Detroit	Seattle	60		
6			Denver	Boston	120		Bands	Denver	Boston	40		
7	NODES		Denver	New York	120		Bands	Denver	New York	40		
8	Detroit		Denver	Seattle	120		Bands	Denver	Seattle	30		
9	Denver						Coils	Detroit	Boston	20		
0	Boston						Coils	Detroit	New York	20		
1	New York		ITEMS	NODES	inflow		Coils	Detroit	Seattle	80		
12	Seattle		Bands	Detroit	50		Coils	Denver	Boston	60		
3			Bands	Denver	60		Coils	Denver	New York	70		
4			Bands	Boston	-50		Coils	Denver	Seattle	30		
5			Bands	New York	-50							
6			Bands	Seattle	-10							
7			Coils	Detroit	60							
8			Coils	Denver	40							
9			Coils	Boston	-40							
0			Coils	New York	-30							
1			Coils	Seattle	-30							
2											1	
\leftarrow \succ	DATA	RESULTS	+				E 🔳					►

Robert Fourer, Advances in AMPL 35

INFORMS Annual, Indianapolis — 15-19 October 2022 — Technology Tutorials

Direct Spreadsheet Interface

"2D" spreadsheet ranges

Ba Co NC De	Home B EMS ands bils	Insert : X C	Draw fx D capacity FROM Detroit Denver	Page Layout FROM E TO Boston 100	Formulas F New York	Data G	Review	View I	Help	Acrobat K	L	
A Ba Co Co A A A Ba A A A Ba A A A Ba A A Ba A Co A A A Ba A Co A A A Ba A Co A A A A Ba A Co A A A A A A A A A A A A A A A A A	B EMS ands bils		D capacity FROM Detroit	E TO Boston			Н	l cost	J		L	_
Ba Co NC Ba	EMS ands bils	C	capacity FROM Detroit	TO Boston			Н	l cost	J		L	
Ba Ba Co NC De	ands pils		FROM Detroit	Boston	New York	Castela		cost		1753.40		
Ba Co NC NC	ands pils		FROM Detroit	Boston	New York	Cantal		cost		ITCR AC		
Co NC	pils		Detroit		New York	Castel				ITEMS		
NC De				100		Seattle		FROM	то	Bands	Coils	
NC De			Denver		80	120		Detroit	Boston	10	20	
NC De			U CHIVEI	120	120	120		Detroit	New York	20	20	
De	ODES							Detroit	Seattle	60	80	
	UDES							Denver	Boston	40	60	
De	etroit		inflow	ITEMS				Denver	New York	40	70	
	enver		NODES	Bands	Coils			Denver	Seattle	30	30	
) Bo	oston		Detroit	50	60							
1 Ne	ew York		Denver	60	40							
2 Se	attle		Boston	-50	-40							
3			New York	-50	-30							
4			Seattle	-10	-30							
5												
5												
7												
8												
9												
C												
1												
2												
()}	DATA	RESULTS	+									•

Direct spreadsheet interface **Data Handling**

Script (input)

```
model netflow1.mod;
```

```
table Products IN "amplxl" "netflow2.xlsx" "Items":
     PRODUCTS <- [ITEMS];</pre>
```

```
table Nodes IN "amplxl" "netflow2.xlsx":
    NODES <- [NODES];</pre>
```

```
table Capacity IN "amplxl" "netflow2.xlsx":
    ARCS <- [FROM,TO], capacity;</pre>
```

```
table Inflow IN "amplxl" "netflow2.xlsx":
    [ITEMS,NODES], inflow;
```

```
table Cost IN "amplxl" "netflow2.xlsx":
    [ITEMS,FROM,TO], cost;
```

```
load amplxl.dll;
```

```
read table Products; read table Nodes;
read table Capacity; read table Inflow; read table Cost;
```

Direct spreadsheet interface Data Handling

Script (input)

```
model netflow1.mod;
table Products IN "amplxl" "netflow2.xlsx" "Items":
    PRODUCTS <- [ITEMS];
table Nodes IN "amplxl" "netflow2.xlsx":
    NODES <- [NODES];
table Capacity IN "amplxl" "netflow2.xlsx" "2D":
    ARCS <- [FROM,TO], capacity;
table Inflow IN "amplxl" "netflow2.xlsx" "2D":
    [ITEMS, NODES], inflow;
table Cost IN "amplxl" "netflow2.xlsx" "2D":
    [ITEMS, FROM, TO], cost;
load amplxl.dll;
read table Products; read table Nodes;
```

read table Capacity; read table Inflow; read table Cost;
Direct spreadsheet interface Data Handling

Script (output)

```
option solver gurobi;
solve;
table Results OUT "amplxl" "netflow1.xlsx" "2D":
   [ITEMS,FROM,TO], Flow;
table Summary OUT "amplxl" "netflow1.xlsx":
   {(i,j) in ARCS} -> [FROM,TO],
   sum {p in PRODUCTS} Flow[p,i,j] ~ TotFlow,
   sum {p in PRODUCTS} Flow[p,i,j] / capacity[i,j] ~ "%Used";
write table Results;
write table Results;
write table Summary;
```

Direct spreadsheet interface **Data Results**

"2D" spreadsheet range

9	• (~ * *	⊽ 1	netflow2.xlsx	ر -	Search (A	Alt+Q)		Robert Fo	urer		— C) ×
File	Home	Insert	Draw F	Page Layout	Formu	las Da	ta Review	v View	Help	Acrobat	Ŕ	P
L11	-	: ×	✓ fx									~
A	В	С	D	E	F	G	Н	I	J	К	L	1
1												
2	shipments		ITEMS									
3	FROM	то	Bands	Coils		FROM	то	TotFlow	%Used			
4	Detroit	Boston	50	30		Detroit	Boston	80	80.0%			
5	Detroit	New York	0	30		Detroit	New York	30	37.5%			
6	Detroit	Seattle	0	0		Detroit	Seattle	0	0.0%			
7	Denver	Boston	0	10		Denver	Boston	10	8.3%			
8	Denver	New York	50	0		Denver	New York	50	41.7%			
9	Denver	Seattle	10	30		Denver	Seattle	40	33.3%			
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22		RESULTS						4				
	DATA	RESUL15	+									

New ODBC Interface

Open Database Connectivity

- Standard API for accessing database management systems
- Many database systems have ODBC drivers
- Supported by AMPL table statements
 - * Can include SQL queries

Enhancements

- ✤ Faster writes
- ✤ Table rewrite support
 - * Preserve the column data types
- Table update support
 - * Modify only selected records of a large table
- Table "upsert" support (experimental)
 - * Update a record if it already exists, otherwise insert it
 - * Requires a database-specific SQL statement

Reading Efficiency

Writing Efficiency

Updating Efficiency

Interfacing to Enterprise Systems through AMPL APIs

Embed AMPL in applications

- Program in C++, C#, Java, MATLAB, Python, R
- Call AMPL to do optimization, via API (application programming interface) library routines
 - * Import data and export solutions
 - * Read AMPL models & execute AMPL commands
 - * Invoke solvers

Recent enhancements

- Snapshot utility
- ✤ Solver integration

Snapshot Utility

Save & restore an AMPL session

- ✤ Save key state information in a text file
 - * Model declaration, data, current solution, options, ...
- Restore the state as a starting point for later sessions

Valuable in API programming

- Debug API programs
 - * Check correctness of model and data setup
 - * Move to interactive environment for troubleshooting
- ✤ Avoid repeating expensive setups
 - * Set up once and record a snapshot
 - * Create many containers and restore the snapshot in each

Snapshot Command Listing

###snapshot-version: 0.1.1 ###model-start set PRODUCTS: set NODES: set ARCS within {NODES, NODES}; param capacity{ARCS} >= 0; param inflow{PRODUCTS, NODES}; param cost{PRODUCTS, ARCS} >= 0; var Flow{PRODUCTS, ARCS} >= 0; minimize TotalCost: sum{p in PRODUCTS, (i,j) in ARCS} cost[p,i,j subject to Capacity{(i,j) in ARCS} : sum{p in PRODUCTS} Flow[p,I,j] <= capacity[i,j];</pre> subject to Conservation{p in PRODUCTS, j in NODES} : sum{(i,j) i Flow[p,i,j] + inflow[p,j] == sum{(j,i) in ARCS} Flow[p,j,i]; ###model-end ###options-start option AMPLFUNC 'C:\Users\AMPL\Desktop\Solvers\ampltabl_64.dll'; option ampl_Include 'C:\Users\AMPL\Desktop\Analytics\Netflow'; option ampl_include 'C:\Users\AMPL\Desktop\Analytics\Netflow'; ###options-end ###data-start data: set PRODUCTS := 'Pencils' 'Pens': set NODES := 'Detroit' 'Denver' 'Boston' 'New York' 'Seattle': set ARCS := ('Detroit', 'Boston') ('Detroit', 'New York') ('Detroit','Seattle') ('Denver', 'Boston') ('Denver', 'New York') ('Denver','Seattle'); param capacity := ['Detroit', 'Boston'] 100

['Detroit', 'New York'] 80 ['Detroit', 'Seattle'] 120 ['Denver', 'Boston'] 120 ['Denver', 'New York'] 120 ['Denver','Seattle'] 120; param cost := ['Pencils', 'Detroit', 'Boston'] 10 ['Pencils', 'Detroit', 'New York'] 20 ['Pencils', 'Detroit', 'Seattle'] 60 ['Pencils', 'Denver', 'Boston'] 40 ['Pencils', 'Denver', 'New York'] 40 ['Pencils', 'Denver', 'Seattle'] 30 ['Pens', 'Detroit', 'Boston'] 20 ['Pens', 'Detroit', 'New York'] 20 ['Pens','Detroit','Seattle'] 80 ['Pens', 'Denver', 'Boston'] 60 ['Pens', 'Denver', 'New York'] 70 ['Pens', 'Denver', 'Seattle'] 30; model: ###data-end ###current-problem-start problem Initial; environ Initial; ###current-problem-end ###objectives-start objective TotalCost; ###objectives-end ###fixes-start unfix Flow; ###fixes-end ###drop-restore-start restore Capacity; restore Conservation; ###drop-restore-end ###solution-start ###solution-end

Snapshot Usage

For use with an API

snapshot = ampl.get_output('snapshot;')

ampl2.eval(snapshot)

For use in interactive debugging

```
snapshot = ampl.get_output('snapshot;')
```

```
print(snapshot, file=open('snapshot.run', 'w'))
```

include "snapshot.run";

API Solver Integration

New library works more directly with solvers

- Access all of a solver's capabilities, using its lowest level (usually C) API functionalities
- Work with a generic solver interface that encapsulates the most common solver functionalities
 * switch between solvers without re-programming

Handle solver callbacks

- Customize or enhance MIP solver processing
- Employ solver-specific or generic callback interfaces

User's guide

https://ampls.readthedocs.io/en/latest/general/introduction.html

Deploying Optimization in Virtual Environments

Dynamic licensing

- Not a machine-locked license scheme
 - * Doesn't rely on fixed machine characteristics
- Not a traditional floating license scheme
 - * Doesn't rely on a customer's machine for validation

Container support

- ✤ Use any base image
- Load needed AMPL and solver modules
- ✤ Initialize dynamic licensing

Dynamic Licensing

Not locked to computer hardware

- License based on usage limits
- Install anywhere: local or cloud, short-term or permanent

Usage monitored in real time

- Dashboard viewable by user and by us
- Short-term use may exceed limits
- ✤ If use exceeds limits in longer term, customer is contacted

How is it used?

- Flexible floating/departmental licensing of local machines
- Licensing of cloud or cluster machines that don't have *static* hardware signatures
- Licensing for containers
- New *free* community edition

Dynamic Licensing **Operation**

Short-term leases

- ✤ Last 5 minutes
- ✤ Automatically renewed
- Internet connection required

Renewal procedure

- Sends current license & usage data to our REST API endpoints
 * Hosted across multiple cloud providers (AWS, Azure, ...)
- ✤ User details and usage data are logged
- New license file is returned

... lease remains active during renewal process

Dynamic Licensing Tracking

Information reported in renewal request

- ✤ CPU cores in the underlying machine
- ✤ CPU threads available

Information tracked

- Total concurrent active leases
- Total CPU threads available across all active leases
- Total different underlying machines with active leases
- ✤ Total CPU cores across all machines with active leases

Dynamic Licensing Dashboard

Dynamic Licensing Dashboard

aran'n'n mender meanere ar Finneren en finneren er en brikken er en en benet finner fan de finner of er bekender de a

Leases aggregated by node ID

Container Setup (*in a dockerfile*)

Install curl, build arguments, get AMPL module

```
# Use any image as base image
FROM python:3.9-slim-buster
```

```
# Install curl in order to download the modules necessary
RUN apt-get update && apt-get install -y curl
```

```
# Build arguments
ARG LICENSE_UUID=f9758f88-b0a3-11eb-9e10-c75c7742e3ae
ARG MODULES_URL=https://ampl.com/dl/modules
```

```
# Download ampl-module.linux64.tgz
RUN cd /opt/ && curl -0 ${MODULES_URL}/ampl-module.linux64.tgz && \
    tar xzvf ampl-module.linux64.tgz && rm ampl-module.linux64.tgz
```

Container Setup (*cont'd*)

Load Gurobi, COIN-OR solvers, license, amplpy API

Download Gurobi solver RUN cd /opt/ && curl -0 \${MODULES_URL}/gurobi-module.linux64.tgz && \ tar xzvf gurobi-module.linux64.tgz && rm gurobi-module.linux64.tgz # Download COIN-OR solvers RUN cd /opt/ && curl -0 \${MODULES_URL}/coin-module.linux64.tgz && \ tar xzvf coin-module.linux64.tgz && rm coin-module.linux64.tgz # Download initial license file RUN cd /opt/ampl.linux-intel64/ && curl -0 \ https://portal.ampl.com/download/license/\${LICENSE_UUID}/ampl.lic # Add installation directory to the environment variable PATH

ENV PATH="/opt/ampl.linux-intel64/:\${PATH}"

Install amplpy API
RUN pip3 install amplpy

New Ways to Try AMPL Now

Model colaboratory

NEOS Server Client (Kestrel)

Community Edition

AMPL Model Colaboratory

Run sample models free in Jupyter notebooks

- Run a short Python cell for setup
- Run AMPL cells for model, data, scripts
 ... execute in Google Colab, Kaggle, etc.

Great for getting started with AMPL

- No local downloads or installation needed
- Try out examples
 - * From the AMPL book
 - * From previous talks and papers
- ✤ Copy and modify an example

Index to examples

https://colab.ampl.com/

NEOS Server Client

Use solvers on the free NEOS Server

- New gokestrel client works in any AMPL session
- ✤ Chosen solver is run by NEOS, returns results to AMPL

```
ampl: model multmip3.mod; data multmip3.dat;
ampl: option solver kestrel;
ampl: option kestrel_options 'solver=cplex';
ampl: option email '4er@ampl.com';
ampl: solve;
Connecting to: neos-server.org:3333
Job 12346358 submitted to NEOS, password='zBEfpQxD'
Executing on prod-exec-7.neos-server.org
CPLEX 20.1.0.0: threads=4
CPLEX 20.1.0.0: optimal integer solution; objective 235625
98 MIP simplex iterations
0 branch-and-bound nodes
ampl:
```


AMPL Community Edition

Open-ended trial

- ✤ Free AMPL and open-source solvers
 - * no size or time limitations
- ✤ 30-day full-featured trials of commercial solvers

Dynamic licensing

✤ Runs on any computer with an internet connection

Immediate setup

https://ampl.com/ce