AMPL

A Modeling Language for Mathematical Programming

Second Edition

AMPL

A Modeling Language

for Mathematical Programming

Second Edition

Robert Fourer

Northwestern University

David M. Gay

AMPL Optimization LLC

Brian W. Kernighan

Princeton University

This book was typeset (grap|pic|tbl|eqn|troff $-m p m$) in Times and Courier by the authors.

Copyright © 2003 by Robert Fourer, David M. Gay and Brian Kernighan.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Abstract

About the authors:

Robert Fourer received his Ph.D. in operations research from Stanford University in 1980, and is an active researcher in mathematical programming and modeling language design. He joined the Department of Industrial Engineering and Management Sciences at Northwestern University in 1979, and served as chair of the department from 1989 to 1995.

David M. Gay received his Ph.D. in computer science from Cornell University in 1975, and was in the Computing Science Research Center at Bell Laboratories from 1981 to 2001; he is now CEO of AMPL Optimization LLC. His research interests include numerical analysis, optimization, and scientific computing.

Brian Kernighan received his Ph.D. in electrical engineering from Princeton University in 1969. He was in the Computing Science Research Center at Bell Laboratories from 1969 to 2000 , and now teaches in the Computer Science department at Princeton. He is the co-author of several computer science books, including The C Programming Language and The UNIX Programming Environment.

Contents

Introduction xv
Chapter 1. Production Models: Maximizing Profits 1
1.1 A two-variable linear program 2
1.2 The two-variable linear program in AMPL 5
1.3 A linear programming model 6
1.4 The linear programming model in AMPL 7
The basic model 8
An improved model 10
Catching errors 12
1.5 Adding lower bounds to the model 13
1.6 Adding resource constraints to the model 15
1.7 AMPL interfaces 18
Chapter 2. Diet and Other Input Models: Minimizing Costs 27
2.1 A linear program for the diet problem 27
2.2 An AMPL model for the diet problem 30
2.3 Using the AMPL diet model 32
2.4 Generalizations to blending, economics and scheduling 37
Chapter 3. Transportation and Assignment Models 43
3.1 A linear program for the transportation problem 44
3.2 An AMPL model for the transportation problem 45
3.3 Other interpretations of the transportation model 49
Chapter 4. Building Larger Models 55
4.1 A multicommodity transportation model 56
4.2 A multiperiod production model 59
4.3 A model of production and transportation 63
Chapter 5. Simple Sets and Indexing 73
5.1 Unordered sets 73
5.2 Sets of numbers 75
5.3 Set operations 76
5.4 Set membership operations and functions 78
5.5 Indexing expressions 79
5.6 Ordered sets 82
Predefined sets and interval expressions 86
Chapter 6. Compound Sets and Indexing 91
6.1 Sets of ordered pairs 91
6.2 Subsets and slices of ordered pairs 93
6.3 Sets of longer tuples 96
6.4 Operations on sets of tuples 98
6.5 Indexed collections of sets 100
Chapter 7. Parameters and Expressions 109
7.1 Parameter declarations 110
7.2 Arithmetic expressions 111
7.3 Logical and conditional expressions 114
7.4 Restrictions on parameters 116
7.5 Computed parameters 118
7.6 Randomly generated parameters 121
7.7 Logical parameters 122
7.8 Symbolic parameters 123
Chapter 8. Linear Programs: Variables, Objectives and Constraints 129
8.1 Variables 129
8.2 Linear expressions 132
8.3 Objectives 134
8.4 Constraints 137
Chapter 9. Specifying Data 143
9.1 Formatted data: the data command 143
9.2 Data in lists 145
Lists of one-dimensional sets and parameters 145
Lists of two-dimensional sets and parameters 146
Lists of higher-dimensional sets and parameters 148
Combined lists of sets and parameters 151
9.3 Data in tables 154
Two-dimensional tables 154
Two-dimensional slices of higher-dimensional data 156
Higher-dimensional tables 157
Choice of format 159
9.4 Other features of data statements 160
Default values 160
Indexed collections of sets 161
Initial values for variables 162
9.5 Reading unformatted data: the read command 163
Chapter 10. Database Access 169
10.1 General principles of data correspondence 169
10.2 Examples of table-handling statements 174
10.3 Reading data from relational tables 180
Reading parameters only 180
Reading a set and parameters 182
Establishing correspondences 184
Reading other values 185
10.4 Writing data to relational tables 186
Writing rows inferred from the data specifications 186
Writing rows inferred from a key specification 189
10.5 Reading and writing the same table 191
Reading and writing using two table declarations 192
Reading and writing using the same table declaration 193
10.6 Indexed collections of tables and columns 193
Indexed collections of tables 193
Indexed collections of data columns 196
10.7 Standard and built-in table handlers 197
Using the standard ODBC table handler 198
Using the standard ODBC table handler with Access and Excel 200
Built-in table handlers for text and binary files 201
Chapter 11. Modeling Commands 203
11.1 General principles of commands and options 203
Commands 204
Options 204
11.2 Setting up and solving models and data 206
Entering models and data 206
Solving a model 207
11.3 Modifying data 209
Resetting 209
Resampling 209
The let command 210
11.4 Modifying models 212
Removing or redefining model components 213
Changing the model: fix, unfix; drop, restore 214
Relaxing integrality 215
Chapter 12. Display Commands 219
12.1 Browsing through results: the display command 219
Displaying sets 220
Displaying parameters and variables 220
Displaying indexed expressions 224
12.2 Formatting options for display 227
Arrangement of lists and tables 227
Control of line width 229
Suppression of zeros 231
12.3 Numeric options for display 232
Appearance of numeric values 233
Rounding of solution values 236
12.4 Other output commands: print and printf 238
The print command 238
The printf command 239
12.5 Related solution values 240
Objective functions 240
Bounds and slacks 241
Dual values and reduced costs 243
12.6 Other display features for models and instances 245
Displaying model components: the show command: 246
Displaying model dependencies: the xref command 247
Displaying model instances: the expand command 247
Generic synonyms for variables, constraints and objectives 249
Resource listings 250
12.7 General facilities for manipulating output 251
Redirection of output 251
Output logs 251
Limits on messages 252
Chapter 13. Command Scripts 255
13.1 Running scripts: include and commands 255
13.2 Iterating over a set: the for statement 258
13.3 Iterating subject to a condition: the repeat statement 262
13.4 Testing a condition: the if-then-else statement 264
13.5 Terminating a loop: break and continue 266
13.6 Stepping through a script 268
13.7 Manipulating character strings 270
String functions and operators 270
String expressions in AMPL commands 273
Chapter 14. Interactions with Solvers 275
14.1 Presolve 275
Activities of the presolve phase 276
Controlling the effects of presolve 278
Detecting infeasibility in presolve 279
14.2 Retrieving results from solvers 282
Solve results 282
Solver statuses of objectives and problems 286
Solver statuses of variables 287
Solver statuses of constraints 291
AMPL statuses 293
14.3 Exchanging information with solvers via suffixes 295
User-defined suffixes: integer programming directives 296
Solver-defined suffixes: sensitivity analysis 298
Solver-defined suffixes: infeasibility diagnosis 299
Solver-defined suffixes: direction of unboundedness 300
Defining and using suffixes 302
14.4 Alternating between models 304
14.5 Named problems 309
Defining named problems 311
Using named problems 314
Displaying named problems 315
Defining and using named environments 316
Chapter 15. Network Linear Programs 319
15.1 Minimum-cost transshipment models 319
A general transshipment model 320
Specialized transshipment models 323
Variations on transshipment models 326
15.2 Other network models 328
Maximum flow models 328
Shortest path models 329
Transportation and assignment models 330
15.3 Declaring network models by node and arc 333
A general transshipment model 334
A specialized transshipment model 335
Variations on transshipment models 336
Maximum flow models 337
15.4 Rules for node and arc declarations 340
node declarations 340
arc declarations 340
Interaction with objective declarations 341
Interaction with constraint declarations 342
Interaction with variable declarations 342
15.5 Solving network linear programs 343
Chapter 16. Columnwise Formulations 353
16.1 An input-output model 354
Formulation by constraints 354
A columnwise formulation 355
Refinements of the columnwise formulation 357
16.2 A scheduling model 359
16.3 Rules for columnwise formulations 362
Chapter 17. Piecewise-Linear Programs 365
17.1 Cost terms 366
Fixed numbers of pieces 366
Varying numbers of pieces 368
17.2 Common two-piece and three-piece terms 369
Penalty terms for "soft" constraints 369
Dealing with infeasibility 373
Reversible activities 377
17.3 Other piecewise-linear functions 379
17.4 Guidelines for piecewise-linear optimization 382
Forms for piecewise-linear expressions 382
Suggestions for piecewise-linear models 383
Chapter 18. Nonlinear Programs 391
18.1 Sources of nonlinearity 392
Dropping a linearity assumption 393
Achieving a nonlinear effect 396
Modeling an inherently nonlinear process 397
18.2 Nonlinear variables 397
Initial values of variables 398
Automatic substitution of variables 399
18.3 Nonlinear expressions 400
18.4 Pitfalls of nonlinear programming 403
Function range violations 403
Multiple local optima 407
Other pitfalls 410
Chapter 19. Complementarity Problems 419
19.1 Sources of complementarity 419
A complementarity model of production economics 420
Complementarity for bounded variables 423
Complementarity for price-dependent demands 425
Other complementarity models and applications 426
19.2 Forms of complementarity constraints 427
19.3 Working with complementarity constraints 428
Related solution values 428
Presolve 429
Generic synonyms 431
Chapter 20. Integer Linear Programs 437
20.1 Integer variables 438
20.2 Zero-one variables and logical conditions 439
Fixed costs 440
Zero-or-minimum restrictions 444
Cardinality restrictions 445
20.3 Practical considerations in integer programming 448
Appendix A. AMPL Reference Manual 453
A. 1 Lexical rules 453
A. 2 Set members 454
A. 3 Indexing expressions and subscripts 455
A. 4 Expressions 455
A.4.1 Built-in functions 458
A.4.2 Strings and regular expressions 459
A.4.3 Piecewise-linear terms 460
A. 5 Declarations of model entities 461
A. 6 Set declarations 461
A.6.1 Cardinality and arity functions 462
A.6.2 Ordered sets 463
A.6.3 Intervals and other infinite sets 463
A. 7 Parameter declarations 465
A.7.1 Check statements 465
A.7.2 Infinity 466
A. 8 Variable declarations 466
A.8.1 Defined variables 467
A. 9 Constraint declarations 468
A.9.1 Complementarity constraints 469
A. 10 Objective declarations 470
A. 11 Suffix notation for auxiliary values 470
A.11.1 Suffix declarations 471
A.11.2 Statuses 473
A. 12 Standard data format 473
A.12.1 Set data 473
A.12.2 Parameter data 475
A. 13 Database access and tables 477
A. 14 Command language overview 479
A.14.1 Options and environment variables 481
A. 15 Redirection of input and output 481
A. 16 Printing and display commands 482
A. 17 Reading data 484
A. 18 Modeling commands 485
A.18.1 The solve command 485
A.18.2 The solution command 487
A.18.3 The write command 487
A.18.4 Auxiliary files 487
A.18.5 Changing a model: delete, purge, redeclare 488
A.18.6 The drop, restore and objective commands 489
A.18.7 The fix and unfix commands 489
A.18.8 Named problems and environments 489
A.18.9 Modifying data: reset, update, let 490
A. 19 Examining models 491
A.19.1 The show command 491
A.19.2 The xref command 492
A.19.3 The expand command 492
A.19.4 Generic names 492
A.19.5 The check command 492
A. 20 Scripts and control flow statements 492
A.20.1 The for, repeat and if-then-else statements 493
A.20.2 Stepping through commands 495
A. 21 Computational environment 495
A.21.1 The shell command 495
A.21.2 The cd command 495
A.21.3 The quit, exit and end commands 496
A.21.4 Built-in timing parameters 496
A.21.5 Logging 496
A. 22 Imported functions 497
A. 23 AMPL invocation 499
Index 501

Introduction

As our title suggests, there are two aspects to the subject of this book. The first is mathematical programming, the optimization of a function of many variables subject to constraints. The second is the AMPL modeling language, which we designed and implemented to help people use computers to develop and apply mathematical programming models.

We intend this book as an introduction both to mathematical programming and to AMPL. For readers already familiar with mathematical programming, it can serve as a user's guide and reference manual for the AMPL software. We assume no previous knowledge of the subject, however, and hope that this book will also encourage the use of mathematical programming models by those who are new to the field.

Mathematical programming

The term '"programming'" was in use by 1940 to describe the planning or scheduling of activities within a large organization. 'Programmers'' found that they could represent the amount or level of each activity as a variable whose value was to be determined. Then they could mathematically describe the restrictions inherent in the planning or scheduling problem as a set of equations or inequalities involving the variables. A solution to all of these constraints would be considered an acceptable plan or schedule.

Experience soon showed that it was hard to model a complex operation simply by specifying constraints. If there were too few constraints, many inferior solutions could satisfy them; if there were too many constraints, desirable solutions were ruled out, or in the worst case no solutions were possible. The success of programming ultimately depended on a key insight that provided a way around this difficulty. One could specify, in addition to the constraints, an objective: a function of the variables, such as cost or profit, that could be used to decide whether one solution was better than another. Then it didn't matter that many different solutions satisfied the constraints - it was sufficient to find one such solution that minimized or maximized the objective. The term mathematical programming came to be used to describe the minimization or maximization of an objective function of many variables, subject to constraints on the variables.

In the development and application of mathematical programming, one special case stands out: that in which all the costs, requirements and other quantities of interest are terms strictly proportional to the levels of the activities, or sums of such terms. In mathematical terminology, the objective is a linear function, and the constraints are linear equations and inequalities. Such a problem is called a linear program, and the process of setting up such a problem and solving it is called linear programming. Linear programming is particularly important because a wide variety of problems can be modeled as linear programs, and because there are fast and reliable methods for solving linear programs even with thousands of variables and constraints. The ideas of linear programming are also important for analyzing and solving mathematical programming problems that are not linear.

All useful methods for solving linear programs require a computer. Thus most of the study of linear programming has taken place since the late 1940's, when it became clear that computers would be available for scientific computing. The first successful computational method for linear programming, the simplex algorithm, was proposed at this time, and was the subject of increasingly effective implementations over the next decade. Coincidentally, the development of computers gave rise to a now much more familiar meaning for the term "programming.'"

In spite of the broad applicability of linear programming, the linearity assumption is sometimes too unrealistic. If instead some smooth nonlinear functions of the variables are used in the objective or constraints, the problem is called a nonlinear program. Solving such a problem is harder, though in practice not impossibly so. Although the optimal values of nonlinear functions have been a subject of study for over two centuries, computational methods for solving nonlinear programs in many variables were developed only in recent decades, after the success of methods for linear programming. The field of mathematical programming is thus also known as large scale optimization, to distinguish it from the classical topics of optimization in mathematical analysis.

The assumptions of linear programming also break down if some variables must take on whole number, or integral, values. Then the problem is called integer programming, and in general becomes much harder. Nevertheless, a combination of faster computers and more sophisticated methods have made large integer programs increasingly tractable in recent years.

The AMPL modeling language

Practical mathematical programming is seldom as simple as running some algorithmic method on a computer and printing the optimal solution. The full sequence of events is more like this:

- Formulate a model, the abstract system of variables, objectives, and constraints that represent the general form of the problem to be solved.
- Collect data that define a specific problem instance.
- Generate a specific objective function and constraint equations from the model and data.
- Solve the problem instance by running a program, or solver, to apply an algorithm that finds optimal values of the variables.
- Analyze the results.
- Refine the model and data as necessary, and repeat.

If people could deal with mathematical programs in the same way that solvers do, the formulation and generation phases of modeling might be relatively straightforward. In reality, however, there are many differences between the form in which human modelers understand a problem and the form in which solver algorithms work with it. Conversion from the "modeler's form'" to the "algorithm's form" is consequently a timeconsuming, costly, and often error-prone procedure.

In the special case of linear programming, the largest part of the algorithm's form is the constraint coefficient matrix, which is the table of numbers that multiply all the variables in all the constraints. Typically this is a very sparse (mostly zero) matrix with anywhere from hundreds to hundreds of thousands of rows and columns, whose nonzero elements appear in intricate patterns. A computer program that produces a compact representation of the coefficients is called a matrix generator. Several programming languages have been designed specifically for writing matrix generators, and standard computer programming languages are also often used.

Although matrix generators can successfully automate some of the work of translation from modeler's form to algorithm's form, they remain difficult to debug and maintain. One way around much of this difficulty lies in the use of a modeling language for mathematical programming. A modeling language is designed to express the modeler's form in a way that can serve as direct input to a computer system. Then the translation to the algorithm's form can be performed entirely by computer, without the intermediate stage of computer programming. Modeling languages can help to make mathematical programming more economical and reliable; they are particularly advantageous for development of new models and for documentation of models that are subject to change.

Since there is more than one form that modelers use to express mathematical programs, there is more than one kind of modeling language. An algebraic modeling language is a popular variety based on the use of traditional mathematical notation to describe objective and constraint functions. An algebraic language provides computerreadable equivalents of notations such as $x_{j}+y_{j}, \Sigma_{j=1}^{n} a_{i j} x_{j}, x_{j} \geq 0$, and $j \in S$ that would be familiar to anyone who has studied algebra or calculus. Familiarity is one of the major advantages of algebraic modeling languages; another is their applicability to a particularly wide variety of linear, nonlinear and integer programming models.

While successful algorithms for mathematical programming first came into use in the 1950's, the development and distribution of algebraic modeling languages only began in the 1970's. Since then, advances in computing and computer science have enabled such languages to become steadily more efficient and general.

This book describes AMPL, an algebraic modeling language for mathematical programming; it was designed and implemented by the authors around 1985, and has been evolving ever since. AMPL is notable for the similarity of its arithmetic expressions to customary algebraic notation, and for the generality and power of its set and subscripting
expressions. AMPL also extends algebraic notation to express common mathematical programming structures such as network flow constraints and piecewise linearities.

AMPL offers an interactive command environment for setting up and solving mathematical programming problems. A flexible interface enables several solvers to be available at once so a user can switch among solvers and select options that may improve solver performance. Once optimal solutions have been found, they are automatically translated back to the modeler's form so that people can view and analyze them. All of the general set and arithmetic expressions of the AMPL modeling language can also be used for displaying data and results; a variety of options are available to format data for browsing, printing reports, or preparing input to other programs.

Through its emphasis on AMPL, this book differs considerably from the presentation of modeling in standard mathematical programming texts. The approach taken by a typical textbook is still strongly influenced by the circumstances of 30 years ago, when a student might be lucky to have the opportunity to solve a few small linear programs on any actual computer. As encountered in such textbooks, mathematical programming often appears to require only the conversion of a 'word problem' into a small system of inequalities and an objective function, which are then presented to a simple optimization package that prints a short listing of answers. While this can be a good approach for introductory purposes, it is not workable for dealing with the hundreds or thousands of variables and constraints that are found in most real-world mathematical programs.

The availability of an algebraic modeling language makes it possible to emphasize the kinds of general models that can be used to describe large-scale optimization problems. Each AMPL model in this book describes a whole class of mathematical programming problems, whose members correspond to different choices of indexing sets and numerical data. Even though we use relatively small data sets for illustration, the resulting problems tend to be larger than those of the typical textbook. More important, the same approach, using still larger data sets, works just as well for mathematical programs of realistic size and practical value.

We have not attempted to cover the optimization theory and algorithmic details that comprise the greatest part of most mathematical programming texts. Thus, for readers who want to study the whole field in some depth, this book is a complement to existing textbooks, not a replacement. On the other hand, for those whose immediate concern is to apply mathematical programming to a particular problem, the book can provide a useful introduction on its own.

In addition, AMPL software is readily available for experiment: the AMPL web site, WWW.ampl.com, provides free downloadable "student" versions of AMPL and representative solvers that run on Windows, Unix/Linux, and Mac OS X. These can easily handle problems of a few hundred variables and constraints, including all of the examples in the book. Versions that support much larger problems and additional solvers are also available from a variety of vendors; again, details may be found on the web site.

Outline of the book

The second edition, like the first, is organized conceptually into four parts. Chapters 1 through 4 are a tutorial introduction to models for linear programming:

1. Production Models: Maximizing Profits
2. Diet and Other Input Models: Minimizing Costs
3. Transportation and Assignment Models
4. Building Larger Models

These chapters are intended to get you started using AMPL as quickly as possible. They include a brief review of linear programming and a discussion of a handful of simple modeling ideas that underlie most large-scale optimization problems. They also illustrate how to provide the data that convert a model into a specific problem instance, how to solve a problem, and how to display the answers.

The next four chapters describe the fundamental components of an AMPL linear programming model in detail, using more complex examples to examine major aspects of the language systematically:
5. Simple Sets and Indexing
6. Compound Sets and Indexing
7. Parameters and Expressions
8. Linear Programs: Variables, Objectives and Constraints

We have tried to cover the most important features, so that these chapters can serve as a general user's guide. Each feature is introduced by one or more examples, building on previous examples wherever possible.

The following six chapters describe how to use AMPL in more sophisticated ways:
9. Specifying Data
10. Database Access
11. Modeling Commands
12. Display Commands
13. Command Scripts
14. Interactions with Solvers

The first two of these chapters explain how to provide the data values that define a specific instance of a model; Chapter 9 describes AMPL's text file data format, while Chapter 10 presents features for access to information in relational database systems. Chapter 11 explains the commands that read models and data, and invoke solvers; Chapter 12 shows how to display and save results. AMPL provides facilities for creating scripts of commands, and for writing loops and conditional statements; these are covered in Chapter 13. Chapter 14 goes into more detail on how to interact with solvers so as to make the best use of their capabilities and the information they provide.

Finally, we turn to the rich variety of problems and applications beyond purely linear models. The remaining chapters deal with six important special cases and generalizations:
15. Network Linear Programs
16. Columnwise Formulations
17. Piecewise-Linear Programs
18. Nonlinear Programs
19. Complementarity Problems
20. Integer Linear Programs

Chapters 15 and 16 describe additional language features that help AMPL represent particular kinds of linear programs more naturally, and that may help to speed translation and solution. The last four chapters cover generalizations that can help models to be more realistic than linear programs, although they can also make the resulting optimization problems harder to solve.

Appendix A is the AMPL reference manual; it describes all language features, including some not mentioned elsewhere in the text. Bibliography and exercises may be found in most of the chapters.

About the second edition

AMPL has evolved a lot in ten years, but its core remains essentially unchanged, and almost all of the models from the first edition work with the current program. Although we have made substantial revisions throughout the text, much of the brand new material is concentrated in the third part, where the original single chapter on the command environment has been expanded into five chapters. In particular, database access, scripts and programming constructs represent completely new material, and many additional AMPL commands for examining models and accessing solver information have been added.

The first edition was written in 1992, just before the explosion in Internet and web use, and while personal computers were still rather limited in their capabilities; the first student versions of AMPL ran on DOS on tiny, slow machines, and were distributed on floppy disks.

Today, the web site at www.ampl.com is the central source for all AMPL information and software. Pages at this site cover all that you need to learn about and experiment with optimization and the use of AMPL:

- Free versions of AMPL for a variety of operating systems.
- Free versions of several solvers for a variety of problem types.
- All of the model and data files used as examples in this book.

The free software is fully functional, save that it can only handle problems of a few hundred variables and constraints. Unrestricted commercial versions of AMPL and solvers are available as well; see the web site for a list of vendors.

You can also try AMPL without downloading any software, through browser interfaces at www.ampl.com/TRYAMPL and the NEOS Server (neos.mcs.anl.gov). The AMPL web site also provides information on graphical user interfaces and new AMPL language features, which are under continuing development.

Acknowledgements to the first edition

We are deeply grateful to Jon Bentley and Margaret Wright, who made extensive comments on several drafts of the manuscript. We also received many helpful suggestions on AMPL and the book from Collette Coullard, Gary Cramer, Arne Drud, Grace Emlin, Gus Gassmann, Eric Grosse, Paul Kelly, Mark Kernighan, Todd Lowe, Bob Richton, Michael Saunders, Robert Seip, Lakshman Sinha, Chris Van Wyk, Juliana Vignali, Thong Vukhac, and students in the mathematical programming classes at Northwestern University. Lorinda Cherry helped with indexing, and Jerome Shepheard with typesetting. Our sincere thanks to all of them.

