
A
__

AMPL Reference Manual

AMPL is a language for algebraic modeling and mathematical programming: a computer-
readable language for expressing optimization problems such as linear programming in algebraic
notation. This appendix summarizes the features of AMPL, with particular emphasis on technical
details not fully covered in the preceding chapters. Nevertheless, not every feature, construct, and
option is listed; the AMPL web site www.ampl.com contains the most up to date and complete
information.

The following notational conventions are used. Literal text is printed in constant width
font, while syntactic categories are printed in italic font. Phrases or subphrases enclosed in
slanted square brackets [and] are optional, as are constructs with the subscript opt.

A.1 Lexical rules

AMPL models involve variables, constraints, and objectives, expressed with the help of sets and
parameters. These are called model entities. Each model entity has an alphanumeric name: a string
of one or more Unicode UTF-8 letters, digits, and underscores, in a pattern that cannot be mistaken
for a numeric constant. Upper-case letters are distinct from lower-case letters.

Numeric constants are written in standard scientific notation: an optional sign, a sequence of
digits that may contain a decimal point, and an optional exponent field that begins with one of the
letters d, D, e or E, as in 1.23D-45. All arithmetic in AMPL is in the same precision (double pre-
cision on most machines), so all exponent notations are synonymous.

Literals are strings delimited either by single quotes ’ or by double quotes "; the delimiting
character must be doubled if it appears within the literal, as in ’x’’y’, which is a literal contain-
ing the three characters x’y. Newline characters may appear within a literal only if preceded by \.
The choice of delimiter is arbitrary; ’abc’ and "abc" denote the same literal.

Literals are distinct from numeric constants: 1 and ’1’ are unrelated.
Input is free form; white space (any sequence of space, tab or newline characters) may appear

between any tokens. Each statement ends with a semicolon.
Comments begin with # and extend to the end of the current line, or are delimited by /* and

*/, in which case they may extend across several lines and do not nest. Comments may appear
anywhere in declarations, commands, and data.

These words are reserved, and may not be used in other contexts:

453

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

454 AMPL REFERENCE MANUAL APPENDIX A

Current complements integer solve_result_num
IN contains less suffix
INOUT default logical sum
Infinity dimen max symbolic
Initial div min table
LOCAL else option then
OUT environ setof union
all exists shell_exitcode until
binary forall solve_exitcode while
by if solve_message within
check in solve_result

Words beginning with underscore are also reserved. The other keywords, function names, etc.,
are predefined, but their meanings can be redefined. For example, the word prod is predefined as
a product operator analogous to sum, but it can be redefined in a declaration, such as

set prod; # products

Once a word has been redefined, the original meaning is inaccessible.
AMPL provides synonyms for several keywords and operators; the preferred forms are on the

left.

ˆ **
= ==
<> !=
and &&
not !
or ||
prod product

A.2 Set members

A set contains zero or more elements or members, each of which is an ordered list of one or
more components. Each member of a set must be distinct. All members must have the same num-
ber of components; this common number is called the set’s dimension.

A literal set is written as a comma-separated list of members, between braces { and }. If the
set is one-dimensional, the members are simply numeric constants or literal strings, or any expres-
sions that evaluate to numbers or strings:

{"a","b","c"}
{1,2,3,4,5,6,7,8,9}
{t,t+1,t+2}

For a multidimensional set, each member must be written as a parenthesized comma-separated list
of the above:

{("a",2),("a",3),("b",5)}
{(1,2,3),(1,2,4),(1,2,5),(1,3,7),(1,4,6)}

The value of a numeric member is the result of rounding its decimal representation to a floating-
point number. Numeric members that appear different but round to the same floating-point num-
ber, such as 1 and 0.01E2, are considered the same.

SECTION A.4 EXPRESSIONS 455

A.3 Indexing expressions and subscripts

Most entities in AMPL can be defined in collections indexed over a set; individual items are
selected by appending a bracketed subscript to the name of the entity. The range of possible sub-
scripts is indicated by an indexing expression in the entity’s declaration. Reduction operators, such
as sum, also use indexing expressions to specify sets over which operations are iterated.

A subscript is a list of symbolic or numeric expressions, separated by commas and enclosed in
square brackets, as in supply[i] and cost[j, p[k]+1, "O+"]. Each subscripting expression
must evaluate to a number or a literal. The resulting value or sequence of values must give a mem-
ber of a relevant one-dimensional or multidimensional indexing set.

An indexing expression is a comma-separated list of set expressions, followed optionally by a
colon and a logical ‘‘such that’’ expression, all enclosed in braces:

indexing:
{ sexpr - list }
{ sexpr - list : lexpr }

sexpr - list:
sexpr
dummy - member in sexpr
sexpr - list , sexpr

Each set expression may be preceded by a dummy member and the keyword in. A dummy mem-
ber for a one-dimensional set is an unbound name, that is, a name not currently defined. A dummy
member for a multidimensional set is a comma-separated list, enclosed in parentheses, of expres-
sions or unbound names; the list must include at least one unbound name.

A dummy member introduces one or more dummy indices (the unbound names in its compo-
nents), whose scopes , or ranges of definition, begin just after the following sexpr; an index’s scope
runs through the rest of the indexing expression, to the end of the declaration using the indexing
expression, or to the end of the operand that uses the indexing expression. When a dummy mem-
ber has one or more expression components, the dummy indices in the dummy member range over
a slice of the set, i.e., they assume all values for which the dummy member is in the set.

{A} # a set
{A, B} # all pairs, one from A, one from B
{i in A, j in B} # the same
{i in A, B} # the same
{i in A, C[i]} # all pairs, one from A, one from C[i]
{i in A, (j,k) in D} # 1 from A and 1 (itself a pair) from D
{i in A: p[i] > 0} # all i in A such that p[i] is positive
{i in A, j in C[i]: i <= j} # i and j must be numeric
{i in A, (i,j) in D: i <= j} # all pairs with i in A and i,j in D

(same value of i) and i <= j

The optional : lexpr in an indexing expression selects only the members that satisfy the logical
expression and excludes the others. The lexpr typically involves one or more dummy indices of
the indexing expression.

A.4 Expressions

Various items can be combined in AMPL’s arithmetic and logical expressions. An expression
that may not contain variables is denoted cexpr and is sometimes called a ‘‘constant expression’’,

456 AMPL REFERENCE MANUAL APPENDIX A

__
__

Precedence Name Type Remarks

1 if-then-else A, S A: if no else, then ‘‘else 0’’ assumed
S: ‘‘else sexpr’’ required

2 or || L
3 exists forall L logical reduction operators
4 and && L
5 < <= = == <> != >= > L
6 in not in L membership in set
6 within not within L S within T means set S ⊆ set T
7 not ! L logical negation

8 union diff symdiff S symdiff ≡ symmetric difference
9 inter S set intersection

10 cross S cross or Cartesian product
11 setof .. by S set constructors

12 + - less A a less b ≡ max (a − b, 0)
13 sum prod min max A arithmetic reduction operators
14 * / div mod A div ≡ truncated quotient of integers
15 + - A unary plus, unary minus
16 ˆ ** A exponentiation

Operators are listed in increasing precedence order. Exponentiation and if-then-
else are right-associative; the other operators are left-associative. The ‘ Type’ col-
umn indicates result types: A for arithmetic, L for logical, S for set.

Table A-1: Arithmetic, logical and set operators.
__

even though it may involve dummy indices. A logical expression, denoted lexpr, may not contain
variables when it is part of a cexpr. Set expressions are denoted sexpr.

Table A-1 summarizes the arithmetic, logical and set operators; the type column indicates
whether the operator produces an arithmetic value (A), a logical value (L), or a set value (S).

Arithmetic expressions are formed from the usual arithmetic operators, built-in functions, and
arithmetic reduction operators like sum:

expr:
number
variable
expr arith - op expr arith - op is + - less * / mod div ˆ **
unary - op expr unary - op is + -
built - in(exprlist)
if lexpr then expr [else expr]
reduction - op indexing expr reduction - op is sum prod max min
(expr)

Built-in functions are listed in Table A-2.
The arithmetic reduction operators are used in expressions like

sum {i in Prod} cost[i] * Make[i]

The scope of the indexing expression extends to the end of the expr. If the operation is over an
empty set, the result is the identity value for the operation: 0 for sum, 1 for prod, Infinity for
min, and -Infinity for max.

SECTION A.4 EXPRESSIONS 457

Logical expressions appear where a value of ‘‘true’’ or ‘‘false’’ is required: in check state-
ments, the ‘‘such that’’ parts of indexing expressions (following the colon), and in if lexpr then
... else ... expressions. Numeric values that appear in any of these contexts are implicitly coerced
to logical values: 0 is interpreted as false, and all other numeric values as true.

lexpr:
expr
expr compare - op expr compare - op is < <= = == != <> > >=
lexpr logic - op lexpr logic - op is or || and &&
not lexpr
member in sexpr
member not in sexpr
sexpr within sexpr
sexpr not within sexpr
opname indexing lexpr opname is exists or forall
(lexpr)

The in operator tests set membership. Its left operand is a potential set member, i.e., an
expression or comma-separated list of expressions enclosed in parentheses, with the number of
expressions equal to the dimension of the right operand, which must be a set expression. The
within operator tests whether one set is contained in another. The two set operands must have
the same dimension.

The logical reduction operators exists and forall are the iterated counterparts of or and
and. When applied over an empty set, exists returns false and forall returns true.

Set expressions yield sets.

sexpr:
{ [member [, member . . .]] }
sexpr set - op sexpr set - op is union diff symdiff inter cross
opname indexing sexpr opname is union or inter
expr .. expr [by expr]
setof indexing member
if lexpr then sexpr else sexpr
(sexpr)
interval
infinite - set
indexing

Components of members can be arbitrary constant expressions. Section A.6.3 describes intervals
and infinite - sets.

When used as binary operators, union and inter denote the binary set operations of union
and intersection. These keywords may also be used as reduction operators.

The .. operator constructs sets. The default by clause is by 1. In general, e 1 ..e 2 by e 3

means the numbers

e 1 , e 1 + e 3 , e 1 + 2e 3 , . . . , e 1 +
 e 3

e 2 − e 1_ _______
 e 3

rounded to set members. (The notation x denotes the floor of x, that is, the largest integer ≤ x.)
The setof operator is a set construction operator; member is either an expression or a

comma-separated list of expressions enclosed in parentheses. The resulting set consists of all the
members obtained by iterating over the indexing expression; the dimension of the resulting expres-
sion is the number of components in member.

458 AMPL REFERENCE MANUAL APPENDIX A

__
__

abs(x) absolute value x
acos(x) inverse cosine, cos− 1 (x)
acosh(x) inverse hyperbolic cosine, cosh− 1 (x)
alias(v) alias of model entity v
asin(x) inverse sine, sin− 1 (x)
asinh(x) inverse hyperbolic sine, sinh− 1 (x)
atan(x) inverse tangent, tan− 1 (x)
atan2(y, x) inverse tangent, tan− 1 (y / x)
atanh(x) inverse hyperbolic tangent, tanh− 1 (x)
ceil(x) ceiling of x (next higher integer)
ctime() current time as a string
ctime(t) time t as a string
cos(x) cosine
exp(x) ex

floor(x) floor of x (next lower integer)
log(x) log e (x)
log10(x) log10 (x)
max(x, y, ...) maximum (2 or more arguments)
min(x, y, ...) minimum (2 or more arguments)
precision(x, n) x rounded to n significant decimal digits
round(x, n) x rounded to n digits past decimal point
round(x) x rounded to an integer
sin(x) sine
sinh(x) hyperbolic sine
sqrt(x) square root
tan(x) tangent
tanh(x) hyperbolic tangent
time() current time in seconds
trunc(x, n) x truncated to n digits past decimal point
trunc(x) x truncated to an integer

Table A-2: Built-in arithmetic functions.
__

ampl: set y = setof {i in 1..5} (i,iˆ2);
ampl: display y;
set y := (1,1) (2,4) (3,9) (4,16) (5,25);

A.4.1 Built-in functions

The built-in arithmetic functions are listed in Table A-2. The function alias takes as its
argument the name of a model entity and returns its alias, a literal value described in Section A.5.
The functions round(x , n) and trunc(x , n) convert x to a decimal string and round or truncate
it to n places past the decimal point (or to − n places before the decimal point if n < 0); similarly,
precision(x , n) rounds x to n significant decimal digits. For round and trunc, a missing n
is taken as 0, thus providing the usual rounding or truncation to an integer.

Several built-in random number generation functions are available, as listed in Table A-3. All
are based on a uniform random number generator with a very long period. An initial seed n can be
specified with the -sn command-line argument (A.23) or option randseed, while -s or

SECTION A.4 EXPRESSIONS 459

__
__

Beta(a, b) density(x) = xa − 1 (1 − x)b − 1 /(Γ(a) Γ(b)/Γ(a + b)), x in [0 , 1]
Cauchy() density(x) = 1/(π(1 + x2))
Exponential() density(x) = e− x, x > 0
Gamma(a) density(x) = xa − 1 e− x / Γ(a) , x≥0, a > 0
Irand224() integer uniform on [0, 224)
Normal(µ , σ) normal distribution with mean µ, variance σ
Normal01() normal distribution with mean 0, variance 1
Poisson(µ) probability(k) = e− µ µk / k! , k = 0 , 1 , ...
Uniform(m , n) uniform on [m , n)
Uniform01() uniform on [0, 1)

Table A-3: Built-in random number generation functions.
__

option randseed ’’ instructs AMPL to choose and print a seed. Giving no -s argument is the
same as specifying -s1.

Irand224() returns an integer in the range [0 , 224). Given the same seed, an expression of
the form floor (m∗Irand 224 () /n) will yield the same value on most computers when m
and n are integer expressions of reasonable magnitude, i.e., n < 2k − 24 and m < 2k, for
machines that correctly compute k-bit floating-point integer products and quotients; k ≥ 47 for
most machines of current interest.

Functions that operate on sets are described in Section A.6.

A.4.2 Strings and regular expressions

In almost all contexts in a model or command where a literal string could be used, it is also
possible to use a string expression, enclosed in parentheses. Strings are created by concatenation
and from the built-in string and regular expression functions listed in Table A-4.

The string concatenation operator & concatenates its arguments into a single string; it has
precedence below all arithmetic operators. Numeric operands are converted to full-precision deci-
mal strings as though by printf format %.g (A.16).
__
__

s & t concatenate strings s and t
num(s) convert string s to number; error if stripping leading and trailing white

space does not yield a valid decimal number
num0(s) strip leading white space, and interpret as much as possible of s as a num-

ber, but do not raise error
ichar(s) Unicode value of the first character in string s
char(n) string representation of character n; inverse of ichar
length(s) length of string s
substr(s,m,n) n character substring of s starting at position m; if n omitted, rest of string
sprintf(f,exprlistopt) format arguments according to format string fmt
match(s,re) starting position of regular expression re in s, or 0 if not found
sub(s,re,repl) substitute repl for the first occurrence of regular expression re in s
gsub(s,re,repl) substitute repl for all occurrences of regular expression re in s

Table A-4: Built-in string and regular expression functions.
__

460 AMPL REFERENCE MANUAL APPENDIX A

There is no implicit conversion of strings to numbers, but num(s) and num 0(s) perform
explicit conversions. Both ignore leading and trailing white space; num complains if what remains
is not a valid number, whereas num0 converts as much as it can, returning 0 if it sees no numeric
prefix.

The match, sub, and gsub functions accept strings representing regular expressions as their
second arguments. AMPL regular expressions are similar to standard Unix regular expressions.
Aside from certain metacharacters, any literal character c is a regular expression that matches an
occurrence of itself in the target string. The metacharacter ‘‘.’’ is a regular expression that
matches any character. A list of characters enclosed in brackets is a regular expression that
matches any character in the list, and lists may be abbreviated: [a-z0-9] matches any lower case
letter or digit. A list of characters that begins with the character ˆ and is enclosed in brackets is a
regular expression that matches any character not in the list: [ˆ0-9] matches any non-digit. If r
is a regular expression, then r* matches 0 or more occurrences of r, r+ matches 1 or more occur-
rences, and r? matches 0 or 1 occurrence. ˆr matches r only if r occurs at the beginning of the
string, and r$ matches r only at the end of the string. Parentheses are used for grouping and |
means ‘‘or’’; r 1 |r 2 matches r 1 or r 2. The special meaning of a metacharacter can be turned off
by preceding it by a backslash.

In the replacement pattern (third argument) for sub and gsub, & stands for the whole matched
string, as does \0, while \1, \2, ..., \9 stand for the string matched by the first, second, ..., ninth
parenthesized expression in the pattern.

Options (A.14.1) are named string values, some of which affect various AMPL commands
(A.14). The current value of option opname is denoted $opname.

A.4.3 Piecewise-linear terms

In variable, constraint and objective declarations, piecewise-linear terms have one of the fol-
lowing forms:

<< breakpoints ; slopes >> var
<< breakpoints ; slopes >> (cexpr)
<< breakpoints ; slopes >> (var, cexpr)
<< breakpoints ; slopes >> (cexpr, cexpr)

where breakpoints is a list of breakpoints and slopes a list of slopes. Each such list is a comma-
separated list of cexpr’s, each optionally preceded by an indexing expression (whose scope covers
just the cexpr). The indexing expression must specify a set that is manifestly ordered (see A.6.2),
or it can be of the special form

{if lexpr}

which causes the expr to be omitted if the lexpr is false. In commands, the more general forms

<< breakpoints ; slopes >> (expr)
<< breakpoints ; slopes >> (expr, expr)

are also allowed, and variables may appear in expressions in the breakpoints and slopes.
After the lists of slopes and breakpoints are extended (by indexing over any indexing expres-

sions), the number of slopes must be one more than the number of breakpoints, and the breakpoints
must be in non-decreasing numeric order. (There is no requirement on the order of the slopes.)
AMPL interprets the result as the piecewise-linear function f (x) defined as follows. Let s j ,
1 ≤ j ≤ n, and b i , 1 ≤ i ≤ n − 1, denote the slopes and breakpoints, respectively, and let

SECTION A.6 SET DECLARATIONS 461

b 0 = − ∞ and b n = + ∞. Then f (0) = 0, and for b i − 1 ≤ x ≤ b i , f has slope s i , i.e., f ′(x) = s i .
For the forms having just one argument (either a variable var or a constant expression expr), the
result is f (var) or f (expr). The form with two operands is interpreted as f (var) − f (expr). This
adds a constant that makes the result vanish when the var equals the expr.

When piecewise-linear terms appear in an otherwise linear constraint or objective, AMPL col-
lects two or more piecewise-linear terms involving the same variable into a single term.

A.5 Declarations of model entities

Declarations of model entities have the following common form:

entity name aliasopt indexingopt bodyopt ;

where name is an alphanumeric name that has not previously been assigned to an entity by a decla-
ration, alias is an optional literal, indexing is an optional indexing expression, and entity is one of
the keywords

set
param
var
arc
minimize
maximize
subject to
node

In addition, several other constructs are technically entity declarations, but are described later;
these include environ, problem, suffix and table.

The entity may be omitted, in which case subject to is assumed. The body of various dec-
larations consists of other, mostly optional, phrases that follow the initial part. Each declaration
ends with a semicolon.

Declarations may appear in any order, except that each name must be declared before it is used.
As with piecewise-linear terms, a special form of indexing expression is allowed for variable,

constraint, and objective declarations:

{if lexpr}

If the logical expression lexpr is true, then a simple (unsubscripted) entity results; otherwise the
entity is excluded from the model, and subsequent attempts to reference it cause an error message.
For example, this declaration includes the variable Test in the model if the parameter testing
has been given a value greater than 100:

param testing;
var Test {if testing > 100} >= 0;

A.6 Set declarations

A set declaration has the form

462 AMPL REFERENCE MANUAL APPENDIX A

set declaration:
set name aliasopt indexingopt attributesopt ;

in which attributes is a list of attributes optionally separated by commas:

attribute:
dimen n
within sexpr
= sexpr
default sexpr

The dimension of the set is either the constant positive integer n, or the dimension of sexpr, or 1 by
default. The phrase within sexpr requires the set being declared to be a subset of sexpr. Several
within phrases may be given. The = phrase specifies a value for the set; it implies that the set
will not be given a value later in a data section (A.12.1) or a command such as let (A.18.9). The
default phrase specifies a default value for the set, to be used if no value is given in a data sec-
tion. The = and default phrases are mutually exclusive. If neither is given and the set is not
defined by a data statement, references to the set during model generation cause an error message.
For historical reasons, := is currently a synonym for = in declarations of sets and parameters, but
this use of := is deprecated.

The sexpr in a = or default phrase can be {}, the empty set, which then has the dimension
implied by any dimen or within phrases in the declaration, or 1 if none is present. In other con-
texts, {} denotes the empty set.

Recursive definitions of indexed sets are allowed, so long as the assigned values can be com-
puted in a sequence that only references previously computed values. For example,

set nodes;
set arcs within nodes cross nodes;

param max_iter = card(nodes)-1; # card(s) = number of elements in s

set step {s in 1..max_iter} dimen 2 =
if s == 1

then arcs
else step[s-1] union setof {k in nodes,

(i,k) in step[s-1], (k,j) in step[s-1]} (i,j);

set reach = step[max_iter];

computes in set reach the transitive closure of the graph represented by nodes and arcs.

A.6.1 Cardinality and arity functions

The function card operates on any finite set: card(sexpr) returns the number of members in
sexpr. If sexpr is an indexing expression, the parentheses may be omitted. For example,

card({i in A: x[i] >= 4})

may also be written

card {i in A: x[i] >= 4}

The function arity returns the arity of its set argument; the function indexarity returns
the arity of its argument’s indexing set.

SECTION A.6 SET DECLARATIONS 463

A.6.2 Ordered sets

A named one-dimensional set may have an order associated with it. Declarations for ordered
sets include one of the phrases

ordered [by [reversed] sexpr]
circular [by [reversed] sexpr]

The keyword circular indicates that the set is ordered and wraps around, i.e., its first member is
the successor of its last, and its last member is the predecessor of its first.

Sets of dimension two or higher may not currently be ordered or circular.
If set S is ordered by T or circular by T, then set T must itself be an ordered set that

contains S, and S inherits the order of T. If the ordering phrase is by reversed T, then S still
inherits its order from T, but in reverse order.

If S is ordered or circular and no ordering by sexpr is specified, then one of two cases
applies. If the members of S are explicitly specified by a = {member - list} expression in the
model or by a list of members in a data section, S adopts the ordering of this list. If S is otherwise
computed from an assigned or default sexpr in the model, AMPL will retain the order of manifestly
ordered sets (explained below) and is otherwise free to pick an arbitrary order.

Functions of ordered sets are summarized in Table A-5.
If S is an expression for an ordered set of n members, e is the jth member of S, and k is an inte-

ger expression, then next(e,S,k) is member j + k of S if 1 ≤ j + k ≤ n, and an error other-
wise. If S is circular, then next(e,S,k) is member 1 + ((j + k − 1) mod n) of S. The
function nextw (next with wraparound) is the same as next, except that it treats all ordered sets
as circular; prev(e,S,k) ≡ next(e,S,− k), and prevw(e,S,k) ≡ nextw(e,S,− k).

Several abbreviations are allowed. If k is not given, it is taken as 1. If both k and S are omit-
ted, then e must be a dummy index in the scope of an indexing expression that runs over S, for
example as in {e in S}.

Five other functions apply to ordered sets: first(S) returns the first member of S, last(S)
the last, member(j,S) returns the jth member of S, ord(e,S) and ord0(e,S) the ordinal posi-
tion of member e in S. If e is not in S, then ord0 returns 0, whereas ord complains of an error.
Again, ord(e) = ord(e,S) and ord 0(e) = ord 0(e,S) if e is a dummy index in the scope
of an indexing expression for S.

Some sets are manifestly ordered, such as arithmetic progressions, intervals, subsets of ordered
sets, if expressions whose then and else clauses are both ordered sets, and set differences (but
not symmetric differences) whose left operands are ordered.

A.6.3 Intervals and other infinite sets

For convenience in specifying ordered sets and prototypes for imported functions (A.22), there
are several kinds of infinite sets. Iterating over infinite sets is forbidden, but one can check mem-
bership in them and use them to specify set orderings. The most natural infinite set is the interval,
which may be closed, open, or half-open and which follows standard mathematical notation. There
are intervals of real (floating-point) numbers and of integers, introduced by the keywords
interval and integer respectively:

464 AMPL REFERENCE MANUAL APPENDIX A

__
__

next(e,S,k) member k positions after member e in set S
next(e,S) same, with k = 1
next(e) next member of set for which e is dummy index
nextw(e,S,k) member k positions after member e in set S, wrapping around
nextw(e,S) wrapping version of next(e,S)
nextw(e) wrapping version of next(e)

prev(e,S,k) member k positions before member e in set S
prev(e,S) same, with k = 1
prev(e) previous member of set for which e is dummy index
prevw(e,S,k) member k positions before member e in set S, wrapping around
prevw(e,S) wrapping version of prev(e,S)
prevw(e) wrapping version of prev(e)

first(S) first member of S
last(S) last member of S
member(j,S) jth member of S; 1 ≤ j ≤ card(S), j integer

ord(e,S) ordinal position of member e in S
ord(e) ordinal position of member e in set for which it is dummy index
ord0(e,S) ordinal position of member e in S; 0 if not present
ord0(e) same as ord(e)

card(S) number of members in set S
arity(S) arity of S if S is a set, else 0; for use with _SETS
indexarity(E) arity of entity E’s indexing set

card, arity, and indexarity also apply to unordered sets

Table A-5: Functions of ordered sets.
__

interval:
interval [a , b] ≡ {x: a ≤ x ≤ b},
interval (a , b] ≡ {x: a < x ≤ b},
interval [a , b) ≡ {x: a ≤ x < b},
interval (a , b) ≡ {x: a < x < b},
integer [a , b] ≡ {x: a ≤ x ≤ b and x ∈ I},
integer (a , b] ≡ {x: a < x ≤ b and x ∈ I},
integer [a , b) ≡ {x: a ≤ x < b and x ∈ I},
integer (a , b) ≡ {x: a < x < b and x ∈ I}

where a and b denote arbitrary arithmetic expressions, and I denotes the set of integers. In func-
tion prototypes (A.22) and the declaration phrases

in interval
within interval
ordered by [reversed] interval
circular by [reversed] interval

the keyword interval may be omitted.
The predefined infinite sets Reals and Integers are the sets of all floating-point numbers

and integers, respectively, in numeric order. The predefined infinite sets ASCII, EBCDIC, and
Display all represent the universal set of strings and numbers from which members of any one-
dimensional set are drawn; ASCII is ordered by the ASCII collating sequence, EBCDIC by the

SECTION A.7 PARAMETER DECLARATIONS 465

EBCDIC collating sequence, and Display by the ordering used in the display command (Sec-
tion A.16). Numbers precede literals in Display and are ordered numerically; literals are sorted
by the ASCII collating sequence.

A.7 Parameter declarations

Parameter declarations have a list of optional attributes, optionally separated by commas:

parameter declaration:
param name aliasopt indexingopt attributesopt ;

The attributes may be any of the following:

attribute:
binary
integer
symbolic
relop expr
in sexpr
= expr
default expr

relop:
< <= = == != <> > >=

The keyword integer restricts the parameter to be an integer; binary restricts it to 0 or 1.
If symbolic is specified, then the parameter may assume any literal or numeric value (rounded as
for set membership), and the attributes involving <, <=, >= and > are disallowed; otherwise the
parameter is numeric and can only assume a numeric value.

The attributes involving comparison operators specify that the parameter must obey the given
relation. The in attribute specifies a check that the parameter lies in the given set.

The = and default attributes are analogous to the corresponding ones in set declarations, and
are mutually exclusive.

Recursive definitions of indexed parameters are allowed, so long as the assigned values can be
computed in a sequence that only references previously computed values. For example,

param comb ’n choose k’ {n in 0..N, k in 0..n}
= if k = 0 or k = n then 1 else comb[n-1,k-1] + comb[n-1,k];

computes the number of ways of choosing n things k at a time.
In a recursive definition of a symbolic parameter, the keyword symbolic must precede all

references to the parameter.

A.7.1 Check statements

Check statements supply assertions to help verify that correct data have been read or generated;
they have the syntax

check [indexingopt :] lexpr ;

Each check statement is evaluated when one of the commands solve, write, solution, or
check is executed.

466 AMPL REFERENCE MANUAL APPENDIX A

A.7.2 Infinity

Infinity is a predefined parameter; it is the threshold above which upper bounds are consid-
ered absent (i.e., infinite), and -Infinity is the threshold below which lower bounds are consid-
ered absent. Thus given

set A;
param Ub{A} default Infinity;
param Lb{A} default -Infinity;
var V {i in A} >= Lb[i], <= Ub[i];

components of V for which no Lb value is given in a data section are unbounded below and com-
ponents for which no Ub value is given are unbounded above. One can similarly arrange for
optional lower and upper constraint bounds. On computers with IEEE arithmetic (most modern
systems) Infinity is the IEEE ∞ value.

A.8 Variable declarations

Variable declarations begin with the keyword var:

variable declaration:
var name aliasopt indexingopt attributesopt ;

Optional attributes of variable declarations may be separated by commas; these attributes include

attribute:
binary
integer
symbolic
>= expr
<= expr
:= expr
default expr
= expr
coeff indexingopt constraint expr
cover indexingopt constraint
obj indexingopt ob j ective expr
in sexpr
suffix sufname expr

As with parameters, integer restricts the variable to integer values, and binary restricts it to 0
or 1. The >= and <= phrases specify bounds, and the := phrase an initial value. The default
phrase specifies a default for initial values that may be provided in a data section (A.12.2);
default and := are mutually exclusive. The = expr phrase is allowed only if none of the previ-
ous attributes appears; it makes the variable a defined variable (A.8.1). Each suffix sufname
expr phrase specifies an initial value for a previously declared suffix sufname .

If symbolic is specified, in sexpr must also appear and attributes requiring a numeric value,
such as >= expr, are excluded. If in sexpr appears without symbolic, the set expression sexpr
must be the union of intervals and discrete sets of numbers. Either way, in sexpr restricts the
variable to lie in sexpr.

The coeff and obj phrases are for columnwise coefficient generation; they specify coeffi-
cients to be placed in the named constraint or objective, which must have been previously declared

SECTION A.8 VARIABLE DECLARATIONS 467

using the placeholder to_come (see A.9 and A.10). The scope of indexing is limited to the
phrase, and may have the special form

{if lexpr}

which contributes the coefficient only if the lexpr is true. A cover phrase is equivalent to a
coeff phrase in which the expr is 1.

Arcs are special network variables, declared with the keyword arc instead of var. They may
contribute coefficients to node constraints (A.9) via optional attribute phrases of the form

from indexingopt node expropt

to indexingopt node expropt

These phrases are analogous in syntax to the coeff phrase, except that the final expr is optional;
omitting it is the same as specifying 1.

A.8.1 Defined variables

In some nonlinear models, it is convenient to define named values that contribute somehow to
the constraints or objectives. For example,

set A;
var v {A};
var w {A};
subject to C {i in A}: w[i] = vexpr;

where vexpr is an expression involving the variables v.
As things stand, the members of C are constraints, and we have turned an unconstrained prob-

lem into a constrained one, which may not be a good idea. Setting option substout to 1
instructs AMPL to eliminate the collection of constraints C. AMPL does so by telling solvers that
the constraints define the variables on their left-hand sides, so that, in effect, these defined vari-
ables become named common subexpressions.

When option substout is 1, a constraint such as C that provides a definition for a defined
variable is called a defining constraint. AMPL decides which variables are defined variables by
scanning the constraints once, in order of their appearance in the model. A variable is eligible to
become a defined variable only if its declaration imposes no constraints on it, such as integrality or
bounds. Once a variable has appeared on the right-hand side of a defining constraint, it is no
longer eligible to be a defined variable — without this restriction, AMPL might have to solve
implicit equations. Once a variable has been recognized as a defined variable, its subsequent
appearance on the left-hand side of what would otherwise be a defining constraint results in the
constraint being treated as an ordinary constraint.

Some solvers give special treatment to linear variables because their higher derivatives vanish.
For such solvers, it may be helpful to treat linear defined variables specially. Otherwise, variables
involved in the right-hand side of the equation for a defined variable appear to solvers as nonlinear
variables, even if they are used only linearly in the right-hand side. By doing Gaussian elimination
rather than conveying linear variable definitions explicitly, AMPL can arrange for solvers to see
such right-hand variables as linear variables. This often causes fill-in, i.e., makes the problem less
sparse, but it may give the solvers a more accurate view of the problem. When option linelim
has its default value 1, AMPL treats linear defined variables in this special way; when option lin-
elim is 0, AMPL treats all defined variables alike.

468 AMPL REFERENCE MANUAL APPENDIX A

A variable declaration may have a phrase of the form = expr, where expr is an expression
involving variables. Such a phrase indicates that the variable is to be defined with the value expr .
Such defining declarations allow some models to be written more compactly.

Recognizing defined variables is not always a good idea — it leads to a problem in fewer vari-
ables, but one that may be more nonlinear and that may be more expensive to solve because of loss
of sparsity. By using defining constraints (instead of using defining variable declarations) and
translating and solving a problem both with $substout = 0 and with $substout = 1, one can
see whether recognizing defined variables is worthwhile. On the other hand, if recognizing a
defined variable seems clearly worthwhile, defining it in its declaration is often more convenient
than providing a separate defining constraint; in particular, if all defined variables are defined in
their declarations, one need not worry about $substout.

One restriction on defining declarations is that subscripted variables must be defined before
they are used.

A.9 Constraint declarations

The form of a constraint declaration is

constraint declaration:
[subject to] name aliasopt indexingopt

[:= initial_dual] [default initial_dual]
[: constraint expression] [suffix - initializations] ;

The keyword subject to in a constraint declaration may be omitted but is usually best retained
for clarity. The optional := initial_dual specifies an initial guess for the dual variable (Lagrange
multiplier) associated with the constraint. Again, default and := clauses are mutually exclu-
sive, and default is for initial values not given in a data section. Constraint declarations must
specify a constraint in one of the following forms:

constraint expression:
expr <= expr
expr = expr
expr >= expr
cexpr <= expr <= cexpr
cexpr >= expr >= cexpr

To enable columnwise coefficient generation for the constraint, one of the exprs may have one of
the following forms:

to_come + expr
expr + to_come
to_come

Terms for this constraint that are specified in a var declaration (A.8) are placed at the location of
to_come.

Nodes are special constraints that may send flow to or receive flow from arcs. Their declara-
tions begin with the keyword node instead of subject to. Pure transshipment nodes do not
have a constraint body; they must have ‘‘flow in’’ equal to ‘‘flow out’’. Other nodes are sources or
sinks; they specify constraints in one of the forms above, except that they may not mention
to_come, and exactly one expr must have one of the following forms:

SECTION A.9 CONSTRAINT DECLARATIONS 469

net_in + expr
net_out + expr
expr + net_in
expr + net_out
net_in
net_out

The keyword net_in is replaced by an expression representing the net flow into the node: the
terms contributed to the node constraint by to phrases of arc declarations (A.8), minus the terms
contributed by from phrases. The treatment of net_out is analogous; it is the negative of
net_in.

The optional suffix-initialization phrases each have the form

suffix - initialization:
suffix sufname expr

optionally preceded by a comma, where sufname is a previously declared suffix.

A.9.1 Complementarity constraints

For expressing complementarity constraints, in addition to the forms above, constraint declara-
tions may have the form

name aliasopt indexingopt : constr1 complements constr2 ;

in which constr 1 and constr 2 consist of 1, 2, or 3 expressions separated by the operators <=, >= or
=. In constr 1 and constr 2 together, there must be a total of two explicit inequality operators, with
= counting as two. A complementarity constraint is satisfied if both constr 1 and constr 2 hold and
at least one inequality is tight, i.e., satisfied as an equality. If one of constr 1 or constr 2 involves
two inequalities, then the constraint must have one of the forms

expr1 <= expr2 <= expr3 complements expr4

expr3 >= expr2 >= expr1 complements expr4

expr4 complements expr1 <= expr2 <= expr3

expr4 complements expr3 >= expr2 >= expr1

In all of these cases, the constraint requires the inequalities to hold, with

expr4 ≥ 0 if expr1 = expr2

expr4 ≤ 0 if expr2 = expr3

expr4 = 0 if expr1 < expr2 < expr3

For expressing mathematical programs with equilibrium constraints, complementarity con-
straints may coexist with other constraints and objectives.

Solvers see complementarity constraints in the standard form

expr complements lower bound <= variable <= upper bound

A synonym (A.19.4), _scvar{i in 1.._sncons}, indicates which variable, if any, comple-
ments each constraint the solver sees. If _scvar[i] in 1.._snvars, then variable
_svar[_scvar[i]] complements constraint _scon[i]; otherwise _scvar[i] == 0, and
_con[i] is an ordinary constraint. The synonyms _cconname{1.._nccons} are the names
of the complementarity constraints as the modeler sees them.

470 AMPL REFERENCE MANUAL APPENDIX A

A.10 Objective declarations

The declaration of an objective is one of

ob j ective declaration:
maximize name aliasopt indexingopt [: expression] [suffix - initializations] ;
minimize name aliasopt indexingopt [: expression] [suffix - initializations] ;

and may specify an expression in one of the following forms:

expression:
expr
to_come + expr
expr + to_come
to_come

The to_come forms permit columnwise coefficient generation, as for constraints (A.9). Specify-
ing none of the above expressions is the same as specifying ‘‘: to_come’’. Suffix-initializations
may appear as in constraint declarations.

If there are multiple objectives, the one sent to a solver can be set by the objective com-
mand; see section A.18.6. By default, all objectives are sent.

A.11 Suffix notation for auxiliary values

Variables, constraints, objectives and problems have a variety of associated auxiliary values.
For example, variables have bounds and reduced costs, and constraints have dual values and slacks.
Such values are accessed as name.suffix, where name is a simple or subscripted variable, con-
straint, objective or problem name, and .suffix is one of the possibilities listed in Tables A-6, A-7,
and A-8.

For a constraint, the . body, . lb, and . ub values correspond to a modified form of the con-
straint. If the constraint involves a single inequality, subtract the right-hand side from the left, then
move any constant terms to the right-hand side; if the constraint involves a double inequality, simi-
larly subtract any constant terms in the middle from all three expressions (left, middle, right). Then
the constraint has the form lb ≤ body ≤ ub, where lb and ub are (possibly infinite) constants.

The following rules determine lower and upper dual values (c. ldual and c. udual) for a
constraint c. The solver returns a single dual value, c. dual, which might apply either to
body ≥ lb or to body ≤ ub. For an equality constraint (lb = ub), AMPL uses the sign of c. dual
to decide. For a minimization problem, c. dual > 0 implies that the same optimum would be
found if the constraint were body ≥ lb, so AMPL sets c. ldual = c. dual and c. udual = 0;
similarly, c. dual < 0 implies that c. ldual = 0 and c. udual = c. dual. For a maxi-
mization problem, the inequalities are reversed.

For inequality constraints (lb < ub), AMPL uses nearness to bound to decide whether
c. ldual or c. udual equals c. dual. If body − lb < ub − body, then c. ldual = c. dual
and c. udual = 0; otherwise, c. ldual = 0 and c. udual = c. dual.

Model declarations may reference any of the suffixed values described in Tables A-6, A-7 and
A-8. This is most often useful in new declarations that are introduced after one model has already
been translated and solved. In particular, the suffixes .val and .dual are provided so that new
constraints can refer to current optimal values of the primal and dual variables and of the objective.

SECTION A.11 SUFFIX NOTATION FOR AUXILIARY VALUES 471

__
__

.astatus AMPL status (A.11.2)

.init current initial guess

.init0 initial initial guess (set by :=, data, or default)

.lb current lower bound

.lb0 initial lower bound

.lb1 weaker lower bound from presolve

.lb2 stronger lower bound from presolve

.lrc lower reduced cost (for var >= lb)

.lslack lower slack (val - lb)

.rc reduced cost

.relax ignore integrality restriction if positive

.slack min(lslack, uslack)

.sstatus solver status (A.11.2)

.status status (A.11.2)

.ub current upper bound

.ub0 initial upper bound

.ub1 weaker upper bound from presolve

.ub2 stronger upper bound from presolve

.urc upper reduced cost (for var <= ub)

.uslack upper slack (ub - val)

.val current value of variable

Table A-6: Dot suffixes for variables.
__

For a complementarity constraint, suffix notations like constraint. lb, constraint. body, etc.,
are extended so that constraint. Lsuffix and constraint. Rsuffix correspond to constr 1 .suffix and
constr 2 .suffix, respectively, and complementarity - constraint. slack (or the unadorned name)
stands for a measure of the extent to which the complementarity constraint is satisfied: if constr 1

and constr 2 each involve one inequality, the new measure is

min(constr1 . slack, constr2 . slack),

which is positive if both are satisfied as strict inequalities, 0 if the complementarity constraint is
satisfied exactly, and negative if at least one of constr 1 or constr 2 is violated. For constraints of
the form expr 1 <= expr 2 <= expr 3 complements expr 4, the .slack value is

min(expr2-expr1, expr4) if expr1 >= expr2

min(expr3-expr2, -expr4) if expr3 <= expr2

-abs(expr4) if expr1 < expr2 < expr3

so in all cases, the .slack value is 0 if the complementarity constraint holds exactly and is nega-
tive if one of the requisite inequalities is violated.

A.11.1 Suffix declarations

Suffix declarations introduce new suffixes, which may be assigned values in subsequent decla-
rations, let commands and function invocations (with OUT arguments, A.22). Suffix declarations
begin with the keyword suffix:

472 AMPL REFERENCE MANUAL APPENDIX A

__
__

.astatus AMPL status (A.11.2)

.body current value of constraint body

.dinit current initial guess for dual variable

.dinit0 initial initial guess for dual variable (set by :=, data, or default)

.dual current dual variable

.lb lower bound

.lbs lb for solver (adjusted for fixed variables)

.ldual lower dual value (for body >= lb)

.lslack lower slack (body - lb)

.slack min(lslack, uslack)

.sstatus solver status (A.11.2)

.status status (A.11.2)

.ub upper bound

.ubs ub for solver (adjusted for fixed variables)

.udual upper dual value (for body <= ub)

.uslack upper slack (ub - body)

Table A-7: Dot suffixes for constraints.

.val current value of objective

Table A-8: Dot suffix for objectives.
__

suffix declaration:
suffix name aliasopt attributesopt ;

Optional attributes of suffix declarations may be separated by commas; these attributes include

attribute:
binary
integer
symbolic
>= expr
<= expr
direction

direction:
IN
OUT
INOUT
LOCAL

At most one direction may be specified; AMPL assumes INOUT if no direction is given. These
directions are from a solver’s perspective: IN suffix values are input to the solver; OUT suffix val-
ues are assigned by the solver; INOUT values are both IN and OUT; and LOCAL values are not
seen by the solver.

Symbolic suffixes are declared with the symbolic attribute; appending _num to the name of
a symbolic suffix gives the name of an associated numeric suffix; solvers see the associated
numeric value. If symsuf is a symbolic suffix, option symsuf _ table connects symsuf with
symsuf _ num as follows. Each line of $symsuf _ table should begin with a numeric limit value,

SECTION A.12 STANDARD DATA FORMAT 473

followed by a string value and optional comments, all separated by white space. The numeric limit
values must increase with each line. The string value with the greatest numeric limit value less
than or equal to the .sufname_ num value is the associated string value. If the .sufname_ num
value is less than the limit value in the first line of $symsuf _ table, then the .symsuf _ num
value is used as the .symsuf value.

A.11.2 Statuses

Some solvers maintain a basis and distinguish among basic and various kinds of nonbasic vari-
ables and constraints. AMPL’s built-in symbolic suffix .sstatus permits solvers to return basis
information to AMPL and, in a subsequent solve (A.18.1), to be given the previously optimal
basis, which sometimes leads to solving the updated problem faster.

AMPL’s drop/restore status (A.18.6) of constraints and its fix/unfix status (A.18.7) of variables
is reflected in the built-in symbolic suffix .astatus. The built-in symbolic suffix .status is
derived from .astatus and .sstatus: if the variable or constraint, say x, is in the current
problem, x. status = x. sstatus; otherwise x. status = x. astatus. AMPL assigns
x. astatus _ num = 0 if x is in the current problem, so the rule for determining .status is

x.status = if x.astatus_num == 0 then x.sstatus else x.astatus.

When option astatus_table has its default value, x. astatus = ′in ′ when
x. astatus _ num = 0.

A.12 Standard data format

AMPL supports a standard format to describe the sets and parameter values that it combines
with a model to yield a specific optimization problem.

A data section consists of a sequence of tokens (literals and strings of printing characters) sepa-
rated by white space (spaces, tabs, and newlines). Tokens include keywords, literals, numbers, and
the delimiters () [] : , ; := *. A statement is a sequence of tokens terminated by a
semicolon. Comments may appear as in declarations. In all cases, arrangement of data into neat
rows and columns is for human readability; AMPL ignores formatting.

A data section begins with a data command and ends with end-of-input or with a command
that returns to model mode (A.14).

In a data section, model entities may be assigned values in any convenient order, independent
of their order of declaration.

A.12.1 Set data

Statements defining sets consist of the keyword set, the set name, an optional :=, and the
members. A one-dimensional set is most easily specified by listing its members, optionally sepa-
rated by commas. The single or double quotes of a literal string may be omitted if the string is
alphanumeric but does not specify a number.

An object in a data section may be a number or a character string. As in a model, a character
string may be specified by surrounding it with quotes (’ or "). Since so many strings appear in
data, however, AMPL allows data statements to drop the quotes around any string that consists only

474 AMPL REFERENCE MANUAL APPENDIX A

of characters that may occur in a name or number, unless quotes are needed to distinguish a string
from a number.

The general form of a set data statement is

set - data - statement:
set set - name := set - spec set - spec . . . ;

set - spec:
set - templateopt member - list
set - templateopt member - table member - table . . .

The set - name must be the name of an individually declared set, or the subscripted name of a set
from an indexed collection. The optional template has the form

set - template:
(templ - item, templ - item, . . .)

templ - item:
ob j ect
*
:

where the number of templ - items must equal the dimension of the named set. If no template is
given, a template of all *’s is assumed.

There are two forms of set - spec, list format and table format. The list format of set - spec is

member - list:
member - item member - item . . .

member - item:
ob j ect ob j ect . . .

The number of ob j ects in a member - item must match the number of *’s in the preceding template,
which may not have : as a templ - item; the ob j ects are substituted for the *’s, from left to right, to
produce a member that is added to the set being specified. In the special case that the template
contains no *’s, the member - list should be empty, while the template itself specifies one member
to be added.

The table format of set - spec looks like this:

member - table:
(tr) opt t - header t - header . . . :=

row - label ± ± ±
row - label ± ± ±
. . .

t - header:
: ob j ect ob j ect . . .

row - label:
ob j ect ob j ect . . .

There must be at least one t - header, at least one ob j ect in each row - label, and as many t - header’s
and row - label’s as *’s and :’s in the preceding template. If the preceding template involves any
:’s, there must be as many :’s as t - headers; otherwise if the optional (tr) appears, the initial *’s
are treated as :’s, and if (tr) does not appear, the final *’s are treated as :’s. Each table entry
shown as ± must be either a + or a - symbol. Each - entry is ignored, while each + entry’s
row - labels are substituted for the template’s *’s in sequence, and the ob j ects in the t - headers
corresponding to the + are substituted for the :’s to produce a set member.

SECTION A.12 STANDARD DATA FORMAT 475

To define a compound set, one can list all members. Each member is a parenthesized,
comma-separated list of components, and successive members have an optional comma between
them. Alternatively, one can describe the members of a two-dimensional set by a table or sequence
of tables. In such a table, the row labels are for the first subscript, the columns for the second;
‘‘+’’ stands for a pair that occurs in the set, and ‘‘-’’ for a pair that does not. The colon introduces
a table, and is mandatory in this context. If (tr) precedes the colon, the table is transposed, inter-
changing the roles of rows and columns.

In general, a set statement involves a sequence of 1D and 2D set tables. 1D tables start with
either a new template (after which a := is optional) or with := alone, in which case the previous
template is retained. The default (initial) template is (*,. . .,*), that is, as many *’s as the set’s
dimension. 2D tables start with an optional new template, followed by : or (tr) and an optional
colon, followed by a list of column labels and a :=. Templates containing no *’s stand for them-
selves. The effect of (tr) persists until a new template appears.

For indexed sets, each component set must be given in a separate data statement. It is not nec-
essary to specify subset members in the same order as in their parent set.

A.12.2 Parameter data

There are two forms of the statement that specifies parameter data or variable initial values.
The first form is analogous to the set data statement:

param - data - statement:
param param - name param - default opt := param - spec param - spec . . . ;

param - spec:
param - templateopt value - list
param - templateopt value - table value - table . . .

with the addition of an optional param - default that will be described below. The param - name is
usually the name of a parameter declared in the model, but may also be the name of a variable or
constraint; the keyword var may be used instead of param to make the distinction clear.

The param statement’s templates have the same content as in the set data statement, but are
given in brackets (like subscripts) rather than parentheses:

param - template:
[templ - item, templ - item, . . .]

templ - item:
ob j ect
*
:

The value - list is like the previously defined member - list, except that it also specifies a parameter
or variable value:

value - list:
value - item value - item . . .

value - item:
ob j ect ob j ect . . . entry

The objects are substituted for *’s in the template to define a set member, and the parameter or
variable indexed by this set member is assigned the value associated with the entry (see below).

476 AMPL REFERENCE MANUAL APPENDIX A

The value - table is like the previously defined member - table, except that its entrys are values rather
than + or -:

value - table:
(tr) opt : t - header t - header t - header . . . :=

row - label entry entry entry
row - label entry entry entry
. . .

t - header:
: ob j ect ob j ect . . .

row - label:
ob j ect ob j ect . . .

entry:
number
string
default - symbol

As in set statements, the notation (tr) means transpose; it implies a 2D table, and a : after
it is optional. It remains in effect until a new template appears.

A table may be given in several chunks of columns.
Each entry’s row - label and t - header entries are substituted for *’s and :’s in the template to

define a set member, and the parameter or variable indexed by this set member is assigned the
value specified by the entry. The entry may be a number for variables and for parameters that take
numerical values, or a string for variables and parameters declared with the attribute symbolic.
An entry that is the default symbol (see below) is ignored.

The second form of parameter data statement provides for the definition of multiple parame-
ters, and also optionally the set over which they are indexed:

param - data - alternate:
param param - default opt:

param - name param - name . . . := value - item value - item . . . ;

param param - default opt: set - name:
param - name param - name . . . := value - item value - item . . . ;

The named parameters must all have the same dimension. If the optional set - name is specified, its
membership is also defined by this statement. Each value - item consists of an optional template
followed by a list of objects and a list of values:

value - item:
templateopt ob j ect . . . entry entry . . .

An initial template of all *’s (as many as the common dimension of the named parameters) is
assumed, and a template remains in effect until a new one appears. The objects must be equal in
number to the number of *’s in the current template; when substituted for the *’s in the current
template, they define a set member. If a set is being defined, this member is added to it. The
parameters indexed by this member are assigned the values associated with the subsequent entrys,
which obey the same rules as the table entrys previously described. Values are assigned in the
order in which the parameters’ names appeared at the beginning of the statement; the number of
entrys must equal the number of named parameters.

A param data statement’s optional default phrase has the form

SECTION A.13 DATABASE ACCESS AND TABLES 477

param - default:
default number

If this phrase is present, any parameter named but not explicitly assigned a value in the statement is
given the value of number.

A data item may be specified as ‘‘.’’ rather than an explicit value. This is normally taken as a
missing value, and a reference to it in the model would cause an error message. If there is a
default value, however, each missing value is determined from that default. A default value
may be specified either through a default phrase in a parameter’s declaration in the model (A.7), or
from an optional phrase

default r

that follows the parameter’s name in the data statement. In the latter case, r must be a numeric
constant.

Default-value symbols may appear in both 1D and 2D tables. The default - symbol is initially a
dot (.). A stack of default-value symbols is maintained, with the current symbol at the top. The
defaultsym statement (which is recognized only in a data section) pushes a new symbol onto
the stack, and nodefaultsym pushes a ‘‘no symbol’’ indicator onto the stack. The statement

defaultsym;

(without a symbol) pops the stack.
Parameters having three or more indices may be given values by a sequence of 1D and 2D

tables, one or more for each slice of nondefault values.
In summary, a param statement defining one indexed parameter starts with the keyword

param and the name of the parameter, followed by an optional default value and an optional :=.
Then comes a sequence of 1D and 2D param tables, which are similar to 1D and 2D set tables,
except that templates involve square brackets rather than parentheses, 2D tables contain numbers
(or, for a symbolic parameter, literals) rather than +’s and -’s, and 1D tables corresponding to a
template of k *’s contain k + 1 rather than k columns, the last being a column of numbers or
default symbols (.’s). A special form, the keyword param, an optional default value, and a single
(untransposed) 2D table, defines several parameters indexed by a common set, and another special
form, param followed by the parameter name, an optional :=, and a numeric value, defines a
scalar parameter.

Variable and constraint names may appear in data sections anywhere that a parameter name
may appear, to specify initial values for variables and for the dual variables associated with con-
straints. The rules for default values are the same as for parameters. The keyword var is a syn-
onym for param in data statements.

A.13 Database access and tables

AMPL’s table facility permits obtaining data from and returning data to an external medium,
such as a database, file, or spreadsheet. A table declaration establishes connections between
columns of an external relational table and sets, parameters, variables and expressions in AMPL.
The read table and write table commands use these connections to read data values into
AMPL from tables and write them back. AMPL uses table handlers to implement these connec-
tions. Built-in table handlers permit reading and writing ‘‘.tab’’ and ‘‘.bit’’ files to save and
restore values and experiment with AMPL’s table facilities; to access databases and spreadsheets, at

478 AMPL REFERENCE MANUAL APPENDIX A

least one other handler must be installed or loaded (A.22). The built-in set _HANDLERS names
the currently available handlers, and the symbolic parameter _handler_lib{_HANDLERS}
tells which shared library each handler came from.

Table declarations have the form

table - declaration:
table table - name indexingopt in - outopt string - list opt :

key - spec, data - spec, data - spec, ... ;

in - out is one of IN, OUT, or INOUT; IN means into AMPL, OUT means out of AMPL, and INOUT
means both. INOUT is assumed if in - out is not given. The optional string - list gives the names of
drivers, files, and driver-specific options that are used to access external data; the contents depend
on the handler used for the table and perhaps on the operating system.

The key - spec in a table declaration specifies key columns that uniquely identify the data to
be accessed:

set - ioopt [key - col - spec, key - col - spec, . . .]

The optional set - io phrase has the form

set - name arrow

in which arrow is one of <-, ->, or <->; it points in the direction that the information is moved,
from the key columns to the AMPL set (by read table), from the set to the columns (by write
table), or both, depending on in-out. Each key-col-spec names a column in the external table and
associates a dummy index with it. A key-col-spec of the form

key-name

uses key-name for both purposes, and a key-col-spec of the form

key-name ˜ data-col-name

introduces key-name as the dummy index and data-col-name as the name of the column in the
external medium; data-col-name may be a name, quoted string, or parenthesized string expression.

Each data-spec names a data column in the external table. In the simplest case, the external
name and the AMPL name are the same. If not, however, an external name can be associated with
an internal name with the syntax

data-spec:
param-name ˜ data-col-name

Each data-spec optionally ends with one of IN, OUT, or INOUT, which overrides the default table
direction and indicates whether read table should read the column into AMPL (IN or INOUT),
and whether write table should write the column to the external medium (OUT or INOUT).

Special syntax permits use of an indexing expression to describe one or more columns of data:

indexing expr-col-desc
indexing (expr-col-desc , expr-col-desc , ...)

in which expr-col-desc has the form

expr [˜ colname] in - outopt

Another special syntax permits iterating data columns:

indexing < data-spec , data-spec , ... >

SECTION A.14 COMMAND LANGUAGE OVERVIEW 479

The latter may not be nested, but may contain the former.
After a table declaration, data access is done with

read table table-name subscript opt ;
write table table-name subscript opt ;

which refer back to the information given in the table declaration.

A.14 Command language overview

AMPL recognizes the commands listed in Table A-9. Commands are not part of a model, but
cause AMPL to act as described below.

The command environment recognizes two modes. In model mode , where AMPL starts upon
invocation, it recognizes model declarations (A.5) and all of the commands described below. Upon
seeing a data statement, it switches to data mode , where only data-mode statements (A.12) are
recognized. It returns to model mode upon encountering a keyword that cannot begin a data-mode
statement, or the end of the file. Commands other than data, end, include, quit and shell
also cause AMPL to enter model mode.

A phrase of the form

include filename

causes the indicated file to be interpolated. Here, and in subsequent contexts where a filename
appears, if filename involves semicolons, quotes, white space, or non-printing characters, it must be
given as a literal, i.e., ′ filename ′ or "filename". In contexts other than include, filename may
also be a parenthesized string expression (A.4.2). include commands may be nested; they are
recognized in both model and data mode. The sequences

model; include filename
data; include filename

may be abbreviated

model filename
data filename

The commands command is analogous to include, but is a statement and must be termi-
nated by a semicolon. When a data or commands command appears in a compound command
(i.e., the body of a loop or the then or else part of an if command (A.20.1), or simply in a
sequence of commands enclosed in braces), it is executed when the flow of control reaches it,
instead of when the compound command is being read. In this case, if the data or commands
command does not specify a file, AMPL reads commands or data from the current input file until it
encounters either an end command or the end of the current file.

For include phrases as well as model, data, and commands commands, files with simple
names, e.g., not involving a slash (/), are sought in directories (folders) specified by option
ampl_include (A.14.1): each nonblank line of $ampl_include specifies a directory; if
$ampl_include is empty or entirely blank, files are sought in the current directory.

The option insertprompt (default ’<%d>’) specifies an insertion prompt that immediately
precedes the usual prompt for input from the standard input. If present, %d is the current insert

480 AMPL REFERENCE MANUAL APPENDIX A

__
__

call invoke imported function
cd change current directory
check perform all check commands
close close file
commands read and interpret commands from a file
data switch to data mode; optionally include file contents
delete delete model entities
display print model entities and expressions; also csvdisplay and _display
drop drop a constraint or objective
end end input from current input file
environ set environment for a problem instance
exit exit AMPL with status value
expand show expansion of model entities
fix freeze a variable at its current value
include include file contents
let change data values
load load dynamic function library
model switch to model mode; optionally include file contents
objective select an objective to be optimized
option set or display option values
print print model entities and expressions unformatted
printf print model entities and expressions formatted
problem define or switch to a named problem
purge remove model entities
quit terminate AMPL

read take input from a file
read table take input from a data table
redeclare change declaration of entity
reload reload dynamic function library
remove remove file
reset reset specified entities to their initial state
restore undo a drop command
shell temporary escape to operating system to run commands
show show names of model entities
solexpand show expansion as seen by solver
solution import variable values as if from a solver
solve send current instance to a solver and retrieve solution
update allow updating data
unfix undo a fix command
unload unload dynamic function library
write write out a problem instance
write table write data to a data table
xref show dependencies among entities

Table A-9: Commands.
__

level, i.e., nesting of data and commands commands specifying files and appearing within a
compound command.

SECTION A.15 REDIRECTION OF INPUT AND OUTPUT 481

A.14.1 Options and environment variables

AMPL maintains the values of a variety of options that influence the behavior of commands
and solvers. Options resemble the ‘‘environment variables’’ of the Windows and Unix operating
systems; in fact AMPL inherits its initial options from the environments of these systems. AMPL
supplies its own defaults for many options, however, if they are not inherited in this way.

The option command provides a way to examine and change options. It has one of the
forms

option redirectionopt ;
option opname [evalue] [, opname [evalue] ...] redirectionopt ;

The first form prints all options that have been changed or whose default may be provided by
AMPL. In the second form, if an evalue is present, it is assigned to opname; otherwise the value (a
character string) currently associated with opname is printed. An opname is an option name
optionally preceded by an environment name (A.18.8) and a period. The option name also may be
a name-pattern, which is a name containing one or more *’s. In a name-pattern, a * stands for an
arbitrary sequence, possibly empty, of name characters, and thus may match multiple names; for
example

option *col*;

lists all options whose names contain the string ‘‘col’’. Specific environment or option names
may also be given by parenthesized string expressions.

An evalue is a white-space-separated sequence of one or more literals, numbers, parenthesized
string expressions, and references to options of the form $opname or $ $opname, in which opname
contains no *’s; in general, $opname means the current value of option opname, and $ $opname
means the default value, i.e., the value inherited from the operating system, if any, or provided by
AMPL. The quotes around a literal may be omitted if what remains is a name or number. The dis-
played option values are in a format that could be read as an option command.

A.15 Redirection of input and output

An optional redirection phrase can be used with a variety of AMPL commands to capture their
output in a file for subsequent processing. It applies to all forms of display and print and also
to most other commands that can produce output, such as solve, objective, fix, drop,
restore, and expand.

A redirection has one of the forms

> filename
>> filename
< filename (for read command)

in which filename may have any of the forms that can appear in data and commands commands
(A.14). The file is opened the first time a command specifies filename in a redirection; the first
form of redirection causes the file to be overwritten upon first being opened, while the second form
causes output to be appended to the current contents. The form < filename is used only for input
from the read command (A.17). Once open, filename remains open until a reset or unless
explicitly closed by a close command:

close filenamesopt ;

482 AMPL REFERENCE MANUAL APPENDIX A

As long as filename remains open, output forms of redirection causes output to be appended to the
file’s current contents. A close command without a filename closes all open files and pipes. A
close command may specify a comma-separated list of filenames. The variant

remove filename ;

closes and deletes filename.

A.16 Printing and display commands

The display, print, and printf commands print arbitrary expressions. They have the
forms

display [indexing:] disparglist redirectionopt ;
print [indexing:] arglist redirectionopt ;
printf [indexing:] fmt , arglist redirectionopt ;

If indexing is present, its scope extends to the end of the command, and it causes one execution of
the command for each member in the indexing set. The format string fmt is like a printf format
string in the C programming language and is explained more fully below.

An arglist is a (possibly empty, comma-separated) list of expressions and iterated-arglists; an
iterated-arglist has one of the forms

indexing expr
indexing (nonempty-arglist)

where expr is an arbitrary expression. The exprs can also involve simple or subscripted variable,
constraint, and objective names; a constraint name represents the constraint’s current dual value. A
disparglist is described below.

The optional redirection (A.15) causes output to be sent to a file instead of appearing on the
standard output.

The print command prints the items in its arglist on one line, separated by spaces and termi-
nated by a newline; the separator may be changed with option print_separator. Literals are
quoted only if they would have to be quoted in data mode. By default, numeric expressions are
printed to full precision, but this can be changed with option print_precision or option
print_round, as described below.

The printf command prints the items in its arglist as dictated by its format string fmt. It
behaves like the printf function in C. Most characters in the format string are printed verbatim.
Conversion specifications are an exception. They start with a % and end with a format letter, as
summarized in Table A-10. Between the % and the format letter there may be any of -, for left-
justification; +, which forces a sign; 0, to pad with leading zeros; a minimum field width; a period;
and a precision giving the maximum number of characters to be printed from a string or digits to be
printed after the decimal point for %f and %e or significant digits for %g or minimum number of
digits for %d. Field widths and precisions are either decimal numbers or a *, which is replaced by
the value of the next item in the arglist. Each conversion specification consumes one or (when *’s
are involved) more items from the arglist and formats the last item it consumes. With %g, a preci-
sion of 0 (%.0g or %.g) specifies the shortest decimal string that rounds to the value being format-
ted. The standard C escape sequences are allowed: \a (alert or bell), \b (backspace), \f (form-
feed), \n (newline), \r (carriage return), \t (horizontal tab), \v (vertical tab), \xd and \xdd,

SECTION A.16 PRINTING AND DISPLAY COMMANDS 483

__
__

%d signed decimal notation
%i signed decimal notation (same as %d)
%u unsigned decimal notation
%o unsigned octal notation, without leading 0
%x unsigned hexadecimal, using abcdef, without leading 0x
%X unsigned hexadecimal, using ABCDEF, without leading 0X
%c single character
%s string
%q quote string appropriately for data values
%Q always quote string
%f double-precision floating-point
%e double-precision floating-point, exponential notation using e
%E double-precision floating-point, exponential notation using E
%g double-precision floating-point, using %f or %e
%G double-precision floating-point, using %f or %E
%% literal %

Table A-10: Conversion specifications in printf formats.
__

where d denotes a hexadecimal digit, and \d, \dd and \ddd, where d denotes an octal digit. For-
mat %q prints a string value with data-section quoting rules; format %Q always quotes the string.

The sprintf function (A.4.2) formats its argument list according to a format string that uses
the same conversion specifications.

The display command formats various entities in tables or lists, as appropriate. Its disparg-
list is similar to an arglist for print or printf, except that an item to be displayed can also be a
set expression or the unsubscripted name of an indexed parameter, variable, constraint, or set; fur-
thermore iterated arglists cannot be nested, i.e., they are restricted to the forms

indexing expr
indexing (exprlist)

where exprlist is a nonempty, comma-separated list of expressions. The display command
prints scalar expressions and sets individually, and partitions indexed entities into groups having
the same number of subscripts, then prints each group in its own table or sequence of tables.

By default, the display command rounds numeric expressions to six significant figures, but
this can be changed with the options display_precision or display_round, as described
below.

Several options whose names end with _precision control the precision with which
floating-point numbers are converted to printable values; positive values imply rounding to that
many significant figures, and 0 or other values imply rounding to the shortest decimal string that,
when properly rounded to a machine number, would yield the number in question. If set to integral
values, $display_round and $print_round override $display_precision and
$print_precision, respectively, and similarly for the analogous options in Table A-11. For
example, $display_round n causes the display command to round numeric values to n
places past the decimal point (or to − n places before the decimal point if n < 0). A negative pre-
cision with %f formats as for the print command with print_round negative. Options that
affect printing include those shown in Table A-11.

484 AMPL REFERENCE MANUAL APPENDIX A

__
__

csvdisplay_precision precision for _display and csvdisplay (0 is full precision)
csvdisplay_round rounding for _display and csvdisplay (’’ is full precision)
display_1col maximum elements for a 1D table to be displayed one element per line
display_eps display absolute numeric values < $display_eps as zero
display_max_2d_cols if > 0, maximum data columns in a 2D display
display_precision precision for display command when $display_round is not numeric
display_round places past decimal for display command to round
display_transpose transpose tables if rows − columns < $display_transpose
display_width maximum line length for print and display commands
expand_precision precision for expand command when $expand_round is not numeric
expand_round places past decimal for expand command to round
gutter_width separation between columns for display command

objective_precision precision for objective value displayed by solver
omit_zero_cols if nonzero, omit all-zero columns from displays
omit_zero_rows if nonzero, omit all-zero rows from displays
output_precision precision used in nonlinear expression (.nl) files
print_precision precision for print command when $print_round is not numeric
print_round places past decimal for print command to round
print_separator separator for values printed by print command
solution_precision precision for solve or solution command when $solution_round

is not numeric
solution_round places past decimal for solve or solution command to round

Table A-11: Options that control printing.
__

Commands _display and csvdisplay are variants that emit tables in a more regular for-
mat than does display: each line of a table starts with s subscripts and ends with k items, all sep-
arated by commas. _display and csvdisplay differ in the table headers they emit. The
header for _display consists of a line starting with _display and followed by three integers s,
k, and n (the number of table lines that follow the header), each preceded by a space. If
$csvdisplay_header is 1, csvdisplay precedes the data values by a header line listing the
k indices and n expressions by name. If $csvdisplay_header is 0, this header line is omitted.

A.17 Reading data

The read command provides a way of reading unformatted data into AMPL parameters and
other components, with syntax similar to the print command:

read [indexing :] arglist redirectionopt ;

As with print, the optional indexing causes the read command to be executed separately for
each member of the specified indexing set.

The read command treats its input as an unformatted series of data values, separated by white
space. The arglist is a comma-separated list of arguments that specifies a series of components to
which these values are assigned. As with print, the arglist is a comma-separated list of args,
which may be any of

SECTION A.18 MODELING COMMANDS 485

arg:
component-ref
indexing-expr component-ref
indexing-expr (arglist)

The component-ref must be a reference to a possibly suffixed parameter, variable, or constraint, or
a suffixed problem name; it is meaningless to read a value into a set member or any more general
expression. All indexing must be explicit, for example read {j in DEST} demand[j] rather
than read demand. Values are assigned to args in the order that they are read, so later arguments
can use values read earlier in the same read command.

If no redirection is specified, values are read from the current input stream. Thus if the read
command was issued at an AMPL prompt, one types the values at subsequent prompts until all of
the arglist entries have been assigned values. The prompt changes from ampl? back to ampl:
when all the needed input has been read. If instead read is inside a script file that is read with
include or commands, then the input is read from the same file, beginning directly after the ;
that ends the read command.

Most often the input to read lies in a separate file, specified by the optional redirection; its
form is <filename, where filename is a string or parenthesized string expression that identifies a
file. Multiple read’s can access the same file, in which case each read starts reading the file
where the previous one left off. To force reading to start at the beginning again, close filename
before re-reading.

If a script is to contain a read command that reads values typed interactively, the source of the
values must be redirected to the standard input; specifying a - (minus sign) as the filename does so.
This is most often used to read interactive responses from a user.

A.18 Modeling commands

A.18.1 The solve command

The solve command has the form

solve redirectionopt ;

It causes AMPL to write the current translated problem to temporary files in directory $TMPDIR
(unless the current optimization problem has not changed since a previous write command), to
invoke a solver, and to attempt to read optimal primal and dual variables from the solver. If this
succeeds, the optimal variable values become available for printing and other uses. The optional
redirection is for the solver’s standard output.

The current value of the solver option determines the solver that is invoked. Appending
’_oopt’ to $solver gives the name of an option which, if defined with a nonempty string,
determines (by the first letter of the string) the style of temporary problem files written; otherwise,
AMPL uses its generic binary output format (style b). For example, if $solver is supersol,
then $supersol_oopt, if nonempty, determines the output style. The command-line option
’-o?’ (A.23) shows a summary of the currently supported output styles.

AMPL passes two command-line arguments to the solver: the stub of the temporary files, and
the literal string -AMPL. AMPL expects the solver to write dual and primal variable values to file
stub. sol, preceded by commentary that, if appropriate, reports the objective value to

486 AMPL REFERENCE MANUAL APPENDIX A

$objective_precision significant digits. In reading the solution, AMPL rounds the primal
variables to $solution_round places past the decimal point if $solution_round is an
integer, or to $solution_precision significant figures if $solution_precision is a
positive integer; the defaults for these options imply that no rounding is performed.

A variable always has a current value. A variable declaration or data section can specify the
initial value, which is otherwise 0. The option reset_initial_guesses controls the initial
guess conveyed to the solver. If option reset _ initial _ guesses has its default value of 0,
then the current variable values are conveyed as the initial guess. Setting option
reset _ initial _ guesses to 1 causes the original initial values to be sent. Thus
$reset_initial_guesses affects the starting guess for a second solve command, as well
as for an initial solve command that follows a solution command (described below).

A constraint always has an associated current dual variable value (Lagrange multiplier). The
initial dual value is 0 unless otherwise given in a data section or specified in the constraint’s decla-
ration by a := initial_dual or a default initial_dual phrase. Whether a dual initial guess is
conveyed to solvers is governed by the option dual _ initial _ guesses. Its default value of
1 causes AMPL to pass the current dual variables (if $reset_initial_guesses is 0) or the
original initial dual variables to the solver; if $dual_initial_guesses is set to 0, AMPL will
omit initial values for the dual variables.

AMPL’s presolve phase computes two sets of bounds on variables. The first set reflects any
sharpening of the declared bounds implied by eliminated constraints. The other set incorporates
sharpenings of the first set that presolve deduces from constraints it cannot eliminate from the
problem. The problem has the same solutions with either set of bounds, but solvers that use
active-set strategies (such as the simplex method) may have more trouble with degeneracies with
the sharpened bounds. Solvers often run faster with the first set, but sometimes run faster with the
second. By default, AMPL passes the first set of bounds, but if option var_bounds is 2, AMPL
passes the second set. The .lb and .ub suffixes for variables always reflect the current setting of
$var_bounds; .lb1 and .ub1 are for the first set, .lb2 and .ub2 for the second set.

If the output style is m, AMPL writes a conventional MPS file, and the value of option
integer_markers determines whether integer variables are indicated in the MPS file by
’INTORG’ and ’INTEND’ ’MARKER’ lines. By default, $integer_markers is 1, causing
these lines to be written; specifying

option integer_markers 0;

causes AMPL to omit the ’MARKER’ lines.
The option relax_integrality causes integer and binary attributes of variables to

be ignored in solve and write commands. It is also possible to control this by setting the
.relax suffix of a variable (A.11).

By default, values of suffixes of type IN or INOUT (A.11.1) are sent to the solver, and updated
values for suffixes of type OUT or INOUT are obtained from the solver, but the sending and receiv-
ing of suffix values can be controlled by setting option send_suffixes suitably: if
$send_suffixes is 1 or 3, suffix values are sent to the solver; and if $send_suffixes is 2
or 3, then updated suffix values are requested from the solver.

Whether .sstatus values (A.11.2) are sent to the solver is determined by options
send_suffixes and send_statuses; setting $send_statuses to 0 causes .sstatus
values not to be sent when $send_suffixes permits sending other suffixes.

Most solvers supply a value for AMPL’s built-in symbolic parameter solve_message.
AMPL prints the updated solve_message by default, but setting option solver _ msg to 0

SECTION A.18 MODELING COMMANDS 487

suppresses this printing. Most solvers also supply a numeric return code solve_result_num,
which has a corresponding symbolic value solve_result that is derived from
solve_result_num and $solve_result_table analogously to symbolic suffix values
(A.11.1).

By default AMPL permutes variables and constraints so solvers see the nonlinear ones first.
Some solvers require this, but with other solvers, occasionally it is useful to suppress these permu-
tations by setting option nl_permute suitably. It is the sum of

1 to permute constraints
2 to permute variables
4 to permute objectives

and its default value is 3.
When complementarity constraints are present, the system of constraints is considered square

if the number of ‘‘inequality complements inequality’’ constraints plus the number of equations
equals the number of variables. Some complementarity solvers require square systems, so by
default AMPL warns about nonsquare systems. This can be changed by adjusting option
compl_warn, which is the sum of

1 warn about nonsquare complementarity systems
2 warn and regard nonsquare complementarity systems as infeasible
4 disregard explicit matchings of variables to equations

A.18.2 The solution command

The solution command has the form

solution filename ;

This causes AMPL to read primal and dual variable values from filename, as though written by a
solver during execution of a solve command.

A.18.3 The write command

The write command has the form

write outopt - valueopt ;

in which the optional outopt - value must adhere to the quoting rules for a filename. If outopt - value
is present, write sets $outopt to outopt - value. Whether or not outopt - value is present, write
then writes the translated problem as $outopt dictates: the first letter of $outopt gives the out-
put style (A.18.1), and the rest is used as a ‘‘stub’’ to form the names of the files that are created.
For example, if $outopt is "b/tmp/diet", the write command will create file
/tmp/diet.nl, and if $auxfiles so dictates (A.18.4), auxiliary files /tmp/diet.row,
/tmp/diet.col, and so forth. The solve command’s rules for initial guesses, bounds, suf-
fixes, etc., apply.

A.18.4 Auxiliary files

The solve and write commands may cause AMPL to write auxiliary files. For the solve
command, appending _auxfiles to $solver gives the name of an option that governs the aux-
iliary files written; for the write command, $auxfiles plays this role. The auxiliary files

488 AMPL REFERENCE MANUAL APPENDIX A

__
__

Key File Description

a stub.adj constant added to objective values
c stub.col AMPL names of variables the solver sees
e stub.env environment (written by a solve command)
f stub.fix variables eliminated from the problem because their values are known
p stub.spc MINOS ‘‘specs’’ file for output style m
r stub.row AMPL names of constraints and objectives the solver sees
s stub.slc constraints eliminated from the problem
u stub.unv unused variables

Table A-12: Auxiliary files.
__

shown in Table A-12 are written only if the governing option’s value contains the indicated key let-
ter. If a key letter is capitalized, the corresponding auxiliary file is written only if the problem is
nonlinear.

A.18.5 Changing a model: delete, purge, redeclare

The command

delete namelist ;

deletes each name in namelist, restoring any previous meaning name had, provided no other enti-
ties depend on name, i.e., if xref name (A.19.2) reports no dependents.

The command

purge namelist ;

deletes each name and all its direct and indirect dependents.
The statement

redeclare entity - declaration ;

replaces any existing declaration of the specified entity with the given one, provided either that the
entity has no dependents, or that the new declaration does not change the character of the entity (its
kind, such as set or param, and its number of subscripts). A redeclare can be applied to
statements beginning with any of the following:

arc function minimize param set suffix var
check maximize node problem subject to table

Redeclarations that would cause circular dependencies are rejected.
The command

delete check n;

deletes the nth check, while

redeclare check n indexingopt : . . . ;

redeclares the nth check.

SECTION A.18 MODELING COMMANDS 489

A.18.6 The drop, restore and objective commands

These commands have the forms

drop indexingopt constr - or - ob j - name redirectionopt ;
restore indexingopt constr - or - ob j - name redirectionopt ;
objective ob j ective - name redirectionopt ;

where constr - or - ob j - name is the possibly subscripted name of a constraint or objective. The
drop command instructs AMPL not to transmit the indicated entity (in write and solve com-
mands); the restore command cancels the effect of a corresponding drop command. If
constr - or - ob j - name is not subscripted but is the name of an indexed collection of constraints or
objectives, drop and restore affect all members of the collection.

The objective command arranges that only the named objective is passed to the solver.
Issuing an objective command is equivalent to dropping all objectives, then restoring the
named objective.

A.18.7 The fix and unfix commands

These commands have the forms

fix indexingopt varname [:= expr] redirectionopt ;
unfix indexingopt varname [:= expr] redirectionopt ;

where varname is the possibly subscripted name of a variable. The fix command instructs AMPL
to treat the indicated variable (in write and solve commands) as though fixed at its current
value, i.e., as a constant; the unfix command cancels the effect of a corresponding fix com-
mand. If varname is not subscripted but is the name of an indexed collection of variables, fix and
unfix affect all members of the collection.

An optional := expr may appear before the terminating semicolon, in which case the expres-
sion is assigned to the variable being fixed or unfixed, as though assigned by let (A.18.9).

A.18.8 Named problems and environments

The problem declaration/command has three functions: declaring a new problem, making a
previously declared problem current, and printing the name of the current problem (in the form of a
problem command establishing the current problem).

problem name indexingopt environopt suffix - initializationsopt : itemlist ;

declares a new problem and specifies the variables, constraints, and objectives that are in it. Other
variables appearing in the specified constraints and objectives are fixed (but can be unfixed by the
unfix command). The new problem becomes the current problem. Initially the current problem
is Initial. The itemlist in a problem declaration is a comma-separated list of possibly sub-
scripted names of variables, constraints, and objectives, each optionally preceded by indexing.
Suffix-initializations are analogous to those in constraint declarations, except that they appear
before the colon.

The command

problem name ;

makes name (a previously declared problem) current, and

490 AMPL REFERENCE MANUAL APPENDIX A

problem redirectionopt ;

prints the current problem name. Drop/restore and fix/unfix commands apply only to the current
problem. Variable values, like parameters, are global; just the fixed/unfixed status of a variable
depends on the problem. Similarly, the drop/restore status of a constraint depends on the problem
(as do reduced costs). The current problem does not restrict the let command (A.18.9).

When a problem is declared, it can optionally specify an environment associated with the prob-
lem: the environ phrase has the form

environ envname

to specify that the problem’s initial environment is envname, which must bear a subscript if the
environment is indexed. Otherwise a new unindexed environment with the same name as the prob-
lem is created, and it inherits the then current environment (set of option values).

In option commands, unadorned (conventional) option names refer to options in the current
environment, and the notation envname.opname refers to $opname in environment envname. The
declaration

environ envname indexingopt ;

declares environment envname (or indexed set of environments, if indexing is present). If there is
no indexing, envname becomes the current environment for the current problem.

For previously declared environments, the command

environ envname ;

makes the indicated environment current, and the command

environ indexingopt envname := envname1 ;

copies environment envname 1 to envname, where envname and envname 1 must be subscripted if
declared with indexings. The initial environment is called Initial.

A.18.9 Modifying data: reset, update, let

The reset command has several forms.

reset ;

causes AMPL to forget all model declarations and data and to close all files opened by redirection,
while retaining the current option settings.

reset options ;

causes AMPL to restore all options to their initial state. It ignores the current $OPTIONS_IN and
$OPTIONS_INOUT; the files they name can be included manually, if desired.

reset data ;

causes AMPL to forget all assignments read in data mode and allows reading data for a different
problem instance.

reset data name - list ;

causes AMPL to forget any data read for the entities in name - list; commas between names are
optional.

SECTION A.19 EXAMINING MODELS 491

A reset data command forces recomputation of all = expressions, and reset data p,
even when p is declared with a = expression, forces recomputation of random functions in the =
expression (and of any user-defined functions in the expression).

Problems (including the current one) are adjusted when their indexing expressions change,
except that previous explicit drop/restore and fix/unfix commands remain in effect. The reset
problem command cancels this treatment of previous explicit drop, restore, fix, and unfix com-
mands, and brings the problem to its declared drop/fix state. This command has the forms

reset problem ; applies to the current problem
reset problem probname [subscript]opt ;

If the latter form mentions the current problem, it has the same effect as the first form. reset
problem does not affect the problem’s environment.

update data ;

permits all data to be updated once in subsequent data sections: current values may be overwritten,
but no values are discarded.

update data name - list ;

grants update permission only to the entities in name - list.
The let command

let indexingopt name := expr ;

changes the value of the possibly indexed set, parameter or variable name to the value of the
expression. If name is a set or parameter, its declaration must not specify a = phrase.

The command

let indexingopt name.suffix := expr ;

assigns the corresponding suffix value, if permitted. Some suffix values are derived and cannot be
assigned; attempting to do so causes an error message.

A.19 Examining models

A.19.1 The show command

The command

show namelistopt redirectionopt ;

lists all model entities if namelist is not present. It shows each name’s declaration if it has one, or
else lists model entities of the kind indicated by the first letters of each name:

ch... ==> checks c... ==> constraints
e... ==> environments f... ==> functions
o... ==> objectives
pr... ==> problems p... ==> parameters
su... ==> suffixes s... ==> sets
t... ==> tables v... ==> variables

492 AMPL REFERENCE MANUAL APPENDIX A

A.19.2 The xref command

The command xref shows entities that depend directly or indirectly on specified entities:

xref itemlist redirectionopt ;

A.19.3 The expand command

The expand command prints generated constraints and objectives:

expand indexingopt itemlist redirectionopt ;

The itemlist can assume the same forms allowed in problem declarations. If it is empty, all non-
dropped constraints and objectives are expanded. The variant

solexpand indexingopt itemlist redirectionopt ;

shows how constraints and objectives appear to the solver. It omits constraints and variables elimi-
nated by presolve unless they are explicitly specified in the itemlist.

Both the expand and solexpand commands permit variables to appear in the itemlist; for
each, the commands show the linear coefficients of the variable in the relevant (non-dropped and,
for solexpand, not eliminated by presolve) constraints and objectives, and indicates "+ non-
linear" when the variable also participates nonlinearly in a constraint or objective.

The options expand_precision and expand_round control printing of numbers by
expand. By default they are printed to 6 significant figures.

A.19.4 Generic names

AMPL provides a number of generic names that can be used to access model entities without
using model-specific names. Some of these names are described in Table A-13; the complete cur-
rent list is on the AMPL web site.

These synonyms and sets can be used in display and other commands. They present the
modeler’s view (before presolve). Similar automatically updated entities with _ changed to _s
(i.e., _snvars, _svarnames, _svar, etc.) give the solver’s view, i.e., the view after presolve.
There are exceptions, however, due to the way complementarity constraints are handled (A.9.1):
none of _cvar, _scconname, or _snccons exists.

A.19.5 The check command

The command

check;

causes all check statements to be evaluated.

A.20 Scripts and control flow statements

AMPL provides statements similar to control flow statements in conventional programming lan-
guages, which make it possible to write a program of statements to be executed automatically.

SECTION A.20 SCRIPTS AND CONTROL FLOW STATEMENTS 493

__
__

_nvars number of variables in current model
_ncons number of constraints in current model
_nobjs number of objectives in current model
_varname{1.._nvars} names of variables in current model
_conname{1.._ncons} names of constraints in current model
_objname{1.._nobjs} names of objectives in current model

_var{1.._nvars} synonyms for variables in current model
_con{1.._ncons} synonyms for constraints in current model
_obj{1.._nobjs} synonyms for objectives in current model

_PARS set of all declared parameter names
_SETS set of all declared set names
_VARS set of all declared variable names
_CONS set of all declared constraint names
_OBJS set of all declared objective names
_PROBS set of all declared problem names
_ENVS set of all declared environment names
_FUNCS set of all declared user-defined functions

_nccons number of complementarity constraints before presolve
_cconname{1.._nccons} names of complementarity constraints
_scvar{1.._sncons} if _scvar[i] > 0, _svar[scvar[i]] complements _scon[i]
_snbvars number of binary (0,1) variables
_snccons number of complementarity constraints after presolve
_snivars number of general integer variables (excluding binaries)
_snlcc number of linear complementarity constraints
_snlnc number of linear network constraints
_snnlcc number of nonlinear compl. constrs.: _snccons=_snlcc+_snnlcc
_snnlcons number of nonlinear constraints
_snnlnc number of nonlinear network constraints
_snnlobjs number of nonlinear objectives
_snnlv number of nonlinear variables
_snzcons number of constraint Jacobian matrix nonzeros
_snzobjs number of objective gradient nonzeros

Table A-13: Generic synonyms and sets.
__

A.20.1 The for, repeat and if-then-else statements

Several commands permit conditional execution of and looping over lists of AMPL commands:

if lexpr then cmd
if lexpr then cmd else cmd
for loopnameopt indexing cmd
repeat loopnameopt opt - while { cmds } opt - while ;
break loopnameopt ;
continue loopnameopt ;

In these statements, cmd is either a single, possibly empty, command that ends with a semicolon or
a sequence of zero or more commands enclosed in braces. lexpr is a logical expression. loopname
is an optional loop name (which must be unbound before the syntactic start of the loop), which
goes out of scope after syntactic end of the loop. If present, an opt - while condition has one of the
forms

494 AMPL REFERENCE MANUAL APPENDIX A

while lexpr
until lexpr

If loopname is specified, break and continue apply to the named enclosing loop; otherwise
they apply to the immediately enclosing loop. A break terminates the loop, and continue
causes its next iteration to begin (if permitted by the optional initial and final opt - while clauses of a
repeat loop, or by the indexing of a for loop). Dummy indexes from indexing may appear in
cmd in a for loop. The entire index set of a for loop is instantiated before starting execution of
the loop, so the set of dummy indices for which the loop body is executed will be unaffected by
assignments in the loop body.

Variants of break,

break commands ;
break all ;

terminate, respectively, the current commands command or all commands commands, if any, and
otherwise act as a quit command.

Loops and if-then-else structures are treasured up until syntactically complete. Because else
clauses are optional, AMPL must look ahead one token to check for their presence. At the outer-
most level, one must thus issue a null command (just a semicolon) or some other command or dec-
laration to execute an outermost ‘‘else-less’’ if statement. (In this regard, end-of-file implies an
implicit null statement.)

A semicolon is taken to appear at the end of command files that end with a compound com-
mand with optional final parts missing:

repeat ... { ... } # no final condition or semicolon
if ... then { ... } # no else clause

AMPL has three pairs of prompts whose text can be changed through option settings. The
default settings are:

option cmdprompt1 ’%s ampl: ’;
option cmdprompt2 ’%s ampl? ’;
option dataprompt1 ’ampl data: ’;
option dataprompt2 ’ampl data? ’;
option prompt1 ’ampl: ’;
option prompt2 ’ampl? ’;

prompt1 appears when a new statement is expected, and prompt2 when the previous input line
is not yet a complete command (for example, if the semicolon at the end is missing).

In data mode, the values of dataprompt1 and dataprompt2 are used instead. When a
new line is begun in the middle of an if, for or repeat statement, the values of cmdprompt1
and cmdprompt2 are used, with %s replaced by the appropriate command name; for example:

ampl: for {t in time} {
for{...} { ? ampl: if t <= 6
for{...} { ? ampl? then let cmin[t] := 3;
if ... then {...} ? ampl: else let cmin[t] := 4;
for{...} { ? ampl: };
ampl:

SECTION A.21 COMPUTATIONAL ENVIRONMENT 495

A.20.2 Stepping through commands

It is possible to step through commands in an AMPL script one command at a time. Single-step
mode is enabled by

option single_step n ;

where n is a positive integer; it specifies that if the insert level is at most n, AMPL should behave as
though commands -; were inserted before each command: it should read commands from the
standard input until end or other end of file signal (control-D on Unix, control-Z on Windows).
Some special commands may appear in this mode:

step nopt execute the next command, or n commands
skip nopt skip the next command, or n commands
next nopt if the next command is an if-then-else or looping command, execute the entire

compound command, or n commands, before stopping again
(unless the compound command itself specifies commands -;)

cont execute until the end of all currently nested compound commands
at the current insert level

A.21 Computational environment

AMPL runs in an operating system environment, most often as a standalone program, but some-
times behind the scenes in a graphical user interface or a larger system. Its behavior is influenced
by values from the external environment, and it can set values that become part of that environ-
ment. The parameter _pid gives the process ID of the AMPL process (a number unique among
processes running on the system).

A.21.1 The shell command

The shell command provides a temporary escape to the operating system, if such is permit-
ted, to run commands.

shell ’command - line’ redirectionopt ;
shell redirectionopt ;

The first version runs command-line , which is contained in a literal string. In the second version,
AMPL invokes an operating-system shell, and control returns to AMPL when that shell terminates.
Before invoking the shell, AMPL writes a list of current options and their values to the file (if any)
named by option shell_env_file. The name of the shell program is determined by option
SHELL.

A.21.2 The cd command

The cd command reports or changes AMPL’s working directory.

cd ;
cd new - directory ;

The parameter _cd is set to this value.

496 AMPL REFERENCE MANUAL APPENDIX A

__
__

_ampl_elapsed_time elapsed seconds since the start of the AMPL process
_ampl_system_time system CPU seconds used by the AMPL process itself
_ampl_user_time user CPU seconds used by the AMPL process itself
_ampl_time _ ampl _ system _ time + _ ampl _ user _ time
_shell_elapsed_time elapsed seconds for most recent shell command
_shell_system_time system CPU seconds used by most recent shell command
_shell_user_time user CPU seconds used by most recent shell command
_shell_time _ shell _ system _ time + _ shell _ user _ time
_solve_elapsed_time elapsed seconds for most recent solve command
_solve_system_time system CPU seconds used by most recent solve command
_solve_user_time user CPU seconds used by most recent solve command
_solve_time _ solve _ system _ time + _ solve _ user _ time
_total_shell_elapsed_time elapsed seconds used by all shell commands
_total_shell_system_time system CPU seconds used by all shell commands
_total_shell_user_time user CPU seconds used by all shell commands
_total_shell_time _ total _ shell _ system _ time+ _ total _ shell _ user _ time
_total_solve_elapsed_time elapsed seconds used by all solve commands
_total_solve_system_time system CPU seconds used by all solve commands
_total_solve_user_time user CPU seconds used by all solve commands
_total_solve_time _ total _ solve _ system _ time+ _ total _ solve _ user _ time

Table A-14: Built-in timing parameters.
__

A.21.3 The quit, exit and end commands

The quit command causes AMPL to stop without writing any files implied by $outopt, and
the end command causes AMPL to behave as though it has reached the end of the current input
file, without reverting to model mode. At the top level of command interpretation, either command
terminates an AMPL session. The command exit is a synonym for quit, but it can return a sta-
tus to the surrounding environment:

exit expressionopt ;

A.21.4 Built-in timing parameters

AMPL has built-in parameters that record various CPU and elapsed times, as shown in Table
A-14. Most current operating systems keep separate track of two kinds of CPU time: system time
spent by the operating time on behalf of a process, e.g., for reading and writing files, and user time
spent by the process itself outside of the operating system. Usually the system time is much
smaller than the user time; when not, finding out why not sometimes suggests ways to improve
performance. Because seeing separate system and user times can be helpful when performance
seems poor, AMPL provides built-in parameters for both sorts of times, as well as for their sums.
AMPL runs both solvers and shell commands as separate processes, so it provides separate parame-
ters to record the times taken by each sort of process, as well as for the AMPL process itself.

A.21.5 Logging

If option log_file is a nonempty string, it is taken as the name of a file to which AMPL
copies everything it reads from the standard input. If option log_model is 1, then commands and

SECTION A.22 IMPORTED FUNCTIONS 497

declarations read from other files are also copied to the log file, and if log_data is 1, then data
sections read from other files are copied to the log file as well.

A.22 Imported functions

Sometimes it is convenient to express models with the help of functions that are not built into
AMPL. AMPL has facilities for importing functions and optionally checking the consistency of
their argument lists. Note: The practical details of using imported functions are highly system-
dependent. This section is concerned only with syntax; specific information will be found in
system-specific documentation, e.g., on the AMPL web site.

An imported function may need to be evaluated to translate the problem; for instance, if it plays
a role in determining the contents of a set, AMPL must be able to evaluate the function. In this case
the function must be linked, perhaps dynamically, with AMPL. On the other hand, if an imported
function’s only role is in computing the value of a constraint or objective, AMPL never needs to
evaluate the function and can simply pass references to it on to a (nonlinear) solver.

Imported functions must be declared in a function declaration before they are referenced.
This statement has the form

function name aliasopt (domain - spec) opt typeopt [pipe litseqopt [format fmt]] ;

in which name is the name of the function, and domain-spec amounts to a function prototype:

domain-spec:
domain-list
...
nonempty-domain-list , ...

A domain-list is a (possibly empty, comma-separated) list of set expressions, asterisks (∗’s), direc-
tion words (IN, OUT, or INOUT), direction words followed by set expressions, and iterated-
domain-lists:

iterated-domain-list:
indexing (nonempty domain-list)

An iterated-domain-list is equivalent to one repetition of its domain-list for each member in the
indexing set, and the domain of dummy variables appearing in the indexing extends over that
domain-list. The direction words indicate which way information flows: into the function (IN), out
of the function (OUT), or both, with IN the default. In a function invocation, OUT arguments are
assigned values specified by the function at the end of the command invoking the function.

Omitting the optional (domain-spec) in the function declaration is the same as specifying
(...). The function must be invoked with at least or exactly as many arguments as there are sets
in the domain-spec (after iterated-domain-lists have been expanded), depending on whether or not
the domain-spec ends with AMPL checks that each argument corresponding to a set in the
domain-list lies in that set. A * by itself in a domain-list signifies no domain checking for the cor-
responding argument.

A function whose return value is not of interest can be invoked with a call command:

call funcname(arglist);

Type can be symbolic or random or both; symbolic means the function returns a literal
(string) value rather than a numeric value, and random indicates that the ‘‘function’’ may return

498 AMPL REFERENCE MANUAL APPENDIX A

different values for the same arguments, i.e., AMPL should assume that each invocation of the func-
tion returns a different value.

The commands

load libnamesopt ;
unload libnamesopt ;
reload libnamesopt ;

load, unload, or reload shared libraries (from which functions and table handlers are imported); lib-
names is a comma-separated list of library names. When at least one libname is mentioned in the
load and unload commands, $AMPLFUNC is modified to reflect the full pathnames of the cur-
rently loaded libraries. The reload command first unloads its arguments, then loads them. This
can change the order of loaded libraries and affect the visibility of imported functions: the first
name wins. With no arguments, load loads all the libraries currently in $AMPLFUNC; unload
unloads all currently loaded libraries, and reload reloads them (which is useful if some have
been recompiled).

The keyword pipe indicates that this is a pipe function, which means AMPL should start a sep-
arate process for evaluating the function. Each time a function value is needed, AMPL writes a line
of arguments to the function process, then reads a line containing the function value from the pro-
cess. (Of course, this is only possible on systems that allow multiple processes.) A litseq is a
sequence of one or more adjacent literals or parenthesized string expressions, which AMPL con-
catenates and passes to the operating system (i.e., to $SHELL) as the description of the process to
be invoked. In the absence of a litseq, AMPL passes a single literal, whose value is the name of the
function. If the optional format fmt is present, fmt must be a format, suitable for printf, that
tells AMPL how to format each line it sends to the function process. If no fmt is specified, AMPL
uses spaces to separate the arguments it passes to the pipe function.

For example:

ampl: function mean2 pipe "awk ’{print ($1+$2)/2}’";
ampl: display mean2(1,2) + 1;
mean2(1, 2) + 1 = 2.5

The function mean2 is expected (by default) to return numeric values; AMPL will complain if it
returns a string that does not represent a number.

The following functions are symbolic, to illustrate formatting and the passing of arguments.

ampl: function f1 symbolic pipe "awk ’" ’{printf "x%s\n", $1}’ "’";
ampl: function g1 symbolic pipe ’awk ’’{printf "XX%s\n", $1}’’’;
ampl: function cat symbolic pipe format ">>%s<<\n";

ampl: display f1(2/3);
f1(2/3) = x0.66666666666666667

ampl: display g1(’abc’);
g1(’abc’) = XXabc

ampl: display cat(’some words’);
cat(’some words’) = ">>’some words’<<"

The declaration of f1 specifies a litseq of 3 literals, while g1 specifies one literal; cat, having an
empty litseq, is treated as though its litseq were ’cat’. The literals in each litseq are stripped of
the quotes that enclose them, have one of each adjacent pair of these quotes removed, and have
(backslash, newline) pairs changed to a single newline character; the results are concatenated to

SECTION A.23 AMPL INVOCATION 499

produce the string passed to the operating system as the description of the process to be started.
Thus for the four pipe functions above, the system sees the commands

awk ’{print ($1+$2)/2}’
awk ’{printf "x%s\n", $1}’
awk ’{printf "XX%s\n", $1}’
cat

respectively. Function cat illustrates the optional format fmt phrase. If fmt results in a string
that does not end in a newline, AMPL appends a newline character. If no fmt is given, each
numeric argument is converted to the shortest decimal string that rounds to the argument value.

Caution: The line returned by a pipe function must be a complete line, i.e., must end with a
newline character, and the pipe function process must flush its buffers to prevent deadlock. (Pipe
functions do not work with most standard Unix programs, because they don’t flush output at the
end of each line.)

Imported functions may be invoked with conventional functional notation, as illustrated above.
In addition, iterated arguments are allowed. More precisely, if f is an imported function, an invo-
cation of f has the form f(arglist) in which arglist is as for the print and printf commands
— a possibly empty, comma-separated list of expressions and iterated-arglists:

ampl: function mean pipe ’awk ’’{x = 0\
for(i = 1; i <= NF; i++) x += $i\
printf "%.17g\n", x/NF}’’’;

ampl: display mean({i in 1..100} i);
mean({i in 1 .. 100} (i)) = 50.5

ampl: display mean({i in 1..50}(i,i+50));
mean({i in 1 .. 50} (i, i + 50)) = 50.5

ampl: display mean({i in 0..90 by 10}({j in 1..10} i + j));
mean({i in 0 .. 90 by 10} ({j in 1 .. 10} (i + j))) = 50.5

The command

reset function nameopt ;

closes all pipe functions, causing them to be restarted if invoked again. If an function is named
explicitly, only that function is closed.

A.23 AMPL invocation

AMPL is most often invoked as a separate command in some operating system environment.
When AMPL begins execution, the declarations, commands, and data sections described above
(A.14) can be entered interactively. Depending on the operating system where AMPL is run, the
invocation may be accompanied by one or more command-line arguments that set various proper-
ties and options and specify files to be read. These can be examined by typing the command

ampl ’-?’

The initialization of some options may be determined by command-line arguments. The ’-?’
argument produces a listing of these options and their command-line equivalents.

Sometimes it is convenient to have option settings remembered across AMPL sessions. Under
operating systems from which AMPL can inherit environment variables as described above, the

500 AMPL REFERENCE MANUAL APPENDIX A

options OPTIONS_IN, OPTIONS_INOUT, and OPTIONS_OUT provide one way to do this. If
$OPTIONS_IN is nonempty in the inherited environment, it names a file (meant to contain
option commands) that AMPL reads before processing command-line arguments or entering its
command environment. OPTIONS_INOUT is similar to OPTIONS_IN; AMPL reads file
$OPTIONS_INOUT (if nonempty) after $OPTIONS_IN. At the end of execution, if
$OPTIONS_INOUT is nonempty, AMPL writes the current option settings to file
$OPTIONS_INOUT. If nonempty, $OPTIONS_OUT is treated like $OPTIONS_INOUT at the
end of execution.

The command-line argument -v prints the version of the AMPL command being used; this is
also available as option version.

The command-line option -R (recognized only as the first command-line option and not men-
tioned in the -? listing of options) puts AMPL into a restricted ‘‘server mode,’’ in which it declines
to execute cd and shell commands, forbids changes to options TMPDIR, ampl_include, and
PATH (or the search path for the operating system being used), disallows pipe functions, and
restricts names in option solver and file redirections to be alphanumeric (so they can only
write to the current directory, which, on Unix systems at least, cannot be changed). By invoking
AMPL from a shell script that suitably adjusts current directory and environment variables before it
invokes ampl -R, one can control the directory in which AMPL operates and the initial environ-
ment that it sees.

On systems where imported function libraries can be used, the command-line option -ilibs
specifies libraries of imported functions (A.22) and table handlers (A.13) that AMPL should load
initially. If -ilibs does not appear, AMPL assumes -i$AMPLFUNC. Here libs is a string, perhaps
extending over several lines, with the name of one library or directory per line. For a directory,
AMPL looks for library amplfunc.dll in that directory. If libs is empty and amplfunc.dll
appears in the current directory, AMPL loads amplfunc.dll initially. If library
ampltabl.dll is installed in what the operating system considers to be a standard place, AMPL
also tries to load this library, which can provide ‘‘standard’’ database handlers and functions.