Bibliography

E. M. L. Beale, "Matrix Generators and Output Analyzers." In Harold W. Kuhn (ed.), Proceedings of the Princeton Symposium on Mathematical Programming, Princeton University Press (Princeton, NJ, 1970) pp. 25-36. A history and explanation of matrix generator software for linear programming.
Johannes Bisschop and Alexander Meeraus, "On the Development of a General Algebraic Modeling System in a Strategic Planning Environment.'" Mathematical Programming Study 20 (1982) pp. 1-29. An introduction to GAMS, one of the first and most widely used algebraic modeling languages.
Robert E. Bixby, 'Solving Real-World Linear Programs: A Decade and More of Progress." Operations Reearch $\mathbf{5 0}$ (2002) pp. 3)-15. A history of recent advances in solvers for linear programming. Also in this issue are accounts of the early days of mathematical programming by pioneers of the field.
George B. Dantzig, "Linear Programming: The Story About How It Began." In Jan Karel Lenstra, Alexander H. G. Rinnooy Kan and Alexander Schrijver, eds., History of Mathematical Programming: A Collection of Personal Reminiscences. North-Holland (Amsterdam, 1991) pp. 19-31. A source for our brief account of the history of linear programming. Dantzig was a pioneer of such key ideas as objective functions and the simplex algorithm.
Robert Fourer, "Modeling Languages versus Matrix Generators for Linear Programming." ACM Transactions on Mathematical Software 9 (1983) pp. 143-183. The case for modeling languages.
C. A. C. Kuip, "Algebraic Languages for Mathematical Programming." European Journal of Operational Research 67 (1993) 25-51. A survey.

1

Production Models: Maximizing Profits

As we stated in the Introduction, mathematical programming is a technique for solving certain kinds of problems - notably maximizing profits and minimizing costs subject to constraints on resources, capacities, supplies, demands, and the like. AMPL is a language for specifying such optimization problems. It provides an algebraic notation that is very close to the way that you would describe a problem mathematically, so that it is easy to convert from a familiar mathematical description to AMPL.

We will concentrate initially on linear programming, which is the best known and easiest case; other kinds of mathematical programming are taken up later in the book. This chapter addresses one of the most common applications of linear programming: maximizing the profit of some operation, subject to constraints that limit what can be produced. Chapters 2 and 3 are devoted to two other equally common kinds of linear programs, and Chapter 4 shows how linear programming models can be replicated and combined to produce truly large-scale problems. These chapters are written with the beginner in mind, but experienced practitioners of mathematical programming should find them useful as a quick introduction to AMPL.

We begin with a linear program (or LP for short) in only two decision variables, motivated by a mythical steelmaking operation. This will provide a quick review of linear programming to refresh your memory if you already have some experience, or to help you get started if you're just learning. We'll show how the same LP can be represented as a general algebraic model of production, together with specific data. Then we'll show how to express several linear programming problems in AMPL and how to run AMPL and a solver to produce a solution.

The separation of model and data is the key to describing more complex linear programs in a concise and understandable fashion. The final example of the chapter illustrates this by presenting several enhancements to the model.

1.1 A two-variable linear program

An (extremely simplified) steel company must decide how to allocate next week's time on a rolling mill. The mill takes unfinished slabs of steel as input, and can produce either of two semi-finished products, which we will call bands and coils. (The terminology is not entirely standard; see the bibliography at the end of the chapter for some accounts of realistic LP applications in steelmaking.) The mill's two products come off the rolling line at different rates:

$$
\text { Tons per hour: Bands } 200
$$

Coils 140
and they also have different profitabilities:
Profit per ton: Bands $\$ 25$
Coils $\quad \$ 30$
To further complicate matters, the following weekly production amounts are the most that can be justified in light of the currently booked orders:

Maximum tons:	Bands	6,000
	Coils	4,000

The question facing the company is as follows: If 40 hours of production time are available this week, how many tons of bands and how many tons of coils should be produced to bring in the greatest total profit?

While we are given numeric values for production rates and per-unit profits, the tons of bands and of coils to be produced are as yet unknown. These quantities are the decision variables whose values we must determine so as to maximize profits. The purpose of the linear program is to specify the profits and production limitations as explicit formulas involving the variables, so that the desired values of the variables can be determined systematically.

In an algebraic statement of a linear program, it is customary to use a mathematical shorthand for the variables. Thus we will write X_{B} for the number of tons of bands to be produced, and X_{C} for tons of coils. The total hours to produce all these tons is then given by
(hours to make a ton of bands) $\times X_{B}+\left(\right.$ hours to make a ton of coils) $\times X_{C}$
This number cannot exceed the 40 hours available. Since hours per ton is the reciprocal of the tons per hour given above, we have a constraint on the variables:

$$
(1 / 200) X_{B}+(1 / 140) X_{C} \leq 40 .
$$

There are also production limits:

$$
0 \leq X_{B} \leq 6000
$$

$0 \leq X_{C} \leq 4000$

In the statement of the problem above, the upper limits were specified, but the lower limits were assumed - it was obvious that a negative production of bands or coils would be meaningless. Dealing with a computer, however, it is necessary to be quite explicit.

By analogy with the formula for total hours, the total profit must be
(profit per ton of bands) $\times X_{B}+\left(\right.$ profit per ton of coils) $\times X_{C}$
That is, our objective is to maximize $25 X_{B}+30 X_{C}$. Putting this all together, we have the following linear program:

$$
\begin{array}{ll}
\text { Maximize } & 25 X_{B}+30 X_{C} \\
\text { Subject to } & (1 / 200) X_{B}+(1 / 140) X_{C} \leq 40 \\
& 0 \leq X_{B} \leq 6000 \\
& 0 \leq X_{C} \leq 4000
\end{array}
$$

This is a very simple linear program, so we'll solve it by hand in a couple of ways, and then check the answer with AMPL.

First, by multiplying profit per ton times tons per hour, we can determine the profit per hour of mill time for each product:

$$
\text { Profit per hour: Bands } \quad \$ 5,000
$$

Coils $\quad \$ 4,200$
Bands are clearly a more profitable use of mill time, so to maximize profit we should produce as many bands as the production limit will allow - 6,000 tons, which takes 30 hours. Then we should use the remaining 10 hours to make coils - 1,400 tons in all. The profit is $\$ 25$ times 6,000 tons plus $\$ 30$ times 1,400 tons, for a total of \$192,000.

Alternatively, since there are only two variables, we can show the possibilities graphically. If X_{B} values are plotted along the horizontal axis, and X_{C} values along the vertical axis, each point represents a choice of values, or solution, for the decision variables:

The horizontal line represents the production limit on coils, the vertical on bands. The diagonal line is the constraint on hours; each point on that line represents a combination of bands and coils that requires exactly 40 hours of production time, and any point downward and to the left requires less than 40 hours.

The shaded region bounded by the axes and these three lines corresponds exactly to the feasible solutions - those that satisfy all three constraints. Among all the feasible solutions represented in this region, we seek the one that maximizes the profit.

For this problem, a line of slope $-25 / 30$ represents combinations that produce the same profit; for example, in the figure below, the line from $(0,4500)$ to $(5400,0)$ represents combinations that yield $\$ 135,000$ profit. Different profits give different but parallel lines in the figure, with higher profits giving lines that are higher and further to the right.

If we combine these two plots, we can see the profit-maximizing, or optimal, feasible solution:

The line segment for profit equal to $\$ 135,000$ is partly within the feasible region; any point on this line and within the region corresponds to a solution that achieves a profit of $\$ 135,000$. On the other hand, the line for $\$ 220,000$ does not intersect the feasible region at all; this tells us that there is no way to achieve a profit as high as $\$ 220,000$. Viewed in this way, solving the linear program reduces to answering the following question: Among all profit lines that intersect the feasible region, which is highest and furthest to the right? The answer is the middle line, which just touches the region at one of the corners. This point corresponds to 6,000 tons of bands and 1,400 tons of coils, and a profit of $\$ 192,000$ - the same as we found before.

1.2 The two-variable linear program in AMPL

Solving this linear program with AMPL can be as simple as typing AMPL's description of the linear program,

```
var XB;
var XC;
maximize Profit: 25 * XB + 30 * XC;
subject to Time: (1/200) * XB + (1/140) * XC <= 40;
subject to B_limit: 0 <= XB <= 6000;
subject to C_limit: 0 <= XC <= 4000;
```

into a file - call it prod0 .mod - and then typing a few AMPL commands:

```
ampl: model prodO.mod;
ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 192000
ampl: display XB, XC;
XB = 6000
XC = 1400
ampl: quit;
```

The invocation and appearance of an AMPL session will depend on your operating environment and interface, but you will always have the option of typing AMPL statements in response to the ampl: prompt, until you leave AMPL by typing quit. (Throughout the book, material you type is shown in this slanted font.)

The AMPL linear program that you type into the file parallels the algebraic form in every respect. It specifies the decision variables, defines the objective, and lists the constraints. It differs mainly in being somewhat more formal and regular, to facilitate computer processing. Each variable is named in a var statement, and each constraint by a statement that begins with subject to and a name like Time or B_limit for the constraint. Multiplication requires an explicit * operator, and the \leq relation is written $<=$.

The first command of your AMPL session, model prod0.mod, reads the file into AMPL, just as if you had typed it line-by-line at ampl: prompts. You then need only
type solve to have AMPL translate your linear program, send it to a linear program solver, and return the answer. A final command, display, is used to show the optimal values of the variables.

The message MINOS 5.5 directly following the solve command indicates that AMPL used version 5.5 of a solver called MINOS. We have used MINOS and several other solvers for the examples in this book. You may have a different collection of solvers available on your computer, but any solver should give you the same optimal objective value for a linear program. Often there is more than one solution that achieves the optimal objective, however, in which case different solvers may report different optimal values for the variables. (Commands for choosing and controlling solvers will be explained in Section 11.2.)

Procedures for running AMPL can vary from one computer and operating system to another. Details are provided in supplementary instructions that come with your version of the AMPL software, rather than in this book. For subsequent examples, we will assume that AMPL has been started up, and that you have received the first ampl: prompt. If you are using a graphical interface for AMPL, like one of those mentioned briefly in Section 1.7, many of the AMPL commands may have equivalent menu or dialog entries. You will still have the option of typing the commands as shown in this book, but you may have to open a 'command window' of some kind to see the prompts.

1.3 A linear programming model

The simple approach employed so far in this chapter is helpful for understanding the fundamentals of linear programming, but you can see that if our problem were only slightly more realistic - a few more products, a few more constraints - it would be a nuisance to write down and impossible to illustrate with pictures. And if the problem were subject to frequent change, either in form or merely in the data values, it would be hard to update as well.

If we are to progress beyond the very tiniest linear programs, we must adopt a more general and concise way of expressing them. This is where mathematical notation comes to the rescue. We can write a compact description of the general form of the problem, which we call a model, using algebraic notation for the objective and the constraints. Figure 1-1 shows the production problem in algebraic notation.

Figure 1-1 is a symbolic linear programming model. Its components are fundamental to all models:

- sets, like the products
- parameters, like the production and profit rates
- variables, whose values the solver is to determine
- an objective, to be maximized or minimized
- constraints that the solution must satisfy.

```
Given: \(\quad P\), a set of products
        \(a_{j}=\) tons per hour of product \(j\), for each \(j \in P\)
        \(b=\) hours available at the mill
        \(c_{j}=\) profit per ton of product \(j\), for each \(j \in P\)
        \(u_{j}=\) maximum tons of product \(j\), for each \(j \in P\)
Define variables: \(X_{j}=\) tons of product \(j\) to be made, for each \(j \in P\)
Maximize: \(\quad \sum_{j \in P} c_{j} X_{j}\)
Subject to: \(\quad \sum_{j \in P}\left(1 / a_{j}\right) X_{j} \leq b\)
    \(0 \leq X_{j} \leq u_{j}\), for each \(j \in P\)
```

Figure 1-1: Basic production model in algebraic form.

The model describes an infinite number of related optimization problems. If we provide specific values for data, however, the model becomes a specific problem, or instance of the model, that can be solved. Each different collection of data values defines a different instance; the example in the previous section was one such instance.

It might seem that we have made things less rather than more concise, since our model is longer than the original statement of the linear program in Section 1.1. Consider what would happen, however, if the set P had 42 products rather than 2 . The linear program would have 120 more data values (40 each for a_{j}, c_{j}, and u_{j}); there would be 40 more variables, with new lower and upper limits for each; and there would be 40 more terms in the objective and the hours constraint. Yet the abstract model, as shown above, would be no different. Without this ability of a short model to describe a long linear program, larger and more complex instances of linear programming would become impossible to deal with.

A mathematical model like this is thus usually the best compromise between brevity and comprehension; and fortunately, it is easy to convert into a language that a computer can process. From now on, we'll assume models are given in the algebraic form. As always, reality is rarely so simple, so most models will have more sets, parameters and variables, and more complicated objectives and constraints. In fact, in any real situation, formulating a correct model and providing accurate data are by far the hardest tasks; solving a specific problem requires only a solver and enough computing power.

1.4 The linear programming model in AMPL

Now we can talk about AMPL. The AMPL language is intentionally as close to the mathematical form as it can get while still being easy to type on an ordinary keyboard and

```
set P;
param a {j in P};
param b;
param c {j in P};
param u {j in P};
var X {j in P};
maximize Total_Profit: sum {j in P} c[j] * X[j];
subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;
subject to Limit {j in P}: 0 <= X[j] <= u[j];
```

Figure 1-2: Basic production model in AMPL (file prod.mod).
to process by a program. There are AMPL constructions for each of the basic components listed above - sets, parameters, variables, objectives, and constraints - and ways to write arithmetic expressions, sums over sets, and so on.

We first give an AMPL model that resembles our algebraic model as much as possible, and then present an improved version that takes better advantage of the language.

The basic model

For the basic production model of Figure 1-1, a direct transcription into AMPL would look like Figure 1-2.

The keyword set declares a set name, as in

```
set P;
```

The members of set P will be provided in separate data statements, which we'll show in a moment.

The keyword param declares a parameter, which may be a single scalar value, as in

```
param b;
```

or a collection of values indexed by a set. Where algebraic notation says that "there is an a_{j} for each j in $P^{\prime \prime}$, one writes in AMPL

```
param a {j in P};
```

which means that a is a collection of parameter values, one for each member of the set P. Subscripts in algebraic notation are written with square brackets in AMPL, so an individual value like a_{j} is written a [j].

The var declaration

```
var X {j in P};
```

names a collection of variables, one for each member of P , whose values the solver is to determine.

The objective is given by the declaration

```
maximize Total_Profit: sum {j in P} c[j] * X[j];
```

The name Total_Profit is arbitrary; a name is required by the syntax, but any name will do. The precedence of the sum operator is lower than that of *, so the expression is indeed a sum of products, as intended.

Finally, the constraints are given by

```
subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;
subject to Limit {j in P}: 0 <= X[j] <= u[j];
```

The Time constraint says that a certain sum over the set P may not exceed the value of parameter b . The Limit constraint is actually a family of constraints, one for each member j of P : each $X[j]$ is bounded by zero and the corresponding $u[j]$.

The construct $\{j$ in $P\}$ is called an indexing expression. As you can see from our example, indexing expressions are used not only in declaring parameters and variables, but in any context where the algebraic model does something "for each j in P '". Thus the Limit constraints are declared

```
subject to Limit {j in P}
```

because we want to impose a different restriction $0<=\mathrm{X}[\mathrm{j}]<=\mathrm{u}[\mathrm{j}$] for each different product j in the set P. In the same way, the summation in the objective is written

```
sum {j in P} c[j] * X[j]
```

to indicate that the different terms $\mathrm{c}[\mathrm{j}]$ * $\mathrm{X}[\mathrm{j}]$, for each j in the set P , are to be added together in computing the profit.

The layout of an AMPL model is quite free. Sets, parameters, and variables must be declared before they are used but can otherwise appear in any order. Statements end with semicolons and can be spaced and split across lines to enhance readability. Upper and lower case letters are different, so time, Time, and TIME are three different names.

You have undoubtedly noticed several places where traditional mathematical notation has been adapted in AMPL to the limitations of normal keyboards and character sets. AMPL uses the word sum instead of Σ to express a summation, and in rather than \in for set membership. Set specifications are enclosed in braces, as in $\{j$ in $P\}$. Where mathematical notation uses adjacency to signify multiplication in $c_{j} X_{j}$, AMPL uses the * operator of most programming languages, and subscripts are denoted by brackets, so $c_{j} X_{j}$ becomes c[j]*X[j].

You will find that the rest of AMPL is similar - a few more arithmetic operators, a few more key words like sum and in, and many more ways to specify indexing expressions. Like any other computer language, AMPL has a precise grammar, but we won't stress the rules too much here; most will become clear as we go along, and full details are given in the reference manual, Appendix A.

Our original two-variable linear program is one of the many LPs that are instances of the Figure 1-2 model. To specify it or any other such instance, we need to supply the

```
set P := bands coils;
param: a c u :=
    bands 200 25 6000
    coils 140 30 4000 ;
param b := 40;
```

Figure 1-3: Production model data (file prod. dat).
membership of P and the values of the various parameters. There is no standard way to describe these data values in algebraic notation; usually some kind of informal tables are used, such as the ones we showed earlier. In AMPL, there is a specific syntax for data tables, which is sufficiently regular and unambiguous to be translated by a computer. Figure 1-3 gives data for the basic production model in that form. A set statement supplies the members (bands and coils) of set P , and a param table gives the corresponding values for a, c, and u. A simple param statement gives the value for b. These data statements, which are described in detail in Chapter 9, have a variety of options that let you list or tabulate parameters in convenient ways.

An improved model

We could go on immediately to solve the linear program defined by Figures 1-2 and 1-3. Once we have written the model in AMPL, however, we need not feel constrained by all the conventions of algebra, and we can instead consider changes that might make the model easier to work with. Figures $1-4 a$ and $1-4 b$ show a possible 'improved" version. The short "mathematical" names for the sets, parameters and variables have been replaced by longer, more meaningful ones. The indexing expressions have become \{p in PROD\}, or just \{PROD\} in those declarations that do not use the index p. The bounds on variables have been placed within their var declaration, rather than in a separate constraint; analogous bounds have been placed on the parameters, to indicate the ones that must be positive or nonnegative in any meaningful linear program derived from the model.

Finally, comments have been added to help explain the model to a reader. Comments begin with \# and end at the end of the line. As in any programming language, judicious use of meaningful names, comments and formatting helps to make AMPL models more readable and understandable.

There are always many ways to describe a particular model in AMPL. It is left to the modeler to pick the way that seems clearest or most convenient. Our earlier, mathematical approach is often preferred for working quickly with a familiar model. On the other hand, the second version is more attractive for a model that will be maintained and modified by several people over months or years.

```
set PROD; # products
param rate {PROD} > 0; # tons produced per hour
param avail >= 0; # hours available in week
param profit {PROD}; # profit per ton
param market {PROD} >= 0; # limit on tons sold in week
var Make {p in PROD} >= 0, <= market[p]; # tons produced
maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];
    # Objective: total profits from all products
subject to Time: sum {p in PROD} (1/rate[p]) * Make[p] <= avail;
    # Constraint: total of hours used by all
    # products may not exceed hours available
```

Figure 1-4a: Steel production model (steel.mod).

```
set PROD := bands coils;
param: rate profit market :=
    bands 200 25 6000
    coils 140 30 4000 ;
param avail := 40;
```

Figure 1-4b: Data for steel production model (steel.dat).

If we put all of the model declarations into a file called steel.mod, and the data specification into a file steel. dat, then as before a solution can be found and displayed by typing just a few statements:

```
ampl: model steel.mod;
ampl: data steel.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 192000
ampl: display Make;
Make [*] :=
bands 6000
coils 1400
;
```

The model and data commands each specify a file to be read, in this case the model from steel.mod, and the data from steel. dat. The use of two file-reading commands encourages a clean separation of model from data.

Filenames can have any form recognized by your computer's operating system; AMPL doesn't check them for correctness. The filenames here and in the rest of the book refer to example files that are available from the AMPL web site and other AMPL distributions.

Once the model has been solved, we can show the optimal values of all of the variables Make [p], by typing display Make. The output from display uses the same formats as AMPL data input, so that there is only one set of formats to learn. (The [*] indicates a variable or parameter with a single subscript. It is not strictly necessary for input, since Make is one-dimensional, but display prints it as a reminder.)

Catching errors

You will inevitably make some mistakes as you develop a model. AMPL detects various kinds of incorrect statements, which are reported in error messages following the model, data or solve commands.

AMPL catches many errors as soon as the model is read. For example, if you use the wrong syntax for the bounds in the declaration of the variable Make, you will receive an error message like this, right after you enter the model command:

```
steel.mod, line 8 (offset 250):
    syntax error
context: var Make {p in PROD} >>> 0 <<< <= Make[p] <= market[p];
```

If you inadvertently use make instead of Make in an expression like profit [p] * make [p], you will receive this message:

```
steel.mod, line 11 (offset 339):
    make is not defined
context: maximize Total_Profit:
    sum {p in PROD} profit[p] * >>> make[p] <<< ;
```

In each case, the offending line is printed, with the approximate location of the error surrounded by >>> and <<<<.

Other common sources of error messages include a model component used before it is declared, a missing semicolon at the end of a command, or a reserved word like sum or in used in the wrong context. (Section A. 1 contains a list of reserved words.) Syntax errors in data statements are similarly reported right after you enter a data command.

Errors in the data values are caught after you type solve. If the number of hours were given as -40 , for instance, you would see:

```
ampl: model steel.mod;
ampl: data steel.dat;
ampl: solve;
Error executing "solve" command:
error processing param avail:
    failed check: param avail = -40
        is not >= 0;
```

It is good practice to include as many validity checks as possible in the model, so that errors are caught at an early stage.

Despite your best efforts to formulate the model correctly and to include validity checks on the data, sometimes a model that generates no error messages and that elicits
an "optimal solution"' report from the solver will nonetheless produce a clearly wrong or meaningless solution. All of the production levels might be zero, for example, or the product with a lower profit per hour may be produced at a higher volume. In cases like these, you may have to spend some time reviewing your formulation before you discover what is wrong.

The expand command can be helpful in your search for errors, by showing you how AMPL instantiated your symbolic model. To see what AMPL generated for the objective Total_Profit, for example, you could type:

```
ampl: expand Total_Profit;
maximize Total_Profit:
    25*Make['bands'] + 30*Make['coils'];
```

This corresponds directly to our explicit formulation back in Section 1.1. Expanding the constraint works similarly:

```
ampl: expand Time;
subject to Time:
    0.005*Make['bands'] + 0.00714286*Make['coils'] <= 40;
```

Expressions in the symbolic model, such as the coefficients $1 /$ rate [p] in this example, are evaluated before the expansion is displayed. You can expand the objective and all of the constraints at once by typing expand by itself.

The expressions above show that the symbolic model's Make[j] expands to the explicit variables Make ['bands'] and Make ['coils']. You can use expressions like these in AMPL commands, for example to expand a particular variable to see what coefficients it has in the objective and constraints:

```
ampl: expand Make['coils'];
Coefficients of Make['coils']:
    Time 0.00714286
    Total_Profit 30
```

Either single quotes (') or double quotes (") may surround the subscript.

1.5 Adding lower bounds to the model

Once the model and data have been set up, it is a simple matter to change them and then re-solve. Indeed, we would not expect to find an LP application in which the model and data are prepared and solved just once, or even a few times. Most commonly, numerous refinements are introduced as the model is developed, and changes to the data continue for as long as the model is used.

Let's conclude this chapter with a few examples of changes and refinements. These examples also highlight some additional features of AMPL.

Suppose first that we add another product, steel plate. The model stays the same, but in the data we have to add plate to the list of members for the set PROD, and we have to add a line of parameter values for plate:

```
set PROD := bands coils plate;
param: rate profit market :=
    bands 200 25 6000
    coils 140 30 4000
    plate 160 29 3500 ;
param avail := 40;
```

We put this version of the data in a file called steel2. dat, and use AMPL as before to get the solution:

```
ampl: model steel.mod; data steel2.dat; solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 196400
ampl: display Make;
Make [*] :=
bands 6000
coils 0
plate 1600
;
```

Profits have increased compared to the two-variable version, but now it is best to produce no coils at all! On closer examination, this result is not so surprising. Plate yields a profit of $\$ 4640$ per hour, which is less than for bands but more than for coils. Thus plate is produced to absorb the capacity not taken by bands; coils would be produced only if both bands and plate reached their market limits before the available hours were exhausted.

In reality, a whole product line cannot be shut down solely to increase weekly profits. The simplest way to reflect this in the model is to add lower bounds on the production amounts, as shown in Figures 1-5a and 1-5b. We have declared a new collection of parameters named commit, to represent the lower bounds on production that are imposed by sales commitments, and we have changed $>=0$ to $>=$ commit [p] in the declaration of the variables Make [p].

After these changes are made, we can run AMPL again to get a more realistic solution:

```
ampl: model steel3.mod; data steel3.dat; solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 194828.5714
ampl: display commit, Make, market;
: commit Make market :=
bands 1000 6000 6000
coils 500 500 4000
plate 750 1028.57 3500
```

For comparison, we have displayed commit and market on either side of the actual production, Make. As expected, after the commitments are met, it is most profitable to

```
set PROD; # products
param rate {PROD} > 0; # produced tons per hour
param avail >= 0; # hours available in week
param profit {PROD}; # profit per ton
param commit {PROD} >= 0; # lower limit on tons sold in week
param market {PROD} >= 0; # upper limit on tons sold in week
var Make {p in PROD} >= commit[p], <= market[p]; # tons produced
maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];
                                # Objective: total profits from all products
subject to Time: sum {p in PROD} (1/rate[p]) * Make[p] <= avail;
                # Constraint: total of hours used by all
                # products may not exceed hours available
```

Figure 1-5a: Lower bounds on production (steel3 . mod).

```
set PROD := bands coils plate;
param: rate profit commit market :=
    bands 200 25 1000 6000
    coils 140 30 500 4000
    plate 160 29 750 3500 ;
param avail := 40;
```

Figure 1-5b: Data for lower bounds on production (steel3. dat).
produce bands up to the market limit, and then to produce plate with the remaining available time.

1.6 Adding resource constraints to the model

Processing of steel slabs is not a single operation, but a series of steps that may proceed at different rates. To motivate a more general model, imagine that we divide production into a reheat stage that can process the incoming slabs at 200 tons per hour, and a rolling stage that makes bands, coils or plate at the rates previously given. Further imagine that there are only 35 hours of reheat time, even though there are 40 hours of rolling time.

To cover this kind of situation, we can add a set STAGE of production stages to our model. The parameter and constraint declarations are modified accordingly, as shown in Figure 1-6a. Since there is a potentially different number of hours available in each stage, the parameter avail is now indexed over STAGE. Since there is a potentially different production rate for each product in each stage, the parameter rate is indexed over both PROD and STAGE. In the Time constraint, the production rate for product p in

```
set PROD; # products
set STAGE; # stages
param rate {PROD,STAGE} > 0; # tons per hour in each stage
param avail {STAGE} >= 0; # hours available/week in each stage
param profit {PROD}; # profit per ton
param commit {PROD} >= 0; # lower limit on tons sold in week
param market {PROD} >= 0; # upper limit on tons sold in week
var Make {p in PROD} >= commit[p], <= market[p]; # tons produced
maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];
                            # Objective: total profits from all products
subject to Time {s in STAGE}:
    sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];
    # In each stage: total of hours used by all
                # products may not exceed hours available
```

Figure 1-6a: Additional resource constraints (steel4.mod).
stage s is referred to as rate $[p, s]$; this is AMPL's version of a doubly subscripted entity like $a_{p s}$ in algebraic notation.

The only other change is to the constraint declaration, where we no longer have a single constraint, but a constraint for each stage, imposed by limited time available at that stage. In algebraic notation, this might have been written

$$
\text { Subject to } \sum_{p \in P}\left(1 / a_{p s}\right) X_{p} \leq b_{s} \text {, for each } s \in S \text {. }
$$

Compare the AMPL version:

```
subject to Time {s in STAGE}:
    sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];
```

As in the other examples, this is a straightforward analogue, adapted to the requirements of a computer language. In almost all models, most of the constraints are indexed collections like this one.

Since rate is now indexed over combinations of two indices, it requires a data table all to itself, as in Figure 1-6b. The data file must also include the membership for the new set STAGE, and values of avail for both reheat and roll.

After these changes are made, we use AMPL to get another revised solution:

```
ampl: reset;
ampl: model steel4.mod; data steel4.dat; solve;
MINOS 5.5: optimal solution found.
4 iterations, objective 190071.4286
```

```
set PROD := bands coils plate;
set STAGE := reheat roll;
param rate: reheat roll :=
    bands 200 200
    coils 200 140
    plate 200 160 ;
param: profit commit market :=
    bands 25 1000 6000
    coils 30 500 4000
    plate 29 750 3500 ;
param avail := reheat 35 roll 40 ;
```

Figure 1-6b: Data for additional resource constraints (steel4. dat).

Make.1b	Make	Make.ub	Make.rc
bands 1000	3357.14	6000	$5.32907 \mathrm{e}-15$
coils 500	500	4000	-1.85714
plate 750	3142.86	3500	$3.55271 e-15$
;			
ampl: display Time;			
Time [*] :=			
reheat 1800			
roll 3200			

The reset command erases the previous model so a new one can be read in.
At the end of the example above we have displayed the 'marginal values" (also called 'dual values" or "shadow prices'") associated with the Time constraints. The marginal value of a constraint measures how much the value of the objective would improve if the constraint were relaxed by a small amount. For example, here we would expect that up to some point, additional reheat time would produce another $\$ 1800$ of extra profit per hour, and additional rolling time would produce $\$ 3200$ per hour; decreasing these times would decrease the profit correspondingly. In output commands like display, AMPL interprets a constraint's name alone as referring to the associated marginal values.

We also display several quantities associated with the variables Make. First there are lower bounds Make. 1b and upper bounds Make.ub, which in this case are the same as commit and market. We also show the "reduced cost" Make.rc, which has the same meaning with respect to the bounds that the marginal values have with respect to the constraints. Thus we see that, again up to some point, each increase of a ton in the lower bound (or commitment) for coil production should reduce profits by about $\$ 1.86$; each one-ton decrease in the lower bound should improve profits by about $\$ 1.86$. The production levels for bands and plates are between their bounds, so their reduced costs are essentially zero (recall that e-15 means $\times 10^{-15}$), and changing their levels will have no

Figure 1-7a: A Java-based AMPL graphical user interface (Macintosh).
effect. Bounds, marginal (or dual) values, reduced costs and other quantities associated with variables and constraints are explored further in Section 12.5.

Comparing this session with our previous one, we see that the additional reheat time restriction reduces profits by about $\$ 4750$, and forces a substantial change in the optimal solution: much higher production of plate and lower production of bands. Moreover, the logic underlying the optimum is no longer so obvious. It is the difficulty of solving LPs by logical reasoning alone that necessitates computer-based systems such as AMPL.

1.7 AMPL interfaces

The examples that we have presented so far all use AMPL's command interface: the user types textual commands and the system responds with textual results. This is what we will use throughout the book to illustrate AMPL's capabilities. It permits access to all of AMPL's rich collection of features, and it will be the same in all environments. A text-based interface is most natural for creating scripts of frequently used commands and for writing programs that use AMPL's programming constructs (the topics of Chapter 13). And text commands are used in applications where AMPL is a hidden or behind-thescenes part of some larger process.

Figure 1-7b: A Tcl/Tk-based AMPL graphical user interface (Unix).

All that said, however, there are plenty of times where a graphical user interface can make a program easier to use, helping novices to get started and casual or infrequent users to recall details. AMPL is no exception. Thus there are a variety of graphical interfaces for AMPL, loosely analogous to the "integrated development environments" for conventional programming languages, though AMPL's environments are much less elaborate. An AMPL graphical interface typically provides a way to easily execute standard commands, set options, invoke solvers, and display the results, often by pushing buttons and selecting menu items instead of by typing commands.

Interfaces exist for standard operating system platforms. For example, Figure 1-7a shows a simple interface based on Java that runs on Unix and Linux, Windows, and Macintosh, presenting much the same appearance on each. (The Mac interface is shown.) Figure 1-7b shows a similar interface based on Tcl/Tk, shown running on Unix but also portable to Windows and Macintosh. Figure 1-7c shows another interface, created with Visual Basic and running on Windows.

There are also web-based interfaces that provide client-server access to AMPL or solvers over network connections, and a number of application program interfaces (API's) for calling AMPL from other programs. The AMPL web site, www. ampl.com, provides up to date information on all types of available interfaces.

Figure 1-7c: A Visual Basic AMPL graphical user interface (Windows).

Bibliography

Julius S. Aronofsky, John M. Dutton and Michael T. Tayyabkhan, Managerial Planning with Linear Programming: In Process Industry Operations. John Wiley \& Sons (New York, NY, 1978). A detailed account of a variety of profit-maximizing applications, with emphasis on the petroleum and petrochemical industries.

Vašek Chvátal, Linear Programming, W. H. Freeman (New York, NY, 1983). A concise and economical introduction to theoretical and algorithmic topics in linear programming.

Tibor Fabian, "A Linear Programming Model of Integrated Iron and Steel Production.’" Management Science 4 (1958) pp. 415-449. An application to all stages of steelmaking - from coal and ore through finished products - from the early days of linear programming.
Robert Fourer and Goutam Dutta, "A Survey of Mathematical Programming Applications in Integrated Steel Plants." Manufacturing \& Service Operations Management 4 (2001) pp. 387-400.
David A. Kendrick, Alexander Meeraus and Jaime Alatorre, The Planning of Investment Programs in the Steel Industry. The Johns Hopkins University Press (Baltimore, MD, 1984). Several detailed mathematical programming models, using the Mexican steel industry as an example.
Robert J. Vanderbei, Linear Programming: Foundations and Extensions (2nd edition). Kluwer Academic Publishers (Dordrecht, The Netherlands, 2001). An updated survey of linear programming theory and methods.

Exercises

1-1. This exercise starts with a two-variable linear program similar in structure to the one of Sections 1.1 and 1.2 , but with a quite different story behind it.
(a) You are in charge of an advertising campaign for a new product, with a budget of $\$ 1$ million. You can advertise on TV or in magazines. One minute of TV time costs $\$ 20,000$ and reaches 1.8 million potential customers; a magazine page costs $\$ 10,000$ and reaches 1 million. You must sign up for at least 10 minutes of TV time. How should you spend your budget to maximize your audience? Formulate the problem in AMPL and solve it. Check the solution by hand using at least one of the approaches described in Section 1.1.
(b) It takes creative talent to create effective advertising; in your organization, it takes three person-weeks to create a magazine page, and one person-week to create a TV minute. You have only 100 person-weeks available. Add this constraint to the model and determine how you should now spend your budget.
(c) Radio advertising reaches a quarter million people per minute, costs $\$ 2,000$ per minute, and requires only 1 person-day of time. How does this medium affect your solutions?
(d) How does the solution change if you have to sign up for at least two magazine pages? A maximum of 120 minutes of radio?

1-2. The steel model of this chapter can be further modified to reflect various changes in production requirements. For each part below, explain the modifications to Figures 1-6a and 1-6b that would be required to achieve the desired changes. (Make each change separately, rather than accumulating the changes from one part to the next.)
(a) How would you change the constraints so that total hours used by all products must equal the total hours available for each stage? Solve the linear program with this change, and verify that you get the same results. Explain why, in this case, there is no difference in the solution.
(b) How would you add to the model to restrict the total weight of all products to be less than a new parameter, max_weight? Solve the linear program for a weight limit of 6500 tons, and explain how this extra restriction changes the results.
(c) The incentive system for mill managers may tend to encourage them to produce as many tons as possible. How would you change the objective function to maximize total tons? For the data of our example, does this make a difference to the optimal solution?
(d) Suppose that instead of the lower bounds represented by commit [p] in our model, we want to require that each product represent a certain share of the total tons produced. In the algebraic notation of Figure 1-1, this new constraint might be represented as

$$
X_{j} \geq s_{j} \sum_{k \in P} X_{k}, \text { for each } j \in P
$$

where s_{j} is the minimum share associated with project j. How would you change the AMPL model to use this constraint in place of the lower bounds commit [p]? If the minimum shares are 0.4 for bands and plate, and 0.1 for coils, what is the solution?
Verify that if you change the minimum shares to 0.5 for bands and plate, and 0.1 for coils, the linear program gives an optimal solution that produces nothing, at zero profit. Explain why this makes sense.
(e) Suppose there is an additional finishing stage for plates only, with a capacity of 20 hours and a rate of 150 tons per hour. Explain how you could modify the data, without changing the model, to incorporate this new stage.

1-3. This exercise deals with some issues of "sensitivity" in the steel models.
(a) For the linear program of Figures 1-5a and 1-5b, display Time and Make.rc. What do these values tell you about the solution? (You may wish to review the explanation of marginal values and reduced costs in Section 1.6.)
(b) Explain why the reheat time constraints added in Figure 1-6a result in a higher production of plate and a lower production of bands.
(c) Use AMPL to verify the following statements: If the available reheat time is increased from 35 to 36 in the data of Figure $1-6 b$, then the profit goes up by $\$ 1800$ as predicted in Section 1.6. If the reheat time is further increased to 37 , the profit goes up by another $\$ 1800$. However, if the reheat time is increased to 38 , there is a smaller increase in the profit, and further increases past 38 have no effect on the optimal profit at all. To change the reheat time to, say, 26 without changing and reading the data file over again, type the command

```
let avail["reheat"] := 36;
```

By trying some other values of the reheat time, confirm that the profit increases by $\$ 1800$ per extra hour for any number of hours between 35 and $379 / 14$, but that any increase in the reheat time beyond $379 / 14$ hours doesn't give any further profit.
Draw a plot of the profit versus the number of reheat hours available, for hours ≥ 35.
(d) To find the slope of the plot from (c) - profit versus reheat time available - at any particular reheat time value, you need only look at the marginal value of Time ["reheat"]. Using this observation as an aid, extend your plot from (c) down to 25 hours of reheat time. Verify that the slope of the plot remains at $\$ 6000$ per hour from 25 hours down to less than 12 hours of reheat time. Explain what happens when the available reheat time drops to 11 hours.

1-4. Here is a similar profit-maximizing model, but in a different context. An automobile manufacturer produces several kinds of cars. Each kind requires a certain amount of factory time per car to produce, and yields a certain profit per car. A certain amount of factory time has been scheduled for the next week, and it is desired to use all this time; but at least a certain number of each kind of car must be manufactured to meet dealer requirements.
(a) What are the data values that define this problem? How would you declare the sets and parameter values for this problem in AMPL? What are the decision variables, and how would you declare them in AMPL?
(b) Assuming that the objective is to maximize total profit, how would you declare an objective in AMPL for this problem? How would you declare the constraints?
(c) For purposes of experiment, suppose that there are three kinds of cars, known at the factory as T, C and L, that 120 hours are available, and that the time per car, profit per car and dealer orders for each kind of car are as follows:

Car	time	profit	orders
T	1	200	10
C	2	500	20
L	3	700	15

How much of each car should be produced, and what is the maximum profit? You should find that your solution specifies a fractional amount of one of the cars. As a practical matter, how could you make use of this solution?
(d) If you maximize the total number of cars produced instead of the total profit, how many more cars do you make? How much less profit?
(e) Each kind of car achieves a certain fuel efficiency, and the manufacturer is required by law to maintain a certain "fleet average" efficiency. The fleet average is computed by multiplying the efficiency of each kind of car times the number of that kind produced, summing all of the resulting products, and dividing by the total of all cars produced. Extend your AMPL model to contain a minimum fleet average efficiency constraint. Rearrange the constraint as necessary to make it linear - no variables divided into other variables.
(f) Find the optimal solution for the case where cars T, C and L achieve fuel efficiencies of 50, 30 and 20 miles/gallon, and the fleet average efficiency must be at least 35 miles/gallon. Explain how this changes the production amounts and the total profit. Dealing with the fractional amounts in the solution is not so easy in this case. What might you do?
If you had 10 more hours of production time, you could make more profit. Does the addition of the fleet average efficiency constraint make the extra 10 hours more or less valuable?
(g) Explain how you could further refine this model to account for different production stages that have different numbers of hours available per stage, much as in the steel model of Section 1.6.

1-5. A group of young entrepreneurs earns a (temporarily) steady living by acquiring inadequately supervised items from electronics stores and re-selling them. Each item has a street value, a weight, and a volume; there are limits on the numbers of available items, and on the total weight and volume that can be managed at one time.
(a) Formulate an AMPL model that will help to determine how much of each item to pick up, to maximize one day's profit.
(b) Find a solution for the case given by the following table,

	Value	Weight	Volume	Available
TV	50	35	8	20
radio	15	5	1	50
camera	85	4	2	20
CD player	40	3	1	30
VCR	50	15	5	30
camcorder	120	20	4	15

and by limits of 500 pounds and 300 cubic feet.
(c) Suppose that it is desirable to acquire some of each item, so as to always have stock available for re-sale. Suppose in addition that there are upper bounds on how many of each item you can reasonably expect to sell. How would you add these conditions to the model?
(d) How could the group use the dual variables on the maximum-weight and maximum-volume constraints to evaluate potential new partners for their activities?
(e) Through adverse circumstances the group has been reduced to only one member, who can carry a mere 75 pounds and five cubic feet. What is the optimum strategy now? Given that this requires a non-integral number of acquisitions, what is the best all-integer solution? (The integrality constraint converts this from a standard linear programming problem into a much harder problem called a Knapsack Problem. See Chapter 20.)

1-6. Profit-maximizing models of oil refining were one of the first applications of linear programming. This exercise asks you to model a simplified version of the final stage of the refining process.
A refinery breaks crude oil into some collection of intermediate materials, then blends these materials back together into finished products. Given the volumes of intermediates that will be available, we want to determine how to blend the intermediates so that the resulting products are most profitable. The decision is made more complicated, however, by the existence of upper limits on certain attributes of the products, which must be respected in any feasible solution.
To formulate an algebraic linear programming model for this problem, we can start by defining sets I of intermediates, J of final products, and K of attributes. The relevant technological data may be represented by
$a_{i} \quad$ barrels of intermediate i available, for each $i \in I$
$r_{i k} \quad$ units of attribute k contributed per barrel of intermediate i, for each $i \in I$ and $k \in K$
$u_{j k} \quad$ maximum allowed units of attribute k per barrel of final product j, for each $j \in J$ and $k \in K$
$\delta_{i j} \quad 1$ if intermediate i is allowed in the blend for product j, or 0 otherwise, for each $i \in I$ and $j \in J$
and the economic data can be given by

$$
c_{j} \quad \text { revenue per barrel of product } j \text {, for each } j \in J
$$

There are two collections of decision variables:
$X_{i j} \quad$ barrels of intermediate i used to make product j, for each $i \in I$ and $j \in J$
$Y_{j} \quad$ barrels of product j made, for each $j \in J$
The objective is to

$$
\operatorname{maximize} \sum_{j \in J} c_{j} Y_{j},
$$

which is the sum of the revenues from the various products.
It remains to specify the constraints. The amount of each intermediate used to make products must equal the amount available:

$$
\sum_{j \in J} X_{i j}=a_{i}, \text { for each } i \in I
$$

The amount of a product made must equal the sum of amounts of the components blended into it:

$$
\sum_{i \in I} X_{i j}=Y_{j}, \text { for each } j \in J .
$$

For each product, the total attributes contributed by all intermediates must not exceed the total allowed:

$$
\sum_{i \in I} r_{i k} X_{i j} \leq u_{j k} Y_{j}, \text { for each } j \in J \text { and } k \in K .
$$

Finally, we bound the variables as follows:

$$
0 \leq X_{i j} \leq \delta_{i j} a_{i} \text {, for each } i \in I, j \in J,
$$

$$
0 \leq Y_{j}, \text { for each } j \in J
$$

The upper bound on $X_{i j}$ assures that only the appropriate intermediates will be used in blending. If intermediate i is not allowed in the blend for product j, as indicated by $\delta_{i j}$ being zero, then the upper bound on $X_{i j}$ is zero; this ensures that $X_{i j}$ cannot be positive in any solution. Otherwise, the upper bound on $X_{i j}$ is just a_{i}, which has no effect since there are only a_{i} barrels of intermediate i available for blending in any case.
(a) Transcribe this model to AMPL, using the same names as in the algebraic form for the sets, parameters and variables as much as possible.
(b) Re-write the AMPL model using meaningful names and comments, in the style of Figure 1-4a.
(c) In a representative small-scale instance of this model, the intermediates are SRG (straight run gasoline), N (naphtha), RF (reformate), CG (cracked gasoline), B (butane), DI (distillate intermediate), GO (gas oil), and RS (residuum). The final products are PG (premium gasoline), RG (regular gasoline), D (distillate), and HF (heavy fuel oil). Finally, the attributes are vap (vapor pressure), oct (research octane), den (density), and sul (sulfur).
The following amounts of the intermediates are scheduled to be available:

SRG	N	RF	CG	B	DI	GO	RS
21170	500	16140	4610	370	250	11600	25210

The intermediates that can be blended into each product, and the amounts of the attributes that they possess, are as follows (with blank entries representing zeros):

	Premium \& regular gasoline		Distillate		Heavy fuel oil	
	vap	oct	den	sul	den	sul
SRG	18.4	-78.5				
N	6.54	-65.0	272	.283		
RF	2.57	-104.0				
CG	6.90	-93.7				
B	199.2	-91.8				
DI			292	.526		
GO			295	.353	295	.353
RS					343	4.70

The attribute limits and revenues/barrel for the products are:

	vap	oct	den	sul	revenue
PG	12.2	-90			10.50
RG	12.7	-86			9.10
D			306	0.5	7.70
HF			352	3.5	6.65

Limits left blank, such as density for gasoline, are irrelevant and may be set to some relatively large number.
Create a data file for your AMPL model and determine the optimal blend and production amounts.
(d) It looks a little strange that the attribute amounts for research octane are negative. What is the limit constraint for this attribute really saying?

2

Diet and Other Input Models: Minimizing Costs

To complement the profit-maximizing models of Chapter 1, we now consider linear programming models in which the objective is to minimize costs. Where the constraints of maximization models tend to be upper limits on the availability of resources, the constraints in minimization models are more likely to be lower limits on the amounts of certain 'qualities'" in the solution.

As an intuitive example of a cost-minimizing model, this chapter uses the well-known 'diet problem', which finds a mix of foods that satisfies requirements on the amounts of various vitamins. We will again construct a small, explicit linear program, and then show how a general model can be formulated for all linear programs of that kind. Since you are now more familiar with AMPL, however, we will spend more time on AMPL and less with algebraic notation.

After formulating the diet model, we will discuss a few changes that might make it more realistic. The full power of this model, however, derives from its applicability to many situations that have nothing to do with diets. Thus we conclude this chapter by rewriting the model in a more general way, and discussing its application to blending, economics, and scheduling.

2.1 A linear program for the diet problem

Consider the problem of choosing prepared foods to meet certain nutritional requirements. Suppose that precooked dinners of the following kinds are available for the following prices per package:

BEEF	beef	$\$ 3.19$
CHK	chicken	2.59
FISH	fish	2.29
HAM	ham	2.89
MCH	macaroni \& cheese	1.89
MTL	meat loaf	1.99
SPG	spaghetti	1.99
TUR	turkey	2.49

These dinners provide the following percentages, per package, of the minimum daily requirements for vitamins $\mathrm{A}, \mathrm{C}, \mathrm{B} 1$ and B 2 :

	A	C	B1	B2
BEEF	60%	20%	10%	15%
CHK	8	0	20	20
FISH	8	10	15	10
HAM	40	40	35	10
MCH	15	35	15	15
MTL	70	30	15	15
SPG	25	50	25	15
TUR	60	20	15	10

The problem is to find the cheapest combination of packages that will meet a week's requirements - that is, at least 700% of the daily requirement for each nutrient.

Let us write $X_{\text {BEEF }}$ for the number of packages of beef dinner to be purchased, $X_{C H K}$ for the number of packages of chicken dinner, and so forth. Then the total cost of the diet will be:
total cost $=$

$$
\begin{aligned}
& 3.19 X_{\text {BEEF }}+2.59 X_{C H K}+2.29 X_{F I S H}+2.89 X_{H A M}+ \\
& 1.89 X_{M C H}+1.99 X_{M T L}+1.99 X_{S P G}+2.49 X_{T U R}
\end{aligned}
$$

The total percentage of the vitamin A requirement is given by a similar formula, except that $X_{B E E F}, X_{C H K}$, and so forth are multiplied by the percentage per package instead of the cost per package:
total percentage of vitamin A daily requirement met $=$

$$
\begin{aligned}
& 60 X_{\text {BEEF }}+8 X_{C H K}+8 X_{\text {FISH }}+40 X_{\text {HAM }}+ \\
& 15 X_{M C H}+70 X_{M T L}+25 X_{S P G}+60 X_{\text {TUR }}
\end{aligned}
$$

This amount needs to be greater than or equal to 700 percent. There is a similar formula for each of the other vitamins, and each of these also needs to be ≥ 700.

Putting these all together, we have the following linear program:

Minimize

$$
\begin{aligned}
& 3.19 X_{\text {BEEF }}+2.59 X_{C H K}+2.29 X_{F I S H}+2.89 X_{\text {HAM }}+ \\
& 1.89 X_{M C H}+1.99 X_{M T L}+1.99 X_{S P G}+2.49 X_{\text {TUR }}
\end{aligned}
$$

Subject to

$$
\begin{aligned}
& 60 X_{\text {BEEF }}+8 X_{C H K}+8 X_{F I S H}+40 X_{\text {HAM }}+ \\
& 15 X_{M C H}+70 X_{M T L}+25 X_{S P G}+60 X_{\text {TUR }} \geq 700 \\
& 20 X_{\text {BEEF }}+0 X_{C H K}+10 X_{F I S H}+40 X_{\text {HAM }}+ \\
& 35 X_{M C H}+30 X_{M T L}+50 X_{S P G}+20 X_{\text {TUR }} \geq 700 \\
& 10 X_{\text {BEEF }}+20 X_{C H K}+15 X_{F I S H}+35 X_{\text {HAM }}+ \\
& 15 X_{M C H}+15 X_{M T L}+25 X_{S P G}+15 X_{\text {TUR }} \geq 700 \\
& 15 X_{\text {BEEF }}+20 X_{C H K}+10 X_{F I S H}+10 X_{H A M}+ \\
& 15 X_{M C H}+15 X_{M T L}+15 X_{S P G}+10 X_{\text {TUR }} \geq 700 \\
& X_{\text {BEEF }} \geq 0, X_{C H K} \geq 0, X_{F I S H} \geq 0, X_{H A M} \geq 0, \\
& X_{M C H} \geq 0, X_{M T L} \geq 0, X_{S P G} \geq 0, X_{\text {TUR }} \geq 0
\end{aligned}
$$

At the end we have added the common-sense requirement that no fewer than zero packages of a food can be purchased.

As we first did with the production LP of Chapter 1, we can transcribe to a file, say diet 0 . mod, an AMPL statement of the explicit diet LP:

```
var Xbeef >= 0; var Xchk >= 0; var Xfish >= 0;
var Xham >= 0; var Xmch >= 0; var Xmtl >= 0;
var Xspg >= 0; var Xtur >= 0;
minimize cost:
    3.19*Xbeef + 2.59*Xchk + 2.29*Xfish + 2.89*Xham +
    1.89*Xmch + 1.99*Xmt1 + 1.99*Xspg + 2.49*Xtur;
subject to A:
    60*Xbeef + 8*Xchk + 8*Xfish + 40*Xham +
    15*Xmch + 70*Xmt1 + 25*Xspg + 60*Xtur >= 700;
subject to C:
    20*Xbeef + 0*Xchk + 10*Xfish + 40*Xham +
    35*Xmch + 30*Xmt1 + 50*Xspg + 20*Xtur >= 700;
subject to B1:
    10*Xbeef + 20*Xchk + 15*Xfish + 35*Xham +
    15*Xmch + 15*Xmt1 + 25*Xspg + 15*Xtur >= 700;
subject to B2:
    15*Xbeef + 20*Xchk + 10*Xfish + 10*Xham +
    15*Xmch + 15*Xmt1 + 15*Xspg + 10*Xtur >= 700;
```

Again a few AMPL commands then suffice to read the file, send the LP to a solver, and retrieve the results:

```
ampl: model dietO.mod;
ampl: solve;
MINOS 5.5: optimal solution found.
iterations, objective 88.2
ampl: display Xbeef,Xchk,Xfish,Xham,Xmch,Xmt1,Xspg,Xtur;
Xbeef = 0
Xchk = 0
Xfish = 0
Xham = 0
Xmch = 46.6667
Xmtl = -3.69159e-18
Xspg = -4.05347e-16
Xtur = 0
```

The optimal solution is found quickly, but it is hardly what we might have hoped for. The cost is minimized by a monotonous diet of $46^{2 / 3}$ packages of macaroni and cheese! You can check that this neatly provides $15 \% \times 46^{2} / 3=700 \%$ of the requirement for vitamins A, B1 and B2, and a lot more vitamin C than necessary; the cost is only $\$ 1.89 \times$ $46^{2} / 3=\$ 88.20$. (The tiny negative values for meat loaf and spaghetti can be regarded as zeros, like the tiny positive values we saw in Section 1.6.)

You might guess that a better solution would be generated by requiring the amount of each vitamin to equal 700% exactly. Such a requirement can easily be imposed by changing each $>=$ to $=$ in the AMPL constraints. If you go ahead and solve the changed LP, you will find that the diet does indeed become more varied: approximately 19.5 packages of chicken, 16.3 of macaroni and cheese, and 4.3 of meat loaf. But since equalities are more restrictive than inequalities, the cost goes up to $\$ 89.99$.

2.2 An AMPL model for the diet problem

Clearly we will have to consider more extensive modifications to our linear program in order to produce a diet that is even remotely acceptable. We will probably want to change the sets of food and nutrients, as well as the nature of the constraints and bounds. As in the production example of the previous chapter, this will be much easier to do if we rely on a general model that can be coupled with a variety of specific data files.

This model deals with two things: nutrients and foods. Thus we begin an AMPL model by declaring sets of each:

```
set NUTR;
set FOOD;
```

Next we need to specify the numbers required by the model. Certainly a positive cost should be given for each food:

```
param cost {FOOD} > 0;
```

We also specify that for each food there are lower and upper limits on the number of packages in the diet:

```
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
```

Notice that we need a dummy index j to run over FOOD in the declaration of $f _$max, in order to say that the maximum for each food must be greater than or equal to the corresponding minimum.

To make this model somewhat more general than our examples so far, we also specify similar lower and upper limits on the amount of each nutrient in the diet:

```
param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];
```

Finally, for each combination of a nutrient and a food, we need a number that represents the amount of the nutrient in one package of the food. You may recall from Chapter 1 that such a 'product'' of two sets is written by listing them both:

```
param amt {NUTR,FOOD} >= 0;
```

References to this parameter require two indices. For example, amt $[i, j]$ is the amount of nutrient i in a package of food j.

The decision variables for this model are the numbers of packages to buy of the different foods:

```
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
```

The number of packages of some food j to be bought will be called Buy [j]; in any acceptable solution it will have to lie between $f _\min [j]$ and $f _\max [j]$.

The total cost of buying a food j is the cost per package, cost [j], times the number of packages, Buy [j]. The objective to be minimized is the sum of this product over all foods j :

```
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];
```

This minimize declaration works the same as maximize did in Chapter 1.
Similarly, the amount of a nutrient i supplied by a food j is the nutrient per package, amt [$i, j]$, times the number of packages Buy [j]. The total amount of nutrient i supplied is the sum of this product over all foods j :

```
sum {j in FOOD} amt[i,j] * Buy[j]
```

To complete the model, we need only specify that each such sum must lie between the appropriate bounds. Our constraint declaration begins

```
subject to Diet {i in NUTR}:
```

to say that a constraint named Diet [i] must be imposed for each member i of NUTR. The rest of the declaration gives the algebraic statement of the constraint for nutrient i : the variables must satisfy

```
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i]
```

```
set NUTR;
set FOOD;
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];
param amt {NUTR,FOOD} >= 0;
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];
subject to Diet {i in NUTR}:
    n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];
```

Figure 2-1: Diet model in AMPL (diet.mod).

A "double inequality" like this is interpreted in the obvious way: the value of the sum in the middle must lie between n_min[i] and n_max[i]. The complete model is shown in Figure 2-1.

2.3 Using the AMPL diet model

By specifying appropriate data, we can solve any of the linear programs that correspond to the above model. Let's begin by using the data from the beginning of this chapter, which is shown in AMPL format in Figure 2-2.

The values of f _min and $n _m i n$ are as given originally, while $f _m a x$ and n_max are set, for the time being, to large values that won't affect the optimal solution. In the table for amt, the notation (tr) indicates that we have "transposed" the table so the columns correspond to the first index (nutrients), and the rows to the second (foods). Alternatively, we could have changed the model to say

```
param amt {FOOD,NUTR}
```

in which case we would have had to write amt [j,i] in the constraint.
Suppose that model and data are stored in the files diet.mod and diet. dat, respectively. Then AMPL is used as follows to read these files and to solve the resulting linear program:

```
ampl: model diet.mod;
ampl: data diet.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
6 iterations, objective 88.2
```

```
set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;
param: cost f_min f_max :=
    BEEF 3.19 0 100
    CHK 2.59 0 100
    FISH 2.29 0 100
    HAM 2.89 0 100
    MCH 1.89 0 100
    MTL 1.99 0 100
    SPG 1.99 0 100
    TUR 2.49 0 100 ;
param: n_min n_max :=
            A 700 10000
            C 700 10000
            B1 700 10000
            B2 700 10000 ;
param amt (tr):
\begin{tabular}{lrrrrl} 
& A & C & B1 & B2 & \(:=\) \\
BEEF & 60 & 20 & 10 & 15 & \\
CHK & 8 & 0 & 20 & 20 & \\
FISH & 8 & 10 & 15 & 10 & \\
HAM & 40 & 40 & 35 & 10 & \\
MCH & 15 & 35 & 15 & 15 & \\
MTL & 70 & 30 & 15 & 15 & \\
SPG & 25 & 50 & 25 & 15 & \\
TUR & 60 & 20 & 15 & 10 & ;
\end{tabular}
```

Figure 2-2: Data for diet model (diet. dat).

```
ampl: display Buy;
Buy [*] :=
BEEF 0
    CHK 0
FISH 0
    HAM 0
    MCH 46.6667
    MTL -1.07823e-16
    SPG -1.32893e-16
    TUR 0
;
```

Naturally, the result is the same as before.
Now suppose that we want to make the following enhancements. To promote variety, the weekly diet must contain between 2 and 10 packages of each food. The amount of sodium and calories in each package is also given; total sodium must not exceed 40,000 mg , and total calories must be between 16,000 and 24,000 . All of these changes can be made through a few modifications to the data, as shown in Figure 2-3. Putting this new data in file diet2. dat, we can run AMPL again:

```
set NUTR := A B1 B2 C NA CAL ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;
param: cost f_min f_max :=
        BEEF 3.19 2 10
        CHK 2.59 2 10
        FISH 2.29 2 10
        HAM 2.89 2 10
        MCH 1.89 2 10
        MTL 1.99 2 10
        llll}\begin{array}{lll}{\mathrm{ SPG 1.99 2 }}&{1.9}&{10}\\{\mathrm{ TUR }}&{2.49 2}&{10}
param: n_min n_max :=
    A 700 20000
        C 700 20000
        B1 700 20000
        B2 700 20000
        NA 0 40000
        CAL 16000 24000 ;
param amt (tr):
\begin{tabular}{lrrllrll} 
& A & C & B1 & B2 & NA & CAL & \(:=\) \\
BEEF & 60 & 20 & 10 & 15 & 938 & 295 & \\
CHK & 8 & 0 & 20 & 20 & 2180 & 770 & \\
FISH & 8 & 10 & 15 & 10 & 945 & 440 & \\
HAM & 40 & 40 & 35 & 10 & 278 & 430 & \\
MCH & 15 & 35 & 15 & 15 & 1182 & 315 & \\
MTL & 70 & 30 & 15 & 15 & 896 & 400 & \\
SPG & 25 & 50 & 25 & 15 & 1329 & 370 & \\
TUR & 60 & 20 & 15 & 10 & 1397 & 450 & ;
\end{tabular}
```

Figure 2-3: Data for enhanced diet model (diet2 . dat).

```
ampl: model diet.mod;
ampl: data diet2.dat;
ampl: solve;
MINOS 5.5: infeasible problem.
9 iterations
```

The message infeasible problem tells us that we have constrained the diet too tightly; there is no way that all of the restrictions can be satisfied.

AMPL lets us examine a variety of values produced by a solver as it attempts to find a solution. In Chapter 1, we used marginal (or dual) values to investigate the sensitivity of an optimum solution to changes in the constraints. Here there is no optimum, but the solver does return the last solution that it found while attempting to satisfy the constraints. We can look for the source of the infeasibility by displaying some values associated with this solution:

ampl: display						Diet.lb, Diet.body,	Diet.ub;
:	Diet.lb	Diet.body	Diet.ub	$:=$			
A	700	1993.09	20000				
B1	700	841.091	20000				
B2	700	601.091	20000				
C	700	1272.55	20000				
CAL	16000	17222.9	24000				
NA	0	40000	40000				
;							

For each nutrient, Diet.body is the sum of the terms amt[i,j] * Buy[j] in the constraint Diet [i]. The Diet. Ib and Diet. ub values are the 'lower bounds" and "upper bounds" on the sum in Diet [i] — in this case, just the values n_min [i] and n_max[i]. We can see that the diet returned by the solver does not supply enough vita\min B2, while the amount of sodium (NA) has reached its upper bound.

At this point, there are two obvious choices: we could require less B2 or we could allow more sodium. If we try the latter, and relax the sodium limit to $50,000 \mathrm{mg}$, a feasible solution becomes possible:

```
ampl: let n_max["NA"] := 50000;
ampl: solve;
MINOS 5.5: optimal solution found.
5 iterations, objective 118.0594032
ampl: display Buy;
Buy [*] :=
BEEF 5.36061
    CHK 2
FISH 2
    HAM 10
    MCH 10
    MTL 10
    SPG 9.30605
    TUR 2
;
```

This is at least a start toward a palatable diet, although we have to spend $\$ 118.06$, compared to $\$ 88.20$ for the original, less restricted case. Clearly it would be easy, now that the model is set up, to try many other possibilities. (Section 11.3 describes ways to quickly change the data and re-solve.)

One still disappointing aspect of the solution is the need to buy 5.36061 packages of beef, and 9.30605 of spaghetti. How can we find the best possible solution in terms of whole packages? You might think that we could simply round the optimal values to whole numbers - or integers, as they're often called in the context of optimization but it is not so easy to do so in a feasible way. Using AMPL to modify the reported solution, we can observe that rounding up to 6 packages of beef and 10 of spaghetti, for example, will violate the sodium limit:

```
ampl: let Buy["BEEF"] := 6;
ampl: let Buy["SPG"] := 10;
ampl: display Diet.1b, Diet.body, Diet.ub;
: Diet.lb Diet.body Diet.ub :=
A 700 2012 20000
B1 700 1060 20000
B2 700 720 20000
C 700 1730 20000
CAL 16000 20240 24000
NA 0 51522 50000
;
```

(The let statement, which permits modifications of data, is described in Section 11.3.) You can similarly check that rounding the solution down to 5 of beef and 9 of spaghetti will provide insufficient vitamin B2. Rounding one up and the other down doesn't work either. With enough experimenting you can find a nearby all-integer solution that does satisfy the constraints, but still you will have no guarantee that it is the least-cost allinteger solution.

AMPL does provide for putting the integrality restriction directly into the declaration of the variables:

```
var Buy {j in FOOD} integer >= f_min[j], <= f_max[j];
```

This will only help, however, if you use a solver that can deal with problems whose variables must be integers. For this, we turn to CPLEX, a solver that can handle these socalled integer programs. If we add integer to the declaration of variable Buy as above, save the resulting model in the file dieti.mod, and add the higher sodium limit to diet2a. dat, then we can re-solve as follows:

```
ampl: reset;
ampl: model dieti.mod;
ampl: data diet2a.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 8.0.0: optimal integer solution; objective 119.3
1 1 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
1 branch-and-bound nodes
ampl: display Buy;
Buy [*] :=
BEEF 9
    CHK 2
FISH 2
    HAM 8
    MCH 10
    MTL 10
    SPG 7
    TUR 2
;
```

Since integrality is an added constraint, it is no surprise that the best integer solution costs about $\$ 1.24$ more than the best "continuous" one. But the difference between the diets is unexpected; the amounts of 3 foods change, each by two or more packages. In general, integrality and other "discrete" restrictions make solutions for a model much harder to find. We discuss this at length in Chapter 20.

2.4 Generalizations to blending, economics and scheduling

Your personal experience probably suggests that diet models are not widely used by people to choose their dinners. These models would be much better suited to situations in which packaging and personal preferences don't play such a prominent role - for example, the blending of animal feed or perhaps food for college dining halls.

The diet model is a convenient, intuitive example of a linear programming formulation that appears in many contexts. Suppose that we rewrite the model in a more general way, as shown in Figure 2-4. The objects that were called foods and nutrients in the diet model are now referred to more generically as 'inputs" and 'outputs'. For each input j, we must decide to use a quantity $\mathrm{X}[\mathrm{j}]$ that lies between in_min[j] and in_max[j]; as a result we incur a cost equal to cost[j] * X[j], and we create io [$i, j]$ * $X[j]$ units of each output i. Our goal is to find the least-cost combination of inputs that yields, for each output i, an amount between out_min[i] and out_max[i].

In one common class of applications for this model, the inputs are raw materials to be mixed together. The outputs are qualities of the resulting blend. The raw materials could be the components of an animal feed, but they could equally well be the crude oil derivatives that are blended to make gasoline, or the different kinds of coal that are mixed as input to a coke oven. The qualities can be amounts of something (sodium or calories for animal feed), or more complex measures (vapor pressure or octane rating for gasoline), or even physical properties such as weight and volume.

In another well-known application, the inputs are production activities of some sector of an economy, and the outputs are various products. The in_min and in_max parameters are limits on the levels of the activities, while out_min and out_max are regulated by demands. Thus the goal is to find levels of the activities that meet demand at the lowest cost. This interpretation is related to the concept of an economic equilibrium, as we will explain in Chapter 19.

In still another, quite different application, the inputs are work schedules, and the outputs correspond to hours worked on certain days of a month. For a particular work schedule j, io[i,j] is the number of hours that a person following schedule j will work on day i (zero if none), cost [j] is the monthly salary for a person following schedule j, and $\mathrm{X}[\mathrm{j}]$ is the number of workers assigned that schedule. Under this interpretation, the objective becomes the total cost of the monthly payroll, while the constraints say that for each day i, the total number of workers assigned to work that day must lie between the limits out_min[i] and out_max[i]. The same approach can

```
set INPUT; # inputs
set OUTPUT; # outputs
param cost {INPUT} > 0;
param in_min {INPUT} >= 0;
param in_max {j in INPUT} >= in_min[j];
param out_min {OUTPUT} >= 0;
param out_max {i in OUTPUT} >= out_min[i];
param io {OUTPUT,INPUT} >= 0;
var X {j in INPUT} >= in_min[j], <= in_max[j];
minimize Total_Cost: sum {j in INPUT} cost[j] * X[j];
subject to Outputs {i in OUTPUT}:
    out_min[i] <= sum {j in INPUT} io[i,j] * X[j] <= out_max[i];
```

Figure 2-4: Least-cost input model (blend.mod).
be used in a variety of other scheduling contexts, where the hours, days or months are replaced by other periods of time.

Although linear programming can be very useful in applications like these, we need to keep in mind the assumptions that underlie the LP model. We have already mentioned the "continuity" assumption whereby $\mathrm{X}[\mathrm{j}]$ is allowed to take on any value between in_min[j] and in_max[j]. This may be a lot more reasonable for blending than for scheduling.

As another example, in writing the objective as

```
sum {j in INPUT} cost[j] * X[j]
```

we are assuming "linearity of costs", that is, that the cost of an input is proportional to the amount of the input used, and that the total cost is the sum of the inputs' individual costs.

In writing the constraints as

```
out_min[i] <= sum {j in INPUT} io[i,j] * X[j] <= out_max[i]
```

we are also assuming that the yield of an output i from a particular input is proportional to the amount of the input used, and that the total yield of an output i is the sum of the yields from the individual inputs. This "linearity of yield" assumption poses no problem when the inputs are schedules, and the outputs are hours worked. But in the blending example, linearity is a physical assumption about the nature of the raw materials and the qualities, which may or may not hold. In early applications to refineries, for example, it was recognized that the addition of lead as an input had a nonlinear effect on the quality known as octane rating in the resulting blend.

AMPL makes it easy to express discrete or nonlinear models, but any departure from continuity or linearity is likely to make an optimal solution much harder to obtain. At the
least, it takes a more powerful solver to optimize the resulting mathematical programs. Chapters 17 through 20 discuss these issues in more detail.

Bibliography

George B. Dantzig, "The Diet Problem." Interfaces 20, 4 (1990) pp. 43-47. An entertaining account of the origins of the diet problem.

Susan Garner Garille and Saul I. Gass, "Stigler's Diet Problem Revisited." Operations Research 49, 1 (2001) pp. 1-13. A review of the diet problem's origins and its influence over the years on linear programming and on nutritionists.
Said S. Hilal and Warren Erikson, "Matching Supplies to Save Lives: Linear Programming the Production of Heart Valves." Interfaces 11, 6 (1981) pp. 48-56. A less appetizing equivalent of the diet problem, involving the choice of pig heart suppliers.

Exercises

2-1. Suppose the foods listed below have calories, protein, calcium, vitamin A, and costs per pound as shown. In what amounts should these food be purchased to meet at least the daily requirements listed while minimizing the total cost? (This problem comes from George B. Dantzig's classic book, Linear Programming and Extensions, page 118. We will take his word on nutritional values, and for nostalgic reasons have left the prices as they were when the book was published in 1963.)

	bread	meat	potatoes	cabbage	milk	gelatin	required
calories	1254	1457	318	46	309	1725	3000
protein	39	73	8	4	16	43	70 g.
calcium	418	41	42	141	536	0	800 mg.
vitamin A	0	0	70	860	720	0	$500 \mathrm{I} . \mathrm{U}$.
cost/pound	$\$ 0.30$	$\$ 1.00$	$\$ 0.05$	$\$ 0.08$	$\$ 0.23$	$\$ 0.48$	

2-2. (a) You have been advised by your doctor to get more exercise, specifically, to burn off at least 2000 extra calories per week by some combination of walking, jogging, swimming, exercisemachine, collaborative indoor recreation, and pushing yourself away from the table at mealtimes. You have a limited tolerance for each activity in hours/week; each expends a certain number of calories per hour, as shown below:

	walking	jogging	swimming	machine	indoor	pushback
Calories	100	200	300	150	300	500
Tolerance	5	2	3	3.5	3	0.5

How should you divide your exercising among these activities to minimize the amount of time you spend?
(b) Suppose that you should also have some variety in your exercise - you must do at least one hour of each of the first four exercises, but no more than four hours total of walking, jogging, and exercise-machine. Solve the problem in this form.

2-3. (a) A manufacturer of soft drinks wishes to blend three sugars in approximately equal quantities to ensure uniformity of taste in a product. Suppliers only provide combinations of the sugars, at varying costs/ton:

	SUPPLIER						
Sugar	A	B	C	D	E	F	G
Cane	10%	10	20	30	40	20	60
Corn	30%	40	40	20	60	70	10
Beet	60%	50	40	50	0	10	30
Cost/ton	$\$ 10$	11	12	13	14	12	15

Formulate an AMPL model that minimizes the cost of supply while producing a blend that contains 52 tons of cane sugar, 56 tons of corn sugar, and 59 tons of beet sugar.
(b) The manufacturer feels that to ensure good relations with suppliers it is necessary to buy at least 10 tons from each. How does this change the model and the minimum-cost solution?
(c) Formulate an alternative to the model in (a) that finds the lowest-cost way to blend one ton of supplies so that the amount of each sugar is between 30 and 37 percent of the total.

2-4. At the end of Chapter 1, we indicated how to interpret the marginal (or dual) values of constraints and the reduced costs of variables in a production model. The same ideas can be applied to this chapter's diet model.
(a) Going back to the diet problem that was successfully solved in Section 2.3 , we can display the marginal values as follows:

:	Diet.1b	Diet.body	Diet.ub	Diet
A	700	1956.29	20000	0
B1	700	1036.26	20000	0
B2	700	700	20000	0.404585
C	700	1682.51	20000	0
CAL	16000	19794.6	24000	0
NA	0	50000	50000	-0.00306905

How can you interpret the two that are nonzero?
(b) For the same problem, this listing gives the reduced costs:

ampl: display	Buy.lb, Buy, Buy. ub, Buy. rc;				
:	Buy.lb	Buy	Buy. ub	Buy.rc	:=
BEEF	2	5.36061	10	$8.88178 \mathrm{e}-16$	
CHK	2	2	10	1.18884	
FISH	2	2	10	1.14441	
HAM	2	10	10	-0.302651	
MCH	2	10	10	-0.551151	
MTL	2	10	10	-1.3289	
SPG	2	9.30605	10	0	
TUR	2	2	10	2.73162	
;					

Based on this information, if you want to save money by eating more than 10 packages of some food, which one is likely to be your best choice?

2-5. A chain of fast-food restaurants operates 7 days a week, and requires the following minimum number of kitchen employees from Monday through Sunday: 45, 45, 40, 50, 65, 35, 35. Each employee is scheduled to work one weekend day (Saturday or Sunday) and four other days in a week. The management wants to know the minimum total number of employees needed to satisfy the requirements on every day.
(a) Set up and solve this problem as a linear program.
(b) In light of the discussion in Section 2.4, explain how this problem can be viewed as a special case of the blending model in Figure 2-4.

2-6. The output of a paper mill consists of standard rolls 110 inches ($110^{\prime \prime}$) wide, which are cut into smaller rolls to meet orders. This week there are orders for rolls of the following widths:

Width	Orders
$20 "$	48
$45^{\prime \prime}$	35
$50^{\prime \prime}$	24
$55^{\prime \prime}$	10
$75^{\prime \prime}$	8

The owner of the mill wants to know what cutting patterns to apply so as to fill the orders using the smallest number of 110 rolls.
(a) A cutting pattern consists of a certain number of rolls of each width, such as two of $45^{\prime \prime}$ and one of $20^{\prime \prime}$, or one of $50^{\prime \prime}$ and one of $55^{\prime \prime}$ (and $5^{\prime \prime}$ of waste). Suppose, to start with, that we consider only the following six patterns:

Width	1	2	3	4	5	6
$20^{\prime \prime}$	3	1	0	2	1	3
$45^{\prime \prime}$	0	2	0	0	0	1
$50^{\prime \prime}$	1	0	1	0	0	0
$55^{\prime \prime}$	0	0	1	1	0	0
$75^{\prime \prime}$	0	0	0	0	1	0

How many rolls should be cut according to each pattern, to minimize the number of 110 " rolls used? Formulate and solve this problem as a linear program, assuming that the number of smaller rolls produced need only be greater than or equal to the number ordered.
(b) Re-solve the problem, with the restriction that the number of rolls produced in each size must be between 10% under and 40% over the number ordered.
(c) Find another pattern that, when added to those above, improves the optimal solution.
(d) All of the solutions above use fractional numbers of rolls. Can you find solutions that also satisfy the constraints, but that cut a whole number of rolls in each pattern? How much does your whole-number solution cause the objective function value to go up in each case? (See Chapter 20 for a discussion of how to find optimal whole-number, or integer, solutions.)

2-7. In the refinery model of Exercise 1-6, the amount of premium gasoline to be produced is a decision variable. Suppose instead that orders dictate a production of 42,000 barrels. The octane rating of the product is permitted to be in the range of 89 to 91 , and the vapor pressure in a range of 11.7 to 12.7 . The five feedstocks that are blended to make premium gasoline have the following production and/or purchase costs:

SRG	9.57
N	8.87
RF	11.69
CG	10.88
B	6.75

Other data are as in Exercise 1-6. Construct a blending model and data file to represent this problem. Run them through AMPL to determine the optimal composition of the blend.

2-8. Recall that Figure 2-4 generalizes the diet model as a minimum-cost input selection model, with constraints on the outputs.
(a) In the same way, generalize the production model of Figure 1-6a as a maximum-revenue output selection model, with constraints on the inputs.
(b) The concept of an "input-output" model was one of the first applications of linear programming in economic analysis. Such a model can be described in terms of a set A of activities and a set M of materials. The decision variables are the levels $X_{j} \geq 0$ at which the activities are run; they have lower limits u_{j}^{-}and upper limits u_{j}^{+}.
Each activity j has either a revenue per unit $c_{j}>0$, or a cost per unit represented by $c_{j}<0$. Thus total profit from all activities is $\sum_{j \in A} c_{j} X_{j}$, which is to be maximized.
Each unit of activity j produces an amount of material i given by $a_{i j} \geq 0$, or consumes an amount of material i represented by $a_{i j}<0$. Thus if $\sum_{j \in A} a_{i j} X_{j}$ is >0 it is the total production of material i by all activities; if <0, it is the total consumption of material i by all activities.
For each material i, there is either an upper limit on the total production given by $b_{i}^{+}>0$, or a lower limit on the total consumption given by $b_{i}^{+}<0$. Similarly, there is either a lower limit on the total production given by $b_{i}^{-}>0$, or an upper limit on the total consumption given by $b_{i}^{-}<0$.
Write out a formulation of this model in AMPL.
(c) Explain how the minimum-cost input selection model and maximum-revenue output-selection model can be viewed as special cases of the input-output model.

Transportation and Assignment Models

The linear programs in Chapters 1 and 2 are all examples of classical ' activity' models. In such models the variables and constraints deal with distinctly different kinds of activities - tons of steel produced versus hours of mill time used, or packages of food bought versus percentages of nutrients supplied. To use these models you must supply coefficients like tons per hour or percentages per package that convert a unit of activity in the variables to the corresponding amount of activity in the constraints.

This chapter addresses a significantly different but equally common kind of model, in which something is shipped or assigned, but not converted. The resulting constraints, which reflect both limitations on availability and requirements for delivery, have an especially simple form.

We begin by describing the so-called transportation problem, in which a single good is to be shipped from several origins to several destinations at minimum overall cost. This problem gives rise to the simplest kind of linear program for minimum-cost flows. We then generalize to a transportation model, an essential step if we are to manage all the data, variables and constraints effectively.

As with the diet model, the power of the transportation model lies in its adaptability. We continue by considering some other interpretations of the "flow" from origins to destinations, and work through one particular interpretation in which the variables represent assignments rather than shipments.

The transportation model is only the most elementary kind of minimum-cost flow model. More general models are often best expressed as networks, in which nodes some of which may be origins or destinations - are connected by arcs that carry flows of some kind. AMPL offers convenient features for describing network flow models, including node and arc declarations that specify network structure directly. Network models and the relevant AMPL features are the topic of Chapter 15.

3.1 A linear program for the transportation problem

Suppose that we have decided (perhaps by the methods described in Chapter 1) to produce steel coils at three mill locations, in the following amounts:

GARY	Gary, Indiana	1400
CLEV	Cleveland, Ohio	2600
PITT	Pittsburgh, Pennsylvania	2900

The total of 6,900 tons must be shipped in various amounts to meet orders at seven locations of automobile factories:

FRA	Framingham, Massachusetts	900
DET	Detroit, Michigan	1200
LAN	Lansing, Michigan	600
WIN	Windsor, Ontario	400
STL	St. Louis, Missouri	1700
FRE	Fremont, California	1100
LAF	Lafayette, Indiana	1000

We now have an optimization problem: What is the least expensive plan for shipping the coils from mills to plants?

To answer the question, we need to compile a table of shipping costs per ton:

	GARY	CLEV	PITT
FRA	39	27	24
DET	14	9	14
LAN	11	12	17
WIN	14	9	13
STL	16	26	28
FRE	82	95	99
LAF	8	17	20

Let GARY:FRA be the number of tons to be shipped from GARY to FRA, and similarly for the other city pairs. Then the objective can be written as follows:

Minimize
39 GARY:FRA +27 CLEV:FRA +24 PITT:FRA +
14 GARY:DET + 9 CLEV:DET + 14 PITT:DET +
11 GARY:LAN + 12 CLEV:LAN + 17 PITT:LAN +
14 GARY:WIN + 9 CLEV:WIN + 13 PITT:WIN +
16 GARY:STL + 26 CLEV:STL + 28 PITT:STL +
82 GARY:FRE +95 CLEV:FRE +99 PITT:FRE +
8 GARY:LAF + 17 CLEV:LAF + 20 PITT:LAF
There are 21 decision variables in all. Even a small transportation problem like this one has a lot of variables, because there is one for each combination of mill and factory.

By supplying each factory from the mill that can ship most cheaply to it, we could achieve the lowest conceivable shipping cost. But we would then be shipping 900 tons from PITT, 1600 from CLEV, and all the rest from GARY - amounts quite inconsistent with the production levels previously decided upon. We need to add a constraint that the sum of the shipments from GARY to the seven factories is equal to the production level of 1400 :

$$
\begin{gathered}
\text { GARY:FRA + GARY:DET + GARY:LAN + GARY:WIN + } \\
\text { GARY:STL + GARY:FRE + GARY:LAF = } 1400
\end{gathered}
$$

There are analogous constraints for the other two mills:

$$
\begin{aligned}
& \text { CLEV:FRA + CLEV:DET + CLEV:LAN + CLEV:WIN + } \\
& \text { CLEV:STL + CLEV:FRE + CLEV:LAF = } 2600 \\
& \text { PITT:FRA + PITT:DET + PITT:LAN + PITT:WIN + } \\
& \text { PITT:STL + PITT:FRE + PITT:LAF = } 2900
\end{aligned}
$$

There also have to be constraints like these at the factories, to ensure that the amounts shipped equal the amounts ordered. At FRA, the sum of the shipments received from the three mills must equal the 900 tons ordered:

$$
\text { GARY:FRA + CLEV:FRA + PITT:FRA }=900
$$

And similarly for the other six factories:

$$
\begin{aligned}
& \text { GARY:DET + CLEV:DET + PITT:DET }=1200 \\
& \text { GARY:LAN + CLEV:LAN + PITT:LAN }=600 \\
& \text { GARY:WIN + CLEV:WIN + PITT:WIN }=400 \\
& \text { GARY:STL + CLEV:STL + PITT:STL }=1700 \\
& \text { GARY:FRE + CLEV:FRE + PITT::FRE }=1100 \\
& \text { GARY:LAF + CLEV:LAF + PITT:LAF }=1000
\end{aligned}
$$

We have ten constraints in all, one for each mill and one for each factory. If we add the requirement that all variables be nonnegative, we have a complete linear program for the transportation problem.

We won't even try showing what it would be like to type all of these constraints into an AMPL model file. Clearly we want to set up a general model to deal with this problem.

3.2 An AMPL model for the transportation problem

Two fundamental sets of objects underlie the transportation problem: the sources or origins (mills, in our example) and the destinations (factories). Thus we begin the AMPL model with a declaration of these two sets:

```
set ORIG;
set DEST;
```

There is a supply of something at each origin (tons of steel coils produced, in our case), and a demand for the same thing at each destination (tons of coils ordered). AMPL defines nonnegative quantities like these with param statements indexed over a set; in this case we add one extra refinement, a check statement to test the data for validity:

```
param supply {ORIG} >= 0;
param demand {DEST} >= 0;
check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
```

The check statement says that the sum of the supplies has to equal the sum of the demands. The way that our model is to be set up, there can't possibly be any solutions unless this condition is satisfied. By putting it in a check statement, we tell AMPL to test this condition after reading the data, and to issue an error message if it is violated.

For each combination of an origin and a destination, there is a transportation cost and a variable representing the amount transported. Again, the ideas from previous chapters are easily adapted to produce the appropriate AMPL statements:

```
param cost {ORIG,DEST} >= 0;
var Trans {ORIG,DEST} >= 0;
```

For a particular origin i and destination j, we ship Trans [i,j] units from i to j, at a cost of cost $[i, j]$ per unit; the total cost for this pair is

```
cost[i,j] * Trans[i,j]
```

Adding over all pairs, we have the objective function:

```
minimize Total_Cost:
    sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
```

which could also be written as

```
sum {j in DEST, i in ORIG} cost[i,j] * Trans[i,j];
```

or as

```
sum {i in ORIG} sum {j in DEST} cost[i,j] * Trans[i,j];
```

As long as you express the objective in some mathematically correct way, AMPL will sort out the terms.

It remains to specify the two collections of constraints, those at the origins and those at the destinations. If we name these collections Supply and Demand, their declarations will start as follows:

```
subject to Supply {i in ORIG}: ...
subject to Demand {j in DEST}: ...
```

To complete the Supply constraint for origin i, we need to say that the sum of all shipments out of i is equal to the supply available. Since the amount shipped out of i to a particular destination j is Trans $[i, j]$, the amount shipped to all destinations must be

```
set ORIG; # origins
set DEST; # destinations
param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations
        check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
param cost {ORIG,DEST} >= 0; # shipment costs per unit
var Trans {ORIG,DEST} >= 0; # units to be shipped
minimize Total_Cost:
    sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
subject to Supply {i in ORIG}:
    sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
    sum {i in ORIG} Trans[i,j] = demand[j];
```

Figure 3-1a: Transportation model (transp.mod).

```
sum {j in DEST} Trans[i,j]
```

Since we have already defined a parameter supply indexed over origins, the amount available at i is supply[i]. Thus the constraint is

```
subject to Supply {i in ORIG}:
    sum {j in DEST} Trans[i,j] = supply[i];
```

(Note that the names supply and Supply are unrelated; AMPL distinguishes upper and lower case.) The other collection of constraints is much the same, except that the roles of i in ORIG, and j in DEST, are exchanged, and the sum equals demand [j].

We can now present the complete transportation model, Figure 3-1a. As you might have noticed, we have been consistent in using the index i to run over the set ORIG, and the index j to run over DEST. This is not an AMPL requirement, but such a convention makes it easier to read a model. You may name your own indices whatever you like, but keep in mind that the scope of an index - the part of the model where it has the same meaning - is to the end of the expression that defines it. Thus in the Demand constraint

```
subject to Demand {j in DEST}:
    sum {i in ORIG} Trans[i,j] = demand[j];
```

the scope of j runs to the semicolon at the end of the declaration, while the scope of i extends only through the summand Trans [i,j]. Since i's scope is inside j's scope, these two indices must have different names. Also an index may not have the same name as a set or other model component. Index scopes are discussed more fully, with further examples, in Section 5.5.

Data values for the transportation model are shown in Figure 3-1b. To define DEST and demand, we have used an input format that permits a set and one or more parameters indexed over it to be specified together. The set name is surrounded by colons. (We also show some comments, which can appear among data statements just as in a model.)

Figure 3-1b: Data for transportation model (transp. dat).

If the model is stored in a file transp.mod and the data in transp.dat, we can solve the linear program and examine the output:

```
ampl: model transp.mod;
ampl: data transp.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 196200
12 dual simplex iterations (0 in phase I)
ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 1200 0 0
FRA 0 0 900
FRE 0 1100 0
LAF 400 300 300
LAN 600 0 0
STL 0 0 1700
WIN 400 0 0
```

By displaying the variable Trans, we see that most destinations are supplied from a single mill, but CLEV, GARY and PITT all ship to LAF.

It is instructive to compare this solution to one given by another solver, SNOPT:

```
ampl: option solver snopt;
ampl: solve;
SNOPT 6.1-1: Optimal solution found.
15 iterations, objective 196200
```

ampl:	display Trans;			
Trans	$[*, *]$	(tr)		
$:$	CLEV	GARY	PITT	$:=$
DET	1200	0	0	
FRA	0	0	900	
FRE	0	1100	0	
LAF	400	0	600	
LAN	600	0	0	
STL	0	300	1400	
WIN	400	0	0	
;				

The minimum cost is still 196200, but it is achieved in a different way. Alternative optimal solutions such as these are often exhibited by transportation problems, particularly when the coefficients in the objective function are round numbers.

Unfortunately, there is no easy way to characterize all the optimal solutions. You may be able to get a better choice of optimal solution by working with several objectives, however, as we will illustrate in Section 8.3.

3.3 Other interpretations of the transportation model

As the name suggests, a transportation model is applicable whenever some material is being shipped from a set of origins to a set of destinations. Given certain amounts available at the origins, and required at the destinations, the problem is to meet the requirements at a minimum shipping cost.

Viewed more broadly, transportation models do not have to be concerned with the shipping of "materials". They can be applied to the transportation of anything, provided that the quantities available and required can be measured in some units, and that the transportation cost per unit can be determined. They might be used to model the shipments of automobiles to dealers, for example, or the movement of military personnel to new assignments.

In an even broader view, transportation models need not deal with 'shipping'" at all. The quantities at the origins may be merely associated with various destinations, while the objective measures some value of the association that has nothing to do with actually moving anything. Often the result is referred to as an 'assignment'" model.

As one particularly well-known example, consider a department that needs to assign some number of people to an equal number of offices. The origins now represent individual people, and the destinations represent individual offices. Since each person is assigned one office, and each office is occupied by one person, all of the parameter values supply[i] and demand[j] are 1. We interpret Trans[i,j] as the "amount" of person i that is assigned to office j; that is, if Trans $[i, j]$ is 1 then person i will occupy office j, while if Trans [i, j] is 0 then person i will not occupy office j.

What of the objective? One possibility is to ask people to rank the offices, giving their first choice, second choice, and so forth. Then we can let cost [i,j] be the rank

```
set ORIG := Coullard Daskin Hazen Hopp Iravani Linetsky
            Mehrotra Nelson Smilowitz Tamhane White ;
set DEST := C118 C138 C140 C246 C250 C251 D237 D239 D241 M233 M239;
param supply default 1 ;
param demand default 1 ;
param cost:
\begin{tabular}{lrrrrrrrrrrrrr} 
& C118 & C138 & C140 & C246 & C250 & C251 & D237 & D239 & D241 & M233 & M239 & \(:=\) \\
Coullard & 6 & 9 & 8 & 7 & 11 & 10 & 4 & 5 & 3 & 2 & 1 & \\
Daskin & 11 & 8 & 7 & 6 & 9 & 10 & 1 & 5 & 4 & 2 & 3 & \\
Hazen & 9 & 10 & 11 & 1 & 5 & 6 & 2 & 7 & 8 & 3 & 4 & \\
Hopp & 11 & 9 & 8 & 10 & 6 & 5 & 1 & 7 & 4 & 2 & 3 & \\
Iravani & 3 & 2 & 8 & 9 & 10 & 11 & 1 & 5 & 4 & 6 & 7 & \\
Linetsky & 11 & 9 & 10 & 5 & 3 & 4 & 6 & 7 & 8 & 1 & 2 & \\
Mehrotra & 6 & 11 & 10 & 9 & 8 & 7 & 1 & 2 & 5 & 4 & 3 & \\
Nelson & 11 & 5 & 4 & 6 & 7 & 8 & 1 & 9 & 10 & 2 & 3 & \\
Smilowitz & 11 & 9 & 10 & 8 & 6 & 5 & 7 & 3 & 4 & 1 & 2 & \\
Tamhane & 5 & 6 & 9 & 8 & 4 & 3 & 7 & 10 & 11 & 2 & 1 & \\
White & 11 & 9 & 8 & 4 & 6 & 5 & 3 & 10 & 7 & 2 & 1 & \(;\)
\end{tabular}
```

Figure 3-2: Data for assignment problem (assign. dat).
that person i gives to office j. This convention lets each objective function term cost [i, j] * Trans [i, j] represent the preference of person i for office j, if person i is assigned to office j (Trans [i, j] equals 1), or zero if person i is not assigned to office j (Trans[i,j] equals 0). Since the objective is the sum of all these terms, it must equal the sum of all the nonzero terms, which is the sum of everyone's rankings for the offices to which they were assigned. By minimizing this sum, we can hope to find an assignment that will please a lot of people.

To use the transportation model for this purpose, we need only supply the appropriate data. Figure $3-2$ is one example, with 11 people to be assigned to 11 offices. The default option has been used to set all the supply and demand values to 1 without typing all the 1 's. If we store this data set in assign. dat, we can use it with the transportation model that we already have:

```
ampl: model transp.mod;
ampl: data assign.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 28
2 4 \text { dual simplex iterations (0 in phase I)}
```

By setting the option omit_zero_rows to 1, we can print just the nonzero terms in the objective. (Options for displaying results are presented in Chapter 12.) This listing tells us each person's assigned room and his or her preference for it:

```
ampl: option omit_zero_rows 1;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Daskin D241 4
Hazen C246 1
Hopp D237 1
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C251 3
White M239 1
;
```

The solution is reasonably successful, although it does assign two fourth choices and one sixth choice.

It is not hard to see that when all the supply[i] and demand [j] values are 1, any Trans [i,j] satisfying all the constraints must be between 0 and 1 . But how did we know that every Trans $[i, j]$ would equal either 0 or 1 in the optimal solution, rather than, say, $1 / 2$? We were able to rely on a special property of transportation models, which guarantees that as long as all supply and demand values are integers, and all lower and upper bounds on the variables are integers, there will be an optimal solution that is entirely integral. Moreover, we used a solver that always finds one of these integral solutions. But don't let this favorable result mislead you into assuming that integrality can be assured in all other circumstances; even in examples that seem to be much like the transportation model, finding integral solutions can require a special solver, and a lot more work. Chapter 20 discusses issues of integrality at length.

A problem of assigning 100 people to 100 rooms has ten thousand variables; assigning 1000 people to 1000 rooms yields a million variables. In applications on this scale, however, most of the assignments can be ruled out in advance, so that the number of actual decision variables is not too large. After looking at an initial solution, you may want to rule out some more assignments - in our example, perhaps no assignment to lower than fifth choice should be allowed - or you may want to force some assignments to be made a certain way, in order to see how the rest could be done optimally. These situations require models that can deal with subsets of pairs (of people and offices, or origins and destinations) in a direct way. AMPL's features for describing pairs and other 'compound'" objects are the subject of Chapter 6.

Exercises

3-1. This transportation model, which deals with finding a least cost shipping schedule, comes from Dantzig's Linear Programming and Extensions. A company has plants in Seattle and San Diego, with capacities 350 and 600 cases per week respectively. It has customers in New York, Chicago, and Topeka, which order 325, 300, and 275 cases per week. The distances involved are:

	New York	Chicago	Topeka
Seattle	2500	1700	1800
San Diego	2500	1800	1400

The shipping cost is $\$ 90$ per case per thousand miles. Formulate this model in AMPL and solve it to determine the minimum cost and the amounts to be shipped.

3-2. A small manufacturing operation produces six kinds of parts, using three machines. For the coming month, a certain number of each part is needed, and a certain number of parts can be accommodated on each machine; to complicate matters, it does not cost the same amount to make the same part on different machines. Specifically, the costs and related values are as follows:

Part							
Machine	1	2	3	4	5	6	Capacity
1	3	3	2	5	2	1	80
2	4	1	1	2	2	1	30
3	2	2	5	1	1	2	160
Required	10	40	60	20	20	30	

(a) Using the model in Figure 3-1a, create a file of data statements for this problem; treat the machines as the origins, and the parts as the destinations. How many of each part should be produced on each machine, so as to minimize total cost?
(b) If the capacity of machine 2 is increased to 50 , the manufacturer may be able to reduce the total cost of production somewhat. What small change to the model is necessary to analyze this situation? How much is the total cost reduced, and in what respects does the production plan change?
(c) Now suppose that the capacities are given in hours, rather than in numbers of parts, and that it takes a somewhat different number of hours to make the same part on different machines:

	Part						
Machine	1	2	3	4	5	6	Capacity
1	1.3	1.3	1.2	1.5	1.2	1.1	50
2	1.4	1.1	1.1	1.2	1.2	1.1	90
3	1.2	1.2	1.5	1.1	1.1	1.2	175

Modify the supply constraint so that it limits total time of production at each "origin'" rather than the total quantity of production. How is the new optimal solution different? On which machines is all available time used?
(d) Solve the preceding problem again, but with the objective function changed to minimize total machine-hours rather than total cost.
3-3. This exercise deals with generalizations of the transportation model and data of Figure 3-1.
(a) Add two parameters, supply_pct and demand_pct, to represent the maximum fraction of a mill's supply that may be sent to any one factory, and the maximum fraction of a factory's
demand that may be satisfied by any one mill. Incorporate these parameters into the model of Figure 3-1a.
Solve for the case in which no more than 50% of a mill's supply may be sent to any one factory, and no more than 85% of a factory's demand may be satisfied by any one mill. How does this change the minimum cost and the optimal amounts shipped?
(b) Suppose that the rolling mills do not produce their own slabs, but instead obtain slabs from two other plants, where the following numbers of tons are to be made available:

$$
\begin{array}{ll}
\text { MIDTWN } & 2700 \\
\text { HAMLTN } & 4200
\end{array}
$$

The cost per ton of shipping a slab from a plant to a mill is as follows:

	GARY	CLEV	PITT
MIDTWN	12	8	17
HAMLTN	10	5	13

All other data values are the same as before, but with supply_pct reinterpreted as the maximum fraction of a plant's supply that may be sent to any one mill.
Formulate this situation as an AMPL model. You will need two indexed collections of variables, one for the shipments from plants to mills, and one for the shipments from mills to factories. Shipments from each mill will have to equal supply, and shipments to each factory will have to equal demand as before; also, shipments out of each mill will have to equal shipments in.
Solve the resulting linear program. What are the shipment amounts in the minimum-cost solution?
(c) In addition to the differences in shipping costs, there may be different costs of production at the plants and mills. Explain how production costs could be incorporated into the model.
(d) When slabs are rolled, some fraction of the steel is lost as scrap. Assuming that this fraction may be different at each mill, revise the model to take scrap loss into account.
(e) In reality, scrap is not really lost, but is sold for recycling. Make a further change to the model to account for the value of the scrap produced at each mill.

3-4. This exercise considers variations on the assignment problem introduced in Section 3.3.
(a) Try reordering the list of members of DEST in the data (Figure 3-2), and solving again. Find a reordering that causes your solver to report a different optimal assignment.
(b) An assignment that gives even one person a very low-ranked office may be unacceptable, even if the total of the rankings is optimized. In particular, our solution gives one individual her sixth choice; to rule this out, change all preferences of six or larger in the cost data to 99 , so that they will become very unattractive. (You'll learn more convenient features for doing the same thing in later chapters, but this crude approach will work for now.) Solve the assignment problem again, and verify that the result is an equally good assignment in which no one gets worse than fifth choice.
Now apply the same approach to try to give everyone no worse than fourth choice. What do you find?
(c) Suppose now that offices C118, C250 and C251 become unavailable, and you have to put two people each into C138, C140 and C246. Add 20 to each ranking for these three offices, to reflect the fact that anyone would prefer a private office to a shared one. What other modifications to the model and data would be necessary to handle this situation? What optimal assignment do you get?
(d) Some people may have seniority that entitles them to greater consideration in their choice of office. Explain how you could enhance the model to use seniority level data for each person.

4

Building Larger Models

The linear programs that we have presented so far have been quite small, so their data and solutions could fit onto a page. Most of the LPs found in practical applications, however, have hundreds or thousands of variables and constraints, and some are even larger.

How do linear programs get to be so large? They might be like the ones we have shown, but with larger indexing sets and more data. A steel mill could be considered to make hundreds of different products, for example, if every variation of width, thickness, and finish is treated separately. Or a large organization could have thousands of people involved in one assignment problem. Nevertheless, these kinds of applications are not as common as one might expect. As a model is refined to greater levels of detail, its data values become harder to maintain and its solutions harder to understand; past a certain point, extra detail offers no benefit. Thus to plan production for a few lines, considerable detail may be justifiable; but to plan for an entire company, it may be better to have a small aggregated, plant-level model that be run many times with different scenarios.

A more common source of large linear programs is the linking together of smaller ones. It is not unusual for an application to give rise to many simple LPs of the kinds we have discussed before; here are three possibilities:

- Many products are to be shipped, and there is a transportation problem (as in Chapter 3) for each product.
- Manufacturing is to be planned over many weeks, and there is a production problem (as in Chapter 1) for each week.
- Several products are made at several mills, and shipped to several factories; there is a production problem for each mill, and a transportation problem for each product.
When variables or constraints are added to tie these LPs together, the result can be one very large LP. No individual part need be particularly detailed; the size is more due to the large number of combinations of origins, destinations, products and weeks.

This chapter shows how AMPL models might be formulated for the three situations outlined above. The resulting models are necessarily more complicated than our previous ones, and require the use of a few more features from the AMPL language. Since they build on the terminology and logic of smaller models that have already been introduced, however, these larger models are still manageable.

4.1 A multicommodity transportation model

The transportation model of the previous chapter was concerned with shipping a single commodity from origins to destinations. Suppose now that we are shipping several different products. We can define a new set, PROD, whose members represent the different products, and we can add PROD to the indexing of every component in the model; the result can be seen in Figure 4-1. Because supply, demand, cost, and Trans are indexed over one more set in this version, they take one more subscript: supply [i,p] for the amount of product p shipped from origin i, Trans $[i, j, p]$ for the amount of p shipped from i to j, and so forth. Even the check statement is now indexed over PROD, so that it verifies that supply equals demand for each separate product.

If we look at Supply, Demand and Trans, there are (origins + destinations) \times (products) constraints in (origins) \times (destinations) \times (products) variables. The result could be quite a large linear program, even if the individual sets do not have many members. For example, 5 origins, 20 destinations and 10 products give 250 constraints in 1000 variables. The size of this LP is misleading, however, because the shipments of the products are independent. That is, the amounts we ship of one product do not affect the amounts we can ship of any other product, or the costs of shipping any other product. We would do better in this case to solve a smaller transportation problem for each individual product. In AMPL terms, we would use the simple transportation model from the previous chapter, together with a different data file for each product.

The situation would be different if some additional circumstances had the effect of tying together the different products. As an example, imagine that there are restrictions on the total shipments of products from an origin to a destination, perhaps because of limited shipping capacity. To accommodate such restrictions in our model, we declare a new parameter limit indexed over the combinations of origins and destinations:

```
param limit {ORIG,DEST} >= 0;
```

Then we have a new collection of (origins) \times (destinations) constraints, one for each origin i and destination j, which say that the sum of shipments from i to j of all products p may not exceed limit [i,j]:

```
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] <= limit[i,j];
```

Subject to these constraints (also shown in Figure 4-1), we can no longer set the amount of one product shipped from i to j without considering the amounts of other products also shipped from i to j, since it is the sum of all products that is limited. Thus we have no choice but to solve the one large linear program.

For the steel mill in Chapter 1, the products were bands, coils, and plate. Thus the data for the multicommodity model could look like Figure 4-2. We invoke AMPL in the usual way to get the following solution:

```
ampl: model multi.mod; data multi.dat; solve;
CPLEX 8.0.0: optimal solution; objective 199500
4 1 \text { dual simplex iterations (0 in phase I)}
```

```
set ORIG; # origins
set DEST; # destinations
set PROD; # products
param supply {ORIG,PROD} >= 0; # amounts available at origins
param demand {DEST,PROD} >= 0; # amounts required at destinations
    check {p in PROD}:
        sum {i in ORIG} supply[i,p] = sum {j in DEST} demand[j,p];
param limit {ORIG,DEST} >= 0;
param cost {ORIG,DEST,PROD} >= 0; # shipment costs per unit
var Trans {ORIG,DEST,PROD} >= 0; # units to be shipped
minimize Total_Cost:
    sum {i in ORIG, j in DEST, p in PROD}
        cost[i,j,p] * Trans[i,j,p];
subject to Supply {i in ORIG, p in PROD}:
    sum {j in DEST} Trans[i,j,p] = supply[i,p];
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p] = demand[j,p];
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] <= limit[i,j];
```

Figure 4-1: Multicommodity transportation model (multi.mod).
ampl: display \{p in PROD\}: \{i in ORIG, j in DEST\} Trans[i,j,p];

Tra	[i,j,	'bands] [*,	(tr)
:	CLEV	GARY	PITT	: $=$
DET	0	0	300	
FRA	225	0	75	
FRE	0	0	225	
LAF	225	0	25	
LAN	0	0	100	
STL	250	400	0	
WIN	0	0	75	

Trans[i,j,'coils'] [*,*] (tr)
: CLEV GARY PITT :=

DET	525	0	225

FRA $0 \quad 00$
FRE $225 \quad 625 \quad 0$

LAF	0	150	350

LAN 400 0 0
STL $300 \quad 25 \quad 625$
WIN $150 \quad 0 \quad 100$

```
set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;
set PROD := bands coils plate ;
param supply (tr): GARY CLEV PITT :=
\begin{tabular}{lrrr} 
bands & 400 & 700 & 800 \\
coils & 800 & 1600 & 1800 \\
plate & 200 & 300 & 300.
\end{tabular}
param demand (tr):
    FRA DET LAN WIN STL FRE LAF :=
    bands 300 300 100 75 650
    coils 500 750 400 250 950 850 500
    plate 100 100 0 50 200 100 250 ;
param limit default 625 ;
param cost :=
\begin{tabular}{rrrrrrrr} 
[*, *, bands] : & FRA & DET & LAN & WIN & STL & FRE & LAF \(:=\) \\
GARY & 30 & 10 & 8 & 10 & 11 & 71 & 6 \\
CLEV & 22 & 7 & 10 & 7 & 21 & 82 & 13 \\
PITT & 19 & 11 & 12 & 10 & 25 & 83 & 15
\end{tabular}
    [*,*,coils]: FRA DET LAN WIN STL FRE LAF :=
        GARY 39 14 11 14 16 82 8
        CLEV 27 9
        PITT 
    [*,*,plate]: FRA DET LAN WIN STL FRE LAF :=
        GARY 
        CLEV 
```

Figure 4-2: Multicommodity transportation problem data (multi. dat).

Trans[i,j,'plate']	$[*, *]$	(tr)		
$:$	CLEV	GARY	PITT	$:=$
DET	100	0	0	
FRA	50	0	50	
FRE	100	0	0	
LAF	0	0	250	
LAN	0	0	0	
STL	0	200	0	
WIN	50	0	0	
$;$				

In both our specification of the shipping costs and AMPL's display of the solution, a three-dimensional collection of data (that is, indexed over three sets) must be represented on a two-dimensional screen or page. We accomplish this by "slicing' the data along one index, so that it appears as a collection of two-dimensional tables. The display command will make a guess as to the best index on which to slice, but by use of an

```
set PROD; # products
param T > 0; # number of weeks
param rate {PROD} > 0; # tons per hour produced
param avail {1..T} >= 0; # hours available in week
param profit {PROD,1..T}; # profit per ton
param market {PROD,1..T} >= 0; # limit on tons sold in week
var Make {p in PROD, t in 1..T} >= 0, <= market[p,t];
                            # tons produced
maximize Total_Profit:
    sum {p in PROD, t in 1..T} profit[p,t] * Make[p,t];
            # total profits from all products in all weeks
subject to Time {t in 1..T}:
    sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];
        # total of hours used by all products
        # may not exceed hours available, in each week
```

Figure 4-3: Production model replicated over periods (steelt0 .mod).
explicit indexing expression as shown above, we can tell it to display a table for each product.

The optimal solution above ships only 25 tons of coils from GARY to STL and 25 tons of bands from PITT to LAF. It might be reasonable to require that, if any amount at all is shipped, it must be at least, say, 50 tons. In terms of our model, either Trans [i, j, p] $=0$ or Trans $[i, j, p]>=50$. Unfortunately, although it is possible to write such an '"either/or"' constraint in AMPL, it is not a linear constraint, and so there is no way that an LP solver can handle it. Chapter 20 explains how more powerful (but costlier) integer programming techniques can deal with this and related kinds of discrete restrictions.

4.2 A multiperiod production model

Another common way in which models are expanded is by replicating them over time. To illustrate, we consider how the model of Figure 1-4a might be used to plan production for the next T weeks, rather than for a single week.

We begin by adding another index set to most of the quantities of interest. The added set represents weeks numbered 1 through T, as shown in Figure 4-3. The expression 1. T is AMPL's shorthand for the set of integers from 1 through T. We have replicated all the parameters and variables over this set, except for rate, which is regarded as fixed over time. As a result there is a constraint for each week, and the profit terms are summed over weeks as well as products.

So far this is merely a separate LP for each week, unless something is added to tie the weeks together. Just as we were able to find constraints that involved all the products, we
could look for constraints that involve production in all of the weeks. Most multiperiod models take a different approach, however, in which constraints relate each week's production to that of the following week only.

Suppose that we allow some of a week's production to be placed in inventory, for sale in any later week. We thus add new decision variables to represent the amounts inventoried and sold in each week. The variables Make [$j, t]$ are retained, but they represent only the amounts produced, which are now not necessarily the same as the amounts sold. Our new variable declarations look like this:

```
var Make {PROD,1..T} >= 0;
var Inv {PROD,0..T} >= 0;
var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t];
```

The bounds market [p, t], which represent the maximum amounts that can be sold in a week, are naturally transferred to Sell [p,t].

The variable Inv [p,t] will represent the inventory of product p at the end of period t. Thus the quantities $\operatorname{Inv}[p, 0]$ will be the inventories at the end of week zero, or equivalently at the beginning of the first week - in other words, now. Our model assumes that these initial inventories are provided as part of the data:

```
param inv0 \{PROD\} >= 0;
```

A simple constraint guarantees that the variables $\operatorname{Inv}[p, 0]$ take these values:

```
subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];
```

It may seem 'inefficient'" to devote a constraint like this to saying that a variable equals a constant, but when it comes time to send the linear program to a solver, AMPL will automatically substitute the value of inv0 [p] for any occurrence of Inv [p,0]. In most cases, we can concentrate on writing the model in the clearest or easiest way, and leave matters of efficiency to the computer.

Now that we are distinguishing sales, production, and inventory, we can explicitly model the contribution of each to the profit, by defining three parameters:

```
param revenue {PROD,1..T} >= 0;
param prodcost {PROD} >= 0;
param invcost {PROD} >= 0;
```

These are incorporated into the objective as follows:

```
maximize Total_Profit:
    sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
        prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);
```

As you can see, revenue $[p, t]$ is the amount received per ton of product p sold in week t; prodcost [p] and invcost [p] are the production and inventory carrying cost per ton of product p in any week.

Finally, with the sales and inventories fully incorporated into our model, we can add the key constraints that tie the weeks together: the amount of a product made available in
a week, through production or from inventory, must equal the amount disposed of in that week, through sale or to inventory:

```
subject to Balance {p in PROD, t in 1..T}:
    Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];
```

Because the index t is from a set of numbers, the period previous to t can be written as $t-1$. In fact, t can be used in any arithmetic expression; conversely, an AMPL expression such as $t-1$ may be used in any context where it makes sense. Notice also that for a first-period constraint (t equal to 1), the inventory term on the left is Inv [p, 0], the initial inventory.

We now have a complete model, as shown in Figure 4-4. To illustrate a solution, we use the small sample data file shown in Figure 4-5; it represents a four-week expansion of the data from Figure 1-4b.

If we put the model and data into files steelt.mod and steelt.dat, then AMPL can be invoked to find a solution:

```
ampl: model steelT.mod;
ampl: data steelt.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
20 iterations, objective 515033
ampl: option display_1col 0;
ampl: display Make;
Make [*,*] (tr)
: bands coils :=
        5990 1407
        6000 1400
3 1400 3500
4 2000 4200
;
ampl: display Inv;
Inv [*,*] (tr)
: bands coils :=
0 10 0
1 0 1100
2 0 0
0 0
4 0 0
;
ampl: display Sell;
Sell [*,*] (tr)
    bands coils :=
        6000 307
2 6000 2500
3 1400 3500
4 2000 4200
;
```

```
set PROD; # products
param T > 0; # number of weeks
param rate {PROD} > 0; # tons per hour produced
param inv0 {PROD} >= 0; # initial inventory
param avail {1..T} >= 0; # hours available in week
param market {PROD,1..T} >= 0; # limit on tons sold in week
param prodcost {PROD} >= 0; # cost per ton produced
param invcost {PROD} >= 0; # carrying cost/ton of inventory
param revenue {PROD,1..T} >= 0; # revenue per ton sold
var Make {PROD,1..T} >= 0; # tons produced
var Inv {PROD,O..T} >= 0; # tons inventoried
var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t]; # tons sold
maximize Total_Profit:
    sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
        prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);
    # Total revenue less costs in all weeks
subject to Time {t in 1..T}:
    sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];
    # Total of hours used by all products
    # may not exceed hours available, in each week
subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];
    # Initial inventory must equal given value
subject to Balance {p in PROD, t in 1..T}:
    Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];
                            # Tons produced and taken from inventory
                            # must equal tons sold and put into inventory
```

Figure 4-4: Multiperiod production model (steelT.mod).

```
param T := 4;
set PROD := bands coils;
param avail := 1 40 2 40 3 32 4 40 ;
param rate := bands 200 coils 140 ;
param inv0 := bands 10 coils 0 ;
param prodcost := bands 10 coils 11 ;
param invcost := bands 2.5 coils 3 ;
param revenue: 1 2 3 4 :=
        bands 25 26 27 27
        coils 30 35 37 39 ;
param market: 1 2 3 4 :=
        bands 6000 6000 4000 6500
        coils 4000 2500 3500 4200 ;
```

Figure 4-5: Data for multiperiod production model (steelt. dat).

Production of coils in the first week is held over to be sold at a higher price in the second week. In the second through fourth weeks, coils are more profitable than bands, and so coils are sold up to the limit, with bands filling out the capacity. (Setting option display_1col to zero permits this output to appear in a nicer format, as explained in Section 12.2.)

4.3 A model of production and transportation

Large linear programs can be created not only by tying together small models of one kind, as in the two examples above, but by linking different kinds of models. We conclude this chapter with an example that combines features of both production and transportation models.

Suppose that the steel products are made at several mills, from which they are shipped to customers at the various factories. For each mill we can define a separate production model to optimize the amounts of each product to make. For each product we can define a separate transportation model, with mills as origins and factories as destinations, to optimize the amounts of the product to be shipped. We would like to link all these separate models into a single integrated model of production and transportation.

To begin, we replicate the production model of Figure 1-4a over mills - that is, origins - rather than over weeks as in the previous example:

```
set PROD; # products
set ORIG; # origins (steel mills)
param rate {ORIG,PROD} > 0; # tons per hour at origins
param avail {ORIG} >= 0; # hours available at origins
var Make {ORIG,PROD} >= 0; # tons produced at origins
subject to Time {i in ORIG}:
    sum {p in PROD} (1/rate[i,p]) * Make[i,p] <= avail[i];
```

We have temporarily dropped the components pertaining to the objective, to which we will return later. We have also dropped the market demand parameters, since the demands are now properly associated with the destinations in the transportation models.

The next step is to replicate the transportation model, Figure 3-1a, over products, as we did in the multicommodity example at the beginning of this chapter:

```
set ORIG; # origins (steel mills)
set DEST; # destinations (factories)
set PROD; # products
param supply {ORIG,PROD} >= 0; # tons available at origins
param demand {DEST,PROD} >= 0; # tons required at destinations
var Trans {ORIG,DEST, PROD} >= 0; # tons shipped
```

```
set ORIG; # origins (steel mills)
set DEST; # destinations (factories)
set PROD; # products
param rate {ORIG,PROD} > 0; # tons per hour at origins
param avail {ORIG} >= 0; # hours available at origins
param demand {DEST,PROD} >= 0; # tons required at destinations
param make_cost {ORIG,PROD} >= 0; # manufacturing cost/ton
param trans_cost {ORIG,DEST,PROD} >= 0; # shipping cost/ton
var Make {ORIG,PROD} >= 0; # tons produced at origins
var Trans {ORIG,DEST,PROD} >= 0; # tons shipped
minimize Total_Cost:
    sum {i in ORIG, p in PROD} make_cost[i,p] * Make[i,p] +
    sum {i in ORIG, j in DEST, p in PROD}
                                trans_cost[i,j,p] * Trans[i,j,p];
subject to Time {i in ORIG}:
    sum {p in PROD} (1/rate[i,p]) * Make[i,p] <= avail[i];
subject to Supply {i in ORIG, p in PROD}:
    sum {j in DEST} Trans[i,j,p] = Make[i,p];
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p] = demand[j,p];
```

Figure 4-6: Production/transportation model, 3rd version (steelP.mod).

```
subject to Supply {i in ORIG, p in PROD}:
    sum {j in DEST} Trans[i,j,p] = supply[i,p];
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p] = demand[j,p];
```

Comparing the resulting production and transportation models, we see that the sets of origins (ORIG) and products (PROD) are the same in both models. Moreover, the "tons available at origins'" (supply) in the transportation model are really the same thing as the "tons produced at origins" (Make) in the production model, since the steel available for shipping will be whatever is made at the mill.

We can thus merge the two models, dropping the definition of supply and substituting Make [i,p] for the occurrence of supply [i,p]:

```
subject to Supply {i in ORIG, p in PROD}:
    sum {j in DEST} Trans[i,j,p] = Make[i,p];
```

There are several ways in which we might add an objective to complete the model. Perhaps the simplest is to define a cost per ton corresponding to each variable. We define a parameter make_cost so that there is a term make_cost[i,p] * Make[i,p] in the objective for each origin i and product p; and we define trans_cost so that there is a term trans_cost $[i, j, p]$ * Trans $[i, j, p]$ in the objective for each origin i, destination j and product p. The full model is shown in Figure 4-6.

```
set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;
set PROD := bands coils plate ;
param avail := GARY 20 CLEV 15 PITT 20 ;
param demand (tr):
\begin{tabular}{lrrrrrrrl} 
& FRA & DET & LAN & WIN & STL & FRE & LAF & : \\
bands & 300 & 300 & 100 & 75 & 650 & 225 & 250 & \\
coils & 500 & 750 & 400 & 250 & 950 & 850 & 500 & \\
plate & 100 & 100 & 0 & 50 & 200 & 100 & 250 & ;
\end{tabular}
param rate (tr): GARY CLEV PITT :=
        bands 200 190 230
        coils 140 130 160
        plate 160 160 170 ;
param make_cost (tr):
\begin{tabular}{lrrrl} 
& GARY & CLEV & PITT \(:=\) \\
bands & 180 & 190 & 190 & \\
coils & 170 & 170 & 180 & \\
plate & 180 & 185 & 185 & ;
\end{tabular}
param trans_cost :=
\begin{tabular}{crrrrrrr}
{\([*, *\), bands]: } & FRA & DET & LAN & WIN & STL & FRE & LAF \\
GARY & 30 & 10 & 8 & 10 & 11 & 71 & 6 \\
CLEV & 22 & 7 & 10 & 7 & 21 & 82 & 13
\end{tabular}
    [*,*,coils]: FRA DET LAN WIN STL FRE LAF :=
        GARY 
        CLEV 
    [*,*,plate]: FRA DET LAN WIN STL FRE LAF :=
        GARY 41 15 15
        CLEV 
```

Figure 4-7: Data for production/transportation model (steelP. dat).

Reviewing this formulation, we might observe that, according to the Supply declaration, the nonnegative expression

```
sum {j in DEST} Trans[i,j,p]
```

can be substituted for Make [i,p]. If we make this substitution for all occurrences of Make [i,p] in the objective and in the Time constraints, we no longer need to include the Make variables or the Supply constraints in our model, and our linear programs will be smaller as a result. Nevertheless, in most cases we will be better off leaving the model as it is shown above. By "substituting out" the Make variables we render the model harder to read, and not a great deal easier to solve.

As an instance of solving a linear program based on this model, we can adapt the data from Figure 4-2, as shown in Figure 4-7. Here are some representative result values:

```
ampl: model steelp.mod; data steelp.dat; solve;
CPLEX 8.0.0: optimal solution; objective 1392175
2 7 \text { dual simplex iterations (0 in phase I)}
ampl: option display_1col 5;
ampl: option omit_zero_rows 1, omit_zero_cols 1;
ampl: display Make;
Make [*,*]
: bands coils plate :=
CLEV 0 1950 0
GARY 1125 1750 300
PITT 775 500 500
;
ampl: display Trans;
Trans [CLEV,*,*]
: coils :=
DET 750
LAF 500
LAN 400
STL 50
WIN 250
[GARY,*,*]
: bands coils plate :=
FRE 225 850 100
LAF 250 0 0
STL 650 900 200
    [PITT,*,*]
: bands coils plate :=
DET 300 0 100
FRA 300 500 100
LAF 0 0 250
LAN 100 0 0
WIN 75 0 50
;
ampl: display Time;
Time [*] :=
CLEV -1300
GARY -2800
;
```

As one might expect, the optimal solution does not ship all products from all mills to all factories. We have used the options omit_zero_rows and omit_zero_cols to suppress the printing of table rows and columns that are all zeros. The dual values for Time show that additional capacity is likely to have the greatest impact on total cost if it is placed at GARY, and no impact if it is placed at PITT.

We can also investigate the relative costs of production and shipping, which are the two components of the objective:

```
ampl: display sum {i in ORIG, p in PROD}
    make_cost[i,p] * Make[i,p];
sum{i in ORIG, p in PROD} make_cost[i,p]*Make[i,p] = 1215250
ampl: display sum {i in ORIG, j in DEST, p in PROD}
    trans_cost[i,j,p] * Trans[i,j,p];
sum{i in ORIG, j in DEST, p in PROD}
    trans_cost[i,j,p]*Trans[i,j,p] = 176925
```

Clearly the production costs dominate in this case. These examples point up the ability of AMPL to evaluate and display any valid expression.

Bibliography

H. P. Williams, Model Building in Mathematical Programming (4th edition). John Wiley \& Sons (New York, 1999). An extended compilation of many kinds of models and combinations of them.

Exercises

4-1. Formulate a multi-period version of the transportation model, in which inventories are kept at the origins.
4-2. Formulate a combination of a transportation model for each of several foods, and a diet model at each destination.
4-3. The following questions pertain to the multiperiod production model and data of Section 4.2.
(a) Display the marginal values associated with the constraints Time [t]. In which periods does it appear that additional production capacity would be most valuable?
(b) By soliciting additional sales, you might be able to raise the upper bounds market [p,t]. Display the reduced costs Sell [p,t].rc, and use them to suggest whether you would prefer to go after more orders of bands or of coils in each week.
(c) If the inventory costs are all positive, any optimal solution will have zero inventories after the last week. Why is this so?
This phenomenon is an example of an "end effect". Because the model comes to an end after period T, the solution tends to behave as if production is to be shut down after that point. One way of dealing with end effects is to increase the number of weeks modeled; then the end effects should have little influence on the solution for the earlier weeks. Another approach is to modify the model to better reflect the realities of inventories. Describe some modifications you might make to the constraints, and to the objective.
4-4. A producer of packaged cookies and crackers runs several shifts each month at its large bakery. This exercise is concerned with a multiperiod planning model for deciding how many crews to employ each month. In the algebraic description of the model, there are sets S of shifts and P of
products, and the planning horizon is T four-week periods. The relevant operational data are as follows:
l number of production lines: maximum number of crews that can work in any shift
$r_{p} \quad$ production rate for product p, in crew-hours per 1000 boxes
$h_{t} \quad$ number of hours that a crew works in planning period t
The following data are determined by market or managerial considerations:
w_{s} total wages for a crew on shift s in one period
$d_{p t} \quad$ demand for product p that must be met in period t
M maximum change in number of crews employed from one period to the next
The decision variables of the model are:
$X_{p t} \geq d_{p t}$ total boxes (in 1000s) of product p baked in period t $0 \leq Y_{s t} \leq l$ number of crews employed on shift s in period t

The objective is to minimize the total cost of all crews employed,

$$
\sum_{s \in S} \sum_{t=1}^{T} w_{s} Y_{s t}
$$

Total hours required for production in each period may not exceed total hours available from all shifts,

$$
\sum_{p \in P} r_{p} X_{p t} \leq h_{t} \sum_{s \in S} Y_{s t}, \text { for each } t=1, \ldots, T
$$

The change in number of crews is restricted by

$$
-M \leq \sum_{s \in S}\left(Y_{s, t+1}-Y_{s t}\right) \leq M, \text { for each } t=1, \ldots, T-1
$$

As required by the definition of M, this constraint restricts any change to lie between a reduction of M crews and an increase of M crews.
(a) Formulate this model in AMPL, and solve the following instance. There are $T=13$ periods, $l=8$ production lines, and a maximum change of $M=3$ crews per period. The products are 18REG, 24 REG , and 24 PRO , with production rates r_{p} of $1.194,1.509$ and 1.509 respectively. Crews work either a day shift with wages w_{s} of $\$ 44,900$, or a night shift with wages $\$ 123,100$. The demands and working hours are given as follows by period:

Period t	$d_{18 \text { REG }, t}$	$d_{24 \text { REG, } t}$	$d_{24 P R O, t}$	h_{t}
1	63.8	1212.0	0.0	156
2	76.0	306.2	0.0	152
3	88.4	319.0	0.0	160
4	913.8	208.4	0.0	152
5	115.0	298.0	0.0	156
6	133.8	328.2	0.0	152
7	79.6	959.6	0.0	152
8	111.0	257.6	0.0	160
9	121.6	335.6	0.0	152
10	470.0	118.0	1102.0	160
11	78.4	284.8	0.0	160
12	99.4	970.0	0.0	144
13	140.4	343.8	0.0	144

Display the numbers of crews required on each shift. You will find many fractional numbers of crews; how would you convert this solution to an optimal one in whole numbers?
(b) To be consistent, you should also require at most a change of M between the known initial number of crews (already employed in the period before the first) and the number of crews to be employed in the first planning period. Add a provision for this restriction to the model.
Re-solve with 11 initial crews. You should get the same solution.
(c) Because of the limit on the change in crews from period to period, more crews than necessary are employed in some periods. One way to deal with this is to carry inventories from one period to the next, so as to smooth out the amount of production required in each period. Add a variable for the amount of inventory of each product after each period, as in the model of Figure 4-4, and add constraints that relate inventory to production and demand. (Because inventories can be carried forward, production $X_{p t}$ need not be \geq demand $d_{p t}$ in every period as required by the previous versions.) Also make a provision for setting initial inventories to zero. Finally, add an inventory cost per period per 1000 boxes to the objective.
Let the inventory costs be $\$ 34.56$ for product 18 REG, and $\$ 43.80$ for 24 REG and 24 PRO. Solve the resulting linear program; display the crew sizes and inventory levels. How different is this solution? How much of a saving is achieved in labor cost, at how much expense in inventory cost?
(d) The demands in the given data peak at certain periods, when special discount promotions are in effect. Big inventories are built up in advance of these peaks, particularly before period 4. Baked goods are perishable, however, so that building up inventories past a certain number of periods is unrealistic.
Modify the model so that the inventory variables are indexed by product, period and age, where age runs from 1 to a specified limit A. Add constraints that the inventories of age 1 after any period cannot exceed the amounts just produced, and that inventories of age $a>1$ after period t cannot exceed the inventories of age $a-1$ after period $t-1$.
Verify that, with a maximum inventory age of 2 periods, you can use essentially the same solution as in (c), but that with a maximum inventory age of 1 there are some periods that require more crews.
(e) Suppose now that instead of adding a third index on inventory variables as in (d), you impose the following inventory constraint: The amount of product p in inventory after period t may not exceed the total production of product p in periods $t-A+1$ through t.
Explain why this constraint is sufficient to prevent any inventory from being more than A periods old, provided that inventories are managed on a first-in, first-out basis. Support your conclusion by showing that you get the same results as in (d) when solving with a maximum inventory age of 2 or of 1 .
(f) Explain how you would modify the models in (c), (d), and (e) to account for initial inventories that are not zero.

4-5. Multiperiod linear programs can be especially difficult to develop, because they require data pertaining to the future. To hedge against the uncertainty of the future, a user of these LPs typically develops various scenarios, containing different forecasts of certain key parameters. This exercise asks you to develop what is known as a stochastic program, which finds a solution that can be considered robust over all scenarios.
(a) The revenues per ton might be particularly hard to predict, because they depend on fluctuating market conditions. Let the revenue data in Figure $4-5$ be scenario 1, and also consider scenario 2:

param revenue:	1	2	3	4
bands	23	24	25	25
coils	30	33	35	36

and scenario 3 :

param revenue:	1	2	3	4
bands	21	27	33	35
coils	30	32	33	33

By solving the three associated linear programs, verify that each of these scenarios leads to a different optimal production and sales strategy, even for the first week. You need one strategy, however, not three. The purpose of the stochastic programming approach is to determine a single solution that produces a good profit 'on average" in a certain sense.
(b) As a first step toward formulating a stochastic program, consider how the three scenarios could be brought together into one linear program. Define a parameter S as the number of scenarios, and replicate the revenue data over the set $1 . . S$:

```
param S > 0;
param revenue {PROD,1..T,1..S} >= 0;
```

Replicate all the variables and constraints in a similar way. (The idea is the same as earlier in this chapter, where we replicated model components over products or weeks.)
Define a new collection of parameters prob [s] , to represent your estimate of the probability that a scenario s takes place

```
param prob {1..S} >= 0, <= 1;
    check: 0.99999 < sum {s in 1..S} prob[s] < 1.00001;
```

The objective function is the expected profit, which equals the sum over all scenarios of the probability of each scenario times the optimum profit under that scenario:

```
maximize Expected_Profit
    sum {s in 1..S} prob[s] *
        sum {p in PROD, t in 1..T} (revenue[p,t,s]*Sell[p,t,s] -
            prodcost[p]*Make[p,t,s] - invcost[p]*Inv[p,t,s]);
```

Complete the formulation of this multiscenario linear program, and put together the data for it. Let the probabilities of scenarios 1,2 and 3 be $0.45,0.35$ and 0.20 , respectively. Show that the solution consists of a production strategy for each scenario that is the same as the strategy in (a).
(c) The formulation in (b) is no improvement because it makes no connection between the scenarios. One way to make the model usable is to add 'nonanticipativity', constraints that require each week-1 variable to be given the same value across all scenarios. Then the result will give you the best single strategy for the first week, in the sense of maximizing expected profit for all weeks. The strategies will still diverge after the first week - but a week from now you can update your data and run the stochastic program again to generate a second week's strategy.
A nonanticipativity constraint for the Make variables can be written

```
subject to Make_na {p in PROD, s in 1..S-1}:
    Make[p,1,s] = Make[p,1,s+1];
```

Add the analogous constraints for the Inv and Sell variables. Solve the stochastic program, and verify that the solution consists of a single period-1 strategy for all three scenarios.
(d) After getting your solution in (c), use the following command to look at the profits that the recommended strategy will achieve under the three scenarios:

```
display {s in 1..S}
    sum {p in PROD, t in 1..T} (revenue[p,t,s]*Sell[p,t,s] -
        prodcost[p]*Make[p,t,s] - invcost[p]*Inv[p,t,s]);
```

Which scenario will be most profitable, and which will be least profitable?
Repeat the analysis with probabilities of $0.0001,0.0001$ and 0.9998 for scenarios 1,2 and 3. You should find that profit from strategy 3 goes up, but profits from the other two go down. Explain what these profits represent, and why the results are what you would expect.

5

Simple Sets and Indexing

The next four chapters of this book are a comprehensive presentation of AMPL's facilities for linear programming. The organization is by language features, rather than by model types as in the four preceding tutorial chapters. Since the basic features of AMPL tend to be closely interrelated, we do not attempt to explain any one feature in isolation. Rather, we assume at the outset a basic knowledge of AMPL such as Chapters 1 through 4 provide.

We begin with sets, the most fundamental components of an AMPL model. Almost all of the parameters, variables, and constraints in a typical model are indexed over sets, and many expressions contain operations (usually summations) over sets. Set indexing is the feature that permits a concise model to describe a large mathematical program.

Because sets are so fundamental, AMPL offers a broad variety of set types and operations. A set's members may be strings or numbers, ordered or unordered; they may occur singly, or as ordered pairs, triples or longer "tuples". Sets may be defined by listing or computing their members explicitly, by applying operations like union and intersection to other sets, or by specifying arbitrary arithmetic or logical conditions for membership.

Any model component or iterated operation can be indexed over any set, using a standard form of indexing expression. Even sets themselves may be declared in collections indexed over other sets.

This chapter introduces the simpler kinds of sets, as well as set operations and indexing expressions; it concludes with a discussion of ordered sets. Chapter 6 shows how these ideas are extended to compound sets, including sets of pairs and triples, and indexed collections of sets. Chapter 7 is devoted to parameters and expressions, and Chapter 8 to the variables, objectives and constraints that make up a linear program.

5.1 Unordered sets

The most elementary kind of AMPL set is an unordered collection of character strings. Usually all of the strings in a set are intended to represent instances of the same kind of
entity - such as raw materials, products, factories or cities. Often the strings are chosen to have recognizable meanings (coils, FISH, New_York), but they could just as well be codes known only to the modeler (23RPFG, 486/33C). A literal string that appears in an AMPL model must be delimited by quotes, either single (' $A \& \mathrm{P}^{\prime}$) or double ("Bell+Howell"). In all contexts, upper case and lower case letters are distinct, so that for example "fish", "Fish", and "FISH" represent different set members.

The declaration of a set need only contain the keyword set and a name. For example, a model may declare

```
set PROD;
```

to indicate that a certain set will be referred to by the name PROD in the rest of the model. A name may be any sequence of letters, numerals, and underscore (-) characters that is not a legal number. A few names have special meanings in AMPL, and may only be used for specific purposes, while a larger number of names have predefined meanings that can be changed if they are used in some other way. For example, sum is reserved for the iterated addition operator; but prod is merely pre-defined as the iterated multiplication operator, so you can redefine prod as a set of products:

```
set prod;
```

A list of reserved words is given in Section A.1.
A declared set's membership is normally specified as part of the data for the model, in the manner to be described in Chapter 9; this separation of model and data is recommended for most mathematical programming applications. Occasionally, however, it is desirable to refer to a particular set of strings within a model. A literal set of this kind is specified by listing its members within braces:

```
{"bands", "coils", "plate"}
```

This expression may be used anywhere that a set is valid, for example in a model statement that gives the set PROD a fixed membership:

```
set PROD = {"bands", "coils", "plate"};
```

This sort of declaration is best limited to cases where a set's membership is small, is a fundamental aspect of the model, or is not expected to change often. Nevertheless we will see that the = phrase is often useful in set declarations, for the purpose of defining a set in terms of other sets and parameters. The operator = may be replaced by default to initialize the set while allowing its value to be overridden by a data statement or changed by subsequent assignments. These options are more important for parameters, however, so we discuss them more fully in Section 7.5.

Notice that AMPL makes a distinction between a string such as "bands" and a set like \{"bands"\} that has a membership of one string. The set that has no members (the empty set) is denoted \{\}.

5.2 Sets of numbers

Set members may also be numbers. In fact a set's members may be a mixture of numbers and strings, though this is seldom the case. In an AMPL model, a literal number is written in the customary way as a sequence of digits, optionally preceded by a sign, containing an optional decimal point, and optionally followed by an exponent; the exponent consists of a d, D, e, or E, optionally a sign, and a sequence of digits. A number (1) and the corresponding string ("1") are distinct; by contrast, different representations of the same number, such as 100 and $1 \mathrm{E}+2$, stand for the same set member.

A set of numbers is often a sequence that corresponds to some progression in the situation being modeled, such as a series of weeks or years. Just as for strings, the numbers in a set can be specified as part of the data, or can be specified within a model as a list between braces, such as $\{1,2,3,4,5,6\}$. This sort of set can be described more concisely by the notation 1..6. An additional by clause can be used to specify an interval other than 1 between the numbers; for instance,

$$
1990 \text {.. } 2020 \text { by } 5
$$

represents the set

```
{1990, 1995, 2000, 2005, 2010, 2015, 2020}
```

This kind of expression can be used anywhere that a set is appropriate, and in particular within the assignment phrase of a set declaration:

```
set YEARS = 1990 .. 2020 by 5;
```

By giving the set a short and meaningful name, this declaration may help to make the rest of the model more readable.

It is not good practice to specify all the numbers within a . . expression by literals like 2020 and 5 , unless the values of these numbers are fundamental to the model or will rarely change. A better arrangement is seen in the multiperiod production example of Figures 4-4 and 4-5, where a parameter T is declared to represent the number of periods, and the expressions $1 \ldots \mathrm{~T}$ and $0 \ldots \mathrm{~T}$ are used to represent sets of periods over which parameters, variables, constraints and sums are indexed. The value of T is specified in the data, and is thus easily changed from one run to the next. As a more elaborate example, we could write

```
param start integer;
param end > start integer;
param interval > 0 integer;
set YEARS = start .. end by interval;
```

If subsequently we were to give the data as

```
param start := 1990;
param end := 2020;
param interval := 5;
```

then YEARS would be the same set as in the previous example (as it would also be if end were 2023.) You may use any arithmetic expression to represent any of the values in a . . expression.

The members of a set of numbers have the same properties as any other numbers, and hence can be used in arithmetic expressions. A simple example is seen in Figure 4-4, where the material balance constraint is declared as

```
subject to Balance {p in PROD, t in 1..T}:
    Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];
```

Because t runs over the set $1 \ldots \mathrm{~T}$, we can write $\operatorname{Inv}[p, t-1]$ to represent the inventory at the end of the previous week. If t instead ran over a set of strings, the expression $t-1$ would be rejected as an error.

Set members need not be integers. AMPL attempts to store each numerical set member as the nearest representable floating-point number. You can see how this works out on your computer by trying an experiment like the following:

```
ampl: option display_width 50;
ampl: display -5/3 .. 5/3 by 1/3;
set -5/3 .. 5/3 by 1/3 :=
-1.6666666666666667 0.33333333333333326
-1.3333333333333335 0.6666666666666663
-1 0.9999999999999998
-0.6666666666666667 1.3333333333333333
-0.3333333333333335 1.6666666666666663
-2.220446049250313e-16;
```

You might expect 0 and 1 to be members of this set, but things do not work out that way due to rounding error in the floating-point computations. It is unwise to use fractional numbers in sets, if your model relies on set members having precise values. There should be no comparable problem with integer members of reasonable size; integers are represented exactly for magnitudes up to 2^{53} (approximately 10^{16}) for IEEE standard arithmetic, and up to 2^{47} (approximately 10^{14}) for almost any computer in current use.

5.3 Set operations

AMPL has four operators that construct new sets from existing ones:

A union B	union: in either A or B
A inter B	intersection: in both A and B
A diff B	difference: in A but not B
A symdiff B	symmetric difference: in A or B but not both

The following excerpt from an AMPL session shows how these work:

```
ampl: set Y1 = 1990 .. 2020 by 5;
ampl: set Y2 = 2000 .. 2025 by 5;
ampl: display Y1 union Y2, Y1 inter Y2;
set Y1 union Y2 := 1990 1995 2000 2005 2010 2015 2020 2025;
set Y1 inter Y2 := 2000 2005 2010 2015 2020;
ampl: display Y1 diff Y2, Y1 symdiff Y2;
set Y1 diff Y2 := 1990 1995;
set Y1 symdiff Y2 := 1990 1995 2025;
```

The operands of set operators may be other set expressions, allowing more complex expressions to be built up:

```
ampl: display Y1 symdiff (Y1 symdiff Y2);
set Y1 symdiff (Y1 symdiff Y2) :=
2000 2005 2010 2015 2020 2025;
ampl: display (Y1 union {2025,2035,2045}) diff Y2;
set Y1 union {2025, 2035, 2045} diff Y2 :=
1990 1995 2035 2045;
ampl: display 2000..2040 by 5 symdiff (Y1 union Y2);
set 2000 .. 2040 by 5 symdiff (Y1 union Y2) :=
2030 2035 2040 1990 1995;
```

The operands must always represent sets, however, so that for example you must write Y1 union \{2025\}, not Y1 union 2025.

Set operators group to the left unless parentheses are used to indicate otherwise. The union, diff, and symdiff operators have the same precedence, just below that of inter. Thus, for example,

```
A union B inter C diff D
```

is parsed as

```
(A union (B inter C)) diff D
```

A precedence hierarchy of all AMPL operators is given in Table A-1 of Section A.4.
Set operations are often used in the assignment phrase of a set declaration, to define a new set in terms of already declared sets. A simple example is provided by a variation on the diet model of Figure 2-1. Rather than specifying a lower limit and an upper limit on the amount of every nutrient, suppose that you want to specify a set of nutrients that have a lower limit, and a set of nutrients that have an upper limit. (Every nutrient is in one set or the other; some nutrients might be in both.) You could declare:

```
set MINREQ; # nutrients with minimum requirements
set MAXREQ; # nutrients with maximum requirements
set NUTR; # all nutrients (DUBIOUS)
```

But then you would be relying on the user of the model to make sure that NUTR contains exactly all the members of MINREQ and MAXREQ. At best this is unnecessary work, and at worst it will be done incorrectly. Instead you can define NUTR as the union:

```
set NUTR = MINREQ union MAXREQ;
```

```
set MINREQ; # nutrients with minimum requirements
set MAXREQ; # nutrients with maximum requirements
set NUTR = MINREQ union MAXREQ; # nutrients
set FOOD; # foods
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
param n_min {MINREQ} >= 0;
param n_max {MAXREQ} >= 0;
param amt {NUTR,FOOD} >= 0;
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];
subject to Diet_Min {i in MINREQ}:
    sum {j in FOOD} amt[i,j] * Buy[j] >= n_min[i];
subject to Diet_Max {i in MAXREQ}:
    sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];
```

Figure 5-1: Diet model using union operator (dietu.mod).

All three of these sets are needed, since the nutrient minima and maxima are indexed over MINREQ and MAXREQ,

```
param n_min {MINREQ} >= 0;
param n_max {MAXREQ} >= 0;
```

while the amounts of nutrients in the foods are indexed over NUTR:

```
param amt {NUTR,FOOD} >= 0;
```

The modification of the rest of the model is straightforward; the result is shown in Figure 5-1.

As a general principle, it is a bad idea to set up a model so that redundant information has to be provided. Instead a minimal necessary collection of sets should be chosen to be supplied in the data, while other relevant sets are defined by expressions in the model.

5.4 Set membership operations and functions

Two other AMPL operators, in and within, test the membership of sets. As an example, the expression

```
"B2" in NUTR
```

is true if and only if the string "B2" is a member of the set NUTR. The expression

```
MINREQ within NUTR
```

is true if all members of the set MINREQ are also members of NUTR - that is, if MINREQ is a subset of (or is the same as) NUTR. The in and within operators are the AMPL counterparts of \in and \subseteq in traditional algebraic notation. The distinction between members and sets is especially important here; the left operand of in must be an expression that evaluates to a string or number, whereas the left operand of within must be an expression that evaluates to a set.

AMPL also provides operators not in and not within, which reverse the truth value of their result.

You may apply within directly to a set you are declaring, to say that it must be a subset of some other set. Returning to the diet example, if all nutrients have a minimum requirement, but only some subset of nutrients has a maximum requirement, it would make sense to declare the sets as:

```
set NUTR;
set MAXREQ within NUTR;
```

AMPL will reject the data for this model if any member specified for MAXREQ is not also a member of NUTR.

The built-in function card computes the number of members in (or cardinality of) a set; for example, card (NUTR) is the number of members in NUTR. The argument of the card function may be any expression that evaluates to a set.

5.5 Indexing expressions

In algebraic notation, the use of sets is indicated informally by phrases such as "for all $i \in P$ " or "for $t=1, \ldots, T$ '" or "for all $j \in R$ such that $c_{j}>0$." The AMPL counterpart is the indexing expression that appears within braces $\{\ldots\}$ in nearly all of our examples. An indexing expression is used whenever we specify the set over which a model component is indexed, or the set over which a summation runs. Since an indexing expression defines a set, it can be used in any place where a set is appropriate.

The simplest form of indexing expression is just a set name or expression within braces. We have seen this in parameter declarations such as these from the multiperiod production model of Figure 4-4:

```
param rate {PROD} > 0;
param avail {1..T} >= 0;
```

Later in the model, references to these parameters are subscripted with a single set member, in expressions such as avail[t] and rate [p]. Variables can be declared and used in exactly the same way, except that the keyword var takes the place of param.

The names such as t and i that appear in subscripts and other expressions in our models are examples of dummy indices that have been defined by indexing expressions. In fact, any indexing expression may optionally define a dummy index that runs over the specified set. Dummy indices are convenient in specifying bounds on parameters:

```
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
```

and on variables:

```
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
```

They are also essential in specifying the sets over which constraints are defined, and the sets over which summations are done. We have often seen these uses together, in declarations such as

```
subject to Time {t in 1..T}:
    sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];
```

and

```
subject to Diet_Min {i in MINREQ}:
    sum {j in FOOD} amt[i,j] * Buy[j] >= n_min[i];
```

An indexing expression consists of an index name, the keyword in, and a set expression as before. We have been using single letters for our index names, but this is not a requirement; an index name can be any sequence of letters, digits, and underscores that is not a valid number, just like the name for a model component.

Although a name defined by a model component's declaration is known throughout all subsequent statements in the model, the definition of a dummy index name is effective only within the scope of the defining indexing expression. Normally the scope is evident from the context. For instance, in the Diet_Min declaration above, the scope of \{i in MINREQ $\}$ runs to the end of the statement, so that i can be used anywhere in the description of the constraint. On the other hand, the scope of \{j in FOOD\} covers only the summand amt [i,j] * Buy[j]. The scope of indexing expressions for sums and other iterated operators is discussed further in Chapter 7.

Once an indexing expression's scope has ended, its dummy index becomes undefined. Thus the same index name can be defined again and again in a model, and in fact it is good practice to use relatively few different index names. A common convention is to associate certain index names with certain sets, so that for example i always runs over NUTR and j always runs over FOOD. This is merely a convention, however, not a restriction imposed by AMPL. Indeed, when we modified the diet model so that there was a subset MINREQ of NUTR, we used i to run over MINREQ as well as NUTR. The opposite situation occurs, for example, if we want to specify a constraint that the amount of each food j in the diet is at least some fraction min_frac [j] of the total food in the diet:

```
subject to Food_Ratio {j in FOOD}:
    Buy[j] >= min_frac[j] * sum {jj in FOOD} Buy[jj];
```

Since the scope of j in FOOD extends to the end of the declaration, a different index $j \mathrm{j}$ is defined to run over the set FOOD in the summation within the constraint.

As a final option, the set in an indexing expression may be followed by a colon (:) and a logical condition. The indexing expression then represents only the subset of members that satisfy the condition. For example,

```
{j in FOOD: f_max[j] - f_min[j] < 1}
```

describes the set of all foods whose minimum and maximum amounts are nearly the same, and

```
{i in NUTR: i in MAXREQ or n_min[i] > 0}
```

describes the set of nutrients that are either in MAXREQ or for which n_min is positive. The use of operators such as or and < to form logical conditions will be fully explained in Chapter 7.

By specifying a condition, an indexing expression defines a new set. You can use the indexing expression to represent this set not only in indexed declarations and summations, but anywhere else that a set expression may appear. For example, you could say either of

```
set NUTREQ = {i in NUTR: i in MAXREQ or n_min[i] > 0};
set NUTREQ = MAXREQ union {i in MINREQ: n_min[i] > 0};
```

to define NUTREQ to represent our preceding example of a set expression, and you could use either of

```
set BOTHREQ = {i in MINREQ: i in MAXREQ};
set BOTHREQ = MINREQ inter MAXREQ;
```

to define BOTHREQ to be the set of all nutrients that have both minimum and maximum requirements. It's not unusual to find that there are several ways of describing some complicated set, depending on how you combine set operations and indexing expression conditions. Of course, some possibilities are easier to read than others, so it's worth taking some trouble to find the most readable. In Chapter 6 we also discuss efficiency considerations that sometimes make one alternative preferable to another in specifying compound sets.

In addition to being valuable within the model, indexing expressions are useful in display statements to summarize characteristics of the data or solution. The following example is based on the model of Figure 5-1 and the data of Figure 5-2:

```
ampl: model dietu.mod;
ampl: data dietu.dat;
ampl: display MAXREQ union {i in MINREQ: n_min[i] > 0};
set MAXREQ union {i in MINREQ: n_min[i] > 0} := A NA CAL C;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 74.27382022
2 dual simplex iterations (0 in phase I)
ampl: display {j in FOOD: Buy[j] > f_min[j]};
set {j in FOOD: Buy[j] > f_min[j]} := CHK MTL SPG;
ampl: display {i in MINREQ: Diet_Min[i].slack = 0};
set {i in MINREQ: (Diet_Min[i].slack) == 0} := C CAL;
```

AMPL interactive commands are allowed to refer to variables and constraints in the condition phrase of an indexing expression, as illustrated by the last two display state-

```
set MINREQ := A B1 B2 C CAL ;
set MAXREQ := A NA CAL ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;
param: cost f_min f_max :=
    BEEF 3.19 2 10
    CHK 2.59 2 10
    FISH 2.29 2 10
    HAM 2.89 2 10
    MCH 1.89 2 10
    MTL 1.99 2 10
    SPG 1.99 2 10
    TUR 2.49 2 10 ;
param: n_min n_max :=
    A 700 20000
    C 700
    B1 0
    B2 0 .
    NA . 50000
    CAL 16000 24000 ;
param amt (tr): A C B1 B2 NA CAL :=
        BEEF 60 20 10 15 938 295
        CHK 8 0 20 20 2180 770
        FISH 
        HAM 40 40 35 10
        MCH 15 15 35 15
        MTL 
        SPG 25 50 25 15 1329 370
        TUR 60 20 15 10 1397 450 ;
```

Figure 5-2: Data for diet model (dietu.dat).
ments above. Within a model, however, only sets, parameters and dummy indices may be mentioned in any indexing expression.

The set BOTHREQ above might well be empty, in the case where every nutrient has either a minimum or a maximum requirement in the data, but not both. Indexing over an empty set is not an error. When a model component is declared to be indexed over a set that turns out to be empty, AMPL simply skips generating that component. A sum over an empty set is zero, and other iterated operators over empty sets have the obvious interpretations (see A.4).

5.6 Ordered sets

Any set of numbers has a natural ordering, so numbers are often used to represent entities, like time periods, whose ordering is essential to the specification of a model. To
describe the difference between this week's inventory and the previous week's inventory, for example, we need the weeks to be ordered so that the "previous'" week is always well defined.

An AMPL model can also define its own ordering for any set of numbers or strings, by adding the keyword ordered or circular to the set's declaration. The order in which you give the set's members, in either the model or the data, is then the order in which AMPL works with them. In a set declared circular, the first member is considered to follow the last one, and the last to precede the first; in an ordered set, the first member has no predecessor and the last member has no successor.

Ordered sets of strings often provide better documentation for a model's data than sets of numbers. Returning to the multiperiod production model of Figure 4-4, we observe that there is no way to tell from the data which weeks the numbers 1 through T refer to, or even that they are weeks instead of days or months. Suppose that instead we let the weeks be represented by an ordered set that contains, say, $27 \mathrm{sep}, 040 \mathrm{ct}$, 11oct and 18oct. The declaration of T is replaced by

```
set WEEKS ordered;
```

and all subsequent occurrences of $1 \ldots \mathrm{~T}$ are replaced by WEEKS. In the Balance constraint, the expression $t-1$ is replaced by prev (t), which selects the member before t in the set's ordering:

```
subject to Balance {p in PROD, t in WEEKS}:
    Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t]; # WRONG
```

This is not quite right, however, because when t is the first week in WEEKS, the member prev (t) is not defined. When you try to solve the problem, you will get an error message like this:

```
error processing constraint Balance['bands','27sep']:
    can't compute prev('27sep', WEEKS) --
            '27sep' is the first member
```

One way to fix this is to give a separate balance constraint for the first period, in which Inv [p, prev (t)] is replaced by the initial inventory, inv0 [p]:

```
subject to Balance0 {p in PROD}:
    Make[p,first(WEEKS)] + inv0[p]
        = Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];
```

The regular balance constraint is limited to the remaining weeks:

```
subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
    Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];
```

The complete model and data are shown in Figures 5-3 and 5-4. As a tradeoff for more meaningful week names, we have to write a slightly more complicated model.

As our example demonstrates, AMPL provides a variety of functions that apply specifically to ordered sets. These functions are of three basic types.

```
set PROD; # products
set WEEKS ordered; # number of weeks
param rate {PROD} > 0; # tons per hour produced
param inv0 {PROD} >= 0; # initial inventory
param avail {WEEKS} >= 0; # hours available in week
param market {PROD,WEEKS} >= 0; # limit on tons sold in week
param prodcost {PROD} >= 0; # cost per ton produced
param invcost {PROD} >= 0; # carrying cost/ton of inventory
param revenue {PROD,WEEKS} >= 0; # revenue/ton sold
var Make {PROD,WEEKS} >= 0; # tons produced
var Inv {PROD,WEEKS} >= 0; # tons inventoried
var Sell {p in PROD, t in WEEKS} >= 0, <= market[p,t]; # tons sold
maximize Total_Profit:
    sum {p in PROD, t in WEEKS} (revenue[p,t]*Sell[p,t] -
        prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);
            # Objective: total revenue less costs in all weeks
subject to Time {t in WEEKS}:
    sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];
                                    # Total of hours used by all products
                                    # may not exceed hours available, in each week
subject to Balance0 {p in PROD}:
    Make[p,first(WEEKS)] + invO[p]
        = Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];
subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
    Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];
        # Tons produced and taken from inventory
        # must equal tons sold and put into inventory
```

Figure 5-3: Production model with ordered sets (steel 12 .mod).

First, there are functions that return a member from some absolute position in a set. You can write first (WEEKS) and last (WEEKS) for the first and last members of the ordered set WEEKS. To pick out other members, you can use member (5 , WEEKS) , say, for the 5th member of WEEKS. The arguments of these functions must evaluate to an ordered set, except for the first argument of member, which can be any expression that evaluates to a positive integer.

A second kind of function returns a member from a position relative to another member. Thus you can write prev(t, WEEKS) for the member immediately before t in WEEKS, and next ($t, W E E K S$) for the member immediately after. More generally, expressions such as prev($\mathrm{t}, \mathrm{WEEKS}, 5$) and next ($\mathrm{t}, \mathrm{WEEKS}, 3$) refer to the 5th member before and the 3rd member after t in WEEKS. There are also "wraparound" versions prevw and nextw that work the same except that they treat the end of the set as wrapping around to the beginning; in effect, they treat all ordered sets as if their decla-

```
set PROD := bands coils ;
set WEEKS := 27sep 04oct 11oct 18oct ;
param avail := 27sep 40 04oct 40 11oct 32 18oct 40 ;
param rate := bands 200 coils 140 ;
param inv0 := bands 10 coils 0 ;
param prodcost := bands 10 coils 11 ;
param invcost := bands 2.5 coils 3 ;
param revenue: 27sep 04oct 11oct 18oct :=
\begin{tabular}{crrrrl} 
bands & 25 & 26 & 27 & 27 \\
coils & 30 & 35 & 37 & 39 ; \\
param market: & 27 sep & 04 oct & 11 oct & 18 oct & \(:=\) \\
bands & 6000 & 6000 & 4000 & 6500 & \\
coils & 4000 & 2500 & 3500 & 4200 & ;
\end{tabular}
```

Figure 5-4: Data for production model (steelT2 . dat).
rations were circular. In all of these functions, the first argument must evaluate to a number or string, the second argument to an ordered set, and the third to an integer. Normally the integer is positive, but zero and negative values are interpreted in a consistent way; for instance, next (t, WEEKS, 0) is the same as t, and next (t, WEEKS, -5) is the same as prev (t, WEEKS, 5).

Finally, there are functions that return the position of a member within a set. The expression ord (t, WEEKS) returns the numerical position of t within the set WEEKS, or gives you an error message if t is not a member of WEEKS. The alternative ord0 (t, WEEKS) is the same except that it returns 0 if t is not a member of WEEKS. For these functions the first argument must evaluate to a positive integer, and the second to an ordered set.

If the first argument of next, nextw, prev, prevw, or ord is a dummy index that runs over an ordered set, its associated indexing set is assumed if a set is not given as the second argument. Thus in the constraint

```
subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
    Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];
```

the functions ord(t) and prev(t) are interpreted as if they had been written ord(t, WEEKS) and prev (t, WEEKS).

Ordered sets can also be used with any of the AMPL operators and functions that apply to sets generally. The result of a diff operation preserves the ordering of the left operand, so the material balance constraint in our example could be written:

```
subject to Balance {p in PROD, t in WEEKS diff {first(WEEKS)}}:
    Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];
```

For union, inter and symdiff, however, the ordering of the result is not well defined; AMPL treats the result as an unordered set.

For a set that is contained in an ordered set, AMPL provides a way to say that the ordering should be inherited. Suppose for example that you want to try running the multiperiod production model with horizons of different lengths. In the following declarations, the ordered set ALL_WEEKS and the parameter T are given in the data, while the subset WEEKS is defined by an indexing expression to include only the first T weeks:

```
set ALL_WEEKS ordered;
param T > O integer;
set WEEKS = {t in ALL_WEEKS: ord(t) <= T} ordered by ALL_WEEKS;
```

We specify ordered by ALL_WEEKS so that WEEKS becomes an ordered set, with its members having the same ordering as they do in ALL_WEEKS. The ordered by and circular by phrases have the same effect as the within phrase of Section 5.4 together with ordered or circular, except that they also cause the declared set to inherit the ordering from the containing set. There are also ordered by reversed and circular by reversed phrases, which cause the declared set's ordering to be the opposite of the containing set's ordering. All of these phrases may be used either with a subset supplied in the data, or with a subset defined by an expression as in the example above.

Predefined sets and interval expressions

AMPL provides special names and expressions for certain common intervals and other sets that are either infinite or potentially very large. Indexing expressions may not iterate over these sets, but they can be convenient for specifying the conditional phrases in set and param declarations.

AMPL intervals are sets containing all numbers between two bounds. There are intervals of real (floating-point) numbers and of integers, introduced by the keywords interval and integer respectively. They may be specified as closed, open, or halfopen, following standard mathematical notation,

```
interval [a, b] \equiv{x: a \leqx \leq b },
interval (a, b] \equiv{x: a < x \leq b },
interval [a, b) \equiv{x: a \leq x < b },
interval (a, b) \equiv{x: a < x < b },
integer [a, b] \equiv{x\inI: a \leq x \leq b },
integer (a, b] \equiv{x\inI: a < x \leq b },
integer [a, b) \equiv{x\inI: a \leq x < b },
integer (a, b) \equiv{x\inI: a < x < b }
```

where a and b are any arithmetic expressions, and I denotes the set of integers. In the declaration phrases

```
in interval
within interval
ordered by [ reversed ] interval
circular by [ reversed ] interval
```

the keyword interval may be omitted.
As an example, in declaring Chapter 1's parameter rate, you can declare

```
param rate {PROD} in interval (0,maxrate];
```

to say that the production rates have to be greater than zero and not more than some previously defined parameter maxrate; you could write the same thing more concisely as

```
param rate {PROD} in (0,maxrate];
```

or equivalently as

```
param rate {PROD} > 0, <= maxrate;
```

An open-ended interval can be specified by using the predefined AMPL parameter Infinity as the right-hand bound, or -Infinity as the left-hand bound, so that

```
param rate {PROD} in (0,Infinity];
```

means exactly the same thing as

```
param rate {PROD} > 0;
```

in Figure 1-4a. In general, intervals do not let you say anything new in set or parameter declarations; they just give you alternative ways to say things. (They have a more essential role in defining imported functions, as discussed in Section A.22.)

The predefined infinite sets Reals and Integers are the sets of all floating-point numbers and integers, respectively, in numeric order. The predefined infinite sets ASCII, EBCDIC, and Display all represent the universal set of strings and numbers from which members of any one-dimensional set are drawn. ASCII and EBCDIC are ordered by the ASCII and EBCDIC collating sequences, respectively. Display has the ordering used in AMPL's display command (Section A.16): numbers precede literals and are ordered numerically; literals are sorted by the ASCII collating sequence.

As an example, you can declare

```
set PROD ordered by ASCII;
```

to make AMPL's ordering of the members of PROD alphabetical, regardless of their ordering in the data. This reordering of the members of PROD has no effect on the solutions of the model in Figure 1-4a, but it causes AMPL listings of most entities indexed over PROD to appear in the same order (see A.6.2).

Exercises

5-1. (a) Display the sets

```
-5/3 .. 5/3 by 1/3
0 .. 1 by . 1
```

Explain any evidence of rounding error in your computer's arithmetic.
(b) Try the following commands from Sections 5.2 and 5.4 on your computer:

```
ampl: set HUGE = 1..1e7;
ampl: display card(HUGE);
```

When AMPL runs out of memory, how many bytes does it say were available? (If your computer really does have enough memory, try 1..1e8.) Experiment to see how big a set HUGE your computer can hold without running out of memory.

5-2. Revise the model of Exercise $1-6$ so that it makes use of two different attribute sets: a set of attributes that have lower limits, and a set of attributes that have upper limits. Use the same approach as in Figure 5-1.

5-3. Use the display command, together with indexing expressions as demonstrated in Section 5.5, to determine the following sets relating to the diet model of Figures 5-1 and 5-2:

- Foods that have a unit cost greater than $\$ 2.00$.
- Foods that have a sodium (NA) content of more than 1000.
- Foods that contribute more than $\$ 10$ to the total cost in the optimal solution.
- Foods that are purchased at more than the minimum level but less than the maximum level in the optimal solution.
- Nutrients that the optimal diet supplies in exactly the minimum allowable amount.
- Nutrients that the optimal diet supplies in exactly the maximum allowable amount.
- Nutrients that the optimal diet supplies in more than the minimum allowable amount but less than the maximum allowable amount.

5-4. This exercise refers to the multiperiod production model of Figure 4-4.
(a) Suppose that we define two additional scalar parameters,

```
param Tbegin integer >= 1;
param Tend integer > Tbegin, <= T;
```

We want to solve the linear program that covers only the weeks from Tbegin through Tend. We still want the parameters to use the indexing $1 . . T$, however, so that we don't need to change the data tables every time we try a different value for Tbegin or Tend.
To start with, we can change every occurrence of $1 \ldots \mathrm{~T}$ in the variable, objective and constraint declarations to Tbegin. .Tend. By making these and other necessary changes, create a model that correctly covers only the desired weeks.
(b) Now suppose that we define a different scalar parameter,

```
param Tagg integer >= 1;
```

We want to "aggregate" the model, so that one "period"' in our LP becomes Tagg weeks long, rather than one week. This would be appropriate if we have, say, a year of weekly data, which would yield an LP too large to be convenient for analysis.
To aggregate properly, we must define the availability of hours in each period to be the sum of the availabilities in all weeks of the period:

```
param avail_agg {t in 1..T by Tagg}
    = sum {u in t..t+Tagg-1} avail[u];
```

The parameters market and revenue must be similarly summed. Make all the necessary changes to the model of Figure $4-4$ so that the resulting LP is properly aggregated.
(c) Re-do the models of (a) and (b) to use an ordered set of strings for the periods, as in Figure 5-3.

5-5. Extend the transportation model of Figure 3-1a to a multiperiod version, in which the periods are months represented by an ordered set of character strings such as "Jan", "Feb" and so forth. Use inventories at the origins to link the periods.
5-6. Modify the model of Figure 5-3 to merge the Balance 0 and Balance constraints, as in Figure 4-4. Hint: $0 \ldots$ T and $1 \ldots \mathrm{~T}$ are analogous to

```
set WEEKSO ordered;
set WEEKS = {i in WEEKS0: ord(i) > 1} ordered by WEEKS0;
```


6

Compound Sets and Indexing

Most linear programming models involve indexing over combinations of members from several different sets. Indeed, the interaction of indexing sets is often the most complicated aspect of a model; once you have the arrangement of sets worked out, the rest of the model can be written clearly and concisely.

All but the simplest models employ compound sets whose members are pairs, triples, quadruples, or even longer "tuples" of objects. This chapter begins with the declaration and use of sets of ordered pairs. We concentrate first on the set of all pairs from two sets, then move on to subsets of all pairs and to "slices" through sets of pairs. Subsequent sections explore sets of longer tuples, and extensions of AMPL's set operators and indexing expressions to sets of tuples.

The final section of this chapter introduces sets that are declared in collections indexed over other sets. An indexed collection of sets often plays much the same role as a set of tuples, but it represents a somewhat different way of thinking about the formulation. Each kind of set is appropriate in certain situations, and we offer some guidelines for choosing between them.

6.1 Sets of ordered pairs

An ordered pair of objects, whether numbers or strings, is written with the objects separated by a comma and surrounded by parentheses:

```
(" PITT","STL")
("bands",5)
(3,101)
```

As the term "ordered" suggests, it makes a difference which object comes first; ("STL","PITT") is not the same as ("PITT","STL"). The same object may appear both first and second, as in ("PITT", "PITT").

Pairs can be collected into sets, just like single objects. A comma-separated list of pairs may be enclosed in braces to denote a literal set of ordered pairs:

```
{("PITT","STL"),("PITT","FRE"),("PITT","DET"),("CLEV","FRE")}
{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}
```

Because sets of ordered pairs are often large and subject to change, however, they seldom appear explicitly in AMPL models. Instead they are described symbolically in a variety of ways.

The set of all ordered pairs from two given sets appears frequently in our examples. In the transportation model of Figure 3-1a, for instance, the set of all origin-destination pairs is written as either of

```
{ORIG, DEST}
{i in ORIG, j in DEST}
```

depending on whether the context requires dummy indices i and j. The multiperiod production model of Figure $4-4$ uses a set of all pairs from a set of strings (representing products) and a set of numbers (representing weeks):

```
{PROD, 1..T}
{p in PROD, t in 1..T}
```

Various collections of model components, such as the parameter revenue and the variable Sell, are indexed over this set. When individual components are referenced in the model, they must have two subscripts, as in revenue [p,t] or Sell [p,t]. The order of the subscripts is always the same as the order of the objects in the pairs; in this case the first subscript must refer to a string in PROD, and the second to a number in 1..T.

An indexing expression like $\{\mathrm{p}$ in PROD, t in $1 . \mathrm{T}\}$ is the AMPL transcription of a phrase like "for all p in $P, t=1, \ldots, T$ '" from algebraic notation. There is no compelling reason to think in terms of ordered pairs in this case, and indeed we did not mention ordered pairs when introducing the multiperiod production model in Chapter 4. On the other hand, we can modify the transportation model of Figure 3-1a to emphasize the role of origin-destination pairs as "links" between cities, by defining this set of pairs explicitly:

```
set LINKS = {ORIG,DEST};
```

The shipment costs and amounts can then be indexed over links:

```
param cost {LINKS} >= 0;
var Trans {LINKS} >= 0;
```

In the objective, the sum of costs over all shipments can be written like this:

```
minimize Total_Cost:
    sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];
```

Notice that when dummy indices run over a set of pairs like LINKS, they must be defined in a pair like (i, j). It would be an error to sum over $\{k$ in LINKS $\}$. The complete model is shown in Figure 6-1, and should be compared with Figure 3-1a. The specification of the data could be the same as in Figure 3-1b.

```
set ORIG; # origins
set DEST; # destinations
set LINKS = {ORIG,DEST};
param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations
    check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
param cost {LINKS} >= 0; # shipment costs per unit
var Trans {LINKS} >= 0; # units to be shipped
minimize Total_Cost:
    sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];
subject to Supply {i in ORIG}:
    sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
    sum {i in ORIG} Trans[i,j] = demand[j];
```

Figure 6-1: Transportation model with all pairs (transp2 .mod).

6.2 Subsets and slices of ordered pairs

In many applications, we are concerned only with a subset of all ordered pairs from two sets. For example, in the transportation model, shipments may not be possible from every origin to every destination. The shipping costs per unit may be provided only for the usable origin-destination pairs, so that it is desirable to index the costs and the variables only over these pairs. In AMPL terms, we want the set LINKS defined above to contain just a subset of pairs that are given in the data, rather than all pairs from ORIG and DEST.

It is not sufficient to declare set LINKS, because that declares only a set of single members. At a minimum, we need to say

```
set LINKS dimen 2;
```

to indicate that the data must consist of members of "dimension" two - that is, pairs. Better yet, we can say that LINKS is a subset of the set of all pairs from ORIG and DEST:

```
set LINKS within {ORIG,DEST};
```

This has the advantage of making the model's intent clearer; it also helps catch errors in the data. The subsequent declarations of parameter cost, variable Trans, and the objective function remain the same as they are in Figure 6-1. But the components cost[i,j] and Trans[i,j] will now be defined only for those pairs given in the data as members of LINKS, and the expression

```
sum {(i,j) in LINKS} cost[i,j] * Trans[i,j]
```

will represent a sum over the specified pairs only.

How are the constraints written? In the original transportation model, the supply limit constraint was:

```
subject to Supply {i in ORIG}:
    sum {j in DEST} Trans[i,j] = supply[i];
```

This does not work when LINKS is a subset of pairs, because for each i in ORIG it tries to sum Trans [i, j] over every j in DEST, while Trans [$i, j]$ is defined only for pairs (i, j) in LINKS. If we try it, we get an error message like this:

```
error processing constraint Supply['GARY']:
    invalid subscript Trans['GARY','FRA']
```

What we want to say is that for each origin i, the sum should be over all destinations j such that (i, j) is an allowed link. This statement can be transcribed directly to AMPL, by adding a condition to the indexing expression after sum:

```
subject to Supply {i in ORIG}:
    sum {j in DEST: (i,j) in LINKS} Trans[i,j] = supply[i];
```

Rather than requiring this somewhat awkward form, however, AMPL lets us drop the j in DEST from the indexing expression to produce the following more concise constraint:

```
subject to Supply {i in ORIG}:
    sum {(i,j) in LINKS} Trans[i,j] = supply[i];
```

Because \{(i,j) in LINKS \} appears in a context where i has already been defined, AMPL interprets this indexing expression as the set of all j such that (i, j) is in LINKS. The demand constraint is handled similarly, and the entire revised version of the model is shown in Figure 6-2a. A small representative collection of data for this model is shown in Figure 6-2b; AMPL offers a variety of convenient ways to specify the membership of compound sets and the data indexed over them, as explained in Chapter 9.

You can see from Figure 6-2a that the indexing expression

$$
\{(i, j) \text { in LINKS }\}
$$

means something different in each of the three places where it appears. Its membership can be understood in terms of a table like this:

	FRA	DET	LAN	WIN	STL	FRE	LAF
GARY		x	x		x		x
CLEV	x	x	x	x	x		x
PITT	x			x	x	x	

The rows represent origins and the columns destinations, while each pair in the set is marked by an x . A table for \{ORIG, DEST \} would be completely filled in with x's, while the table shown depicts \{LINKS\} for the "sparse" subset of pairs defined by the data in Figure 6-2b.

At a point where i and j are not currently defined, such as in the objective

```
minimize Total_Cost:
    sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];
```

```
set ORIG; # origins
set DEST; # destinations
set LINKS within {ORIG,DEST};
param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations
    check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
param cost {LINKS} >= 0; # shipment costs per unit
var Trans {LINKS} >= 0; # units to be shipped
minimize Total_Cost:
    sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];
subject to Supply {i in ORIG}:
    sum {(i,j) in LINKS} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
    sum {(i,j) in LINKS} Trans[i,j] = demand[j];
```

Figure 6-2a: Transportation model with selected pairs (transp3.mod).

```
param: ORIG: supply :=
    GARY 1400 CLEV 2600 PITT 2900;
param: DEST: demand :=
\begin{tabular}{lrrrrrrr} 
FRA & 900 & DET & 1200 & LAN 600 & WIN 400
\end{tabular}
    STL 1700 FRE 1100 LAF 1000;
param: LINKS: cost :=
    GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
    CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN }
    CLEV STL 26 CLEV LAF 17
    PITT FRA 24 PITT WIN 13 PITT STL 28 PITT FRE 99 ;
```

Figure 6-2b: Data for transportation model (transp3 . dat).
the indexing expression $\{(i, j)$ in LINKS $\}$ represents all the pairs in this table. But at a point where i has already been defined, such as in the Supply constraint

```
subject to Supply {i in ORIG}:
    sum {(i,j) in LINKS} Trans[i,j] = supply[i];
```

the expression $\{(i, j)$ in LINKS $\}$ is associated with just the row of the table corresponding to i. You can think of it as taking a one-dimensional "slice" through the table in the row corresponding to the already-defined first component. Although in this case the first component is a previously defined dummy index, the same convention applies when the first component is any expression that can be evaluated to a valid set object; we could write

$$
\text { \{("GARY",j) in LINKS \} }
$$

for example, to represent the pairs in the first row of the table.

Similarly, where j has already been defined, such as in the Demand constraint

```
subject to Demand {j in DEST}:
    sum {(i,j) in LINKS} Trans[i,j] = demand[j];
```

the expression $\{(i, j)$ in LINKS $\}$ selects pairs from the column of the table corresponding to j. Pairs in the third column of the table could be specified by (i, "LAN") in LINKS $\}$.

6.3 Sets of longer tuples

AMPL's notation for ordered pairs extends in a natural way to triples, quadruples, or ordered lists of any length. All tuples in a set must have the same dimension. A set can't contain both pairs and triples, for example, nor can the determination as to whether a set contains pairs or triples be made according to some value in the data.

The multicommodity transportation model of Figure 4-1 offers some examples of how we can use ordered triples, and by extension longer tuples. In the original version of the model, the costs and amounts shipped are indexed over origin-destination-product triples:

```
param cost {ORIG,DEST,PROD} >= 0;
var Trans {ORIG,DEST,PROD} >= 0;
```

In the objective, cost and Trans are written with three subscripts, and the total cost is determined by summing over all triples:

```
minimize Total_Cost:
    sum {i in ORIG, j in DEST, p in PROD}
        cost[i,j,p] * Trans[i,j,p];
```

The indexing expressions are the same as before, except that they list three sets instead of two. An indexing expression that listed k sets would similarly denote a set of k-tuples.

If instead we define LINKS as we did in Figure 6-2a, the multicommodity declarations come out like this:

```
set LINKS within {ORIG,DEST};
param cost {LINKS,PROD} >= 0;
var Trans {LINKS,PROD} >= 0;
minimize Total_Cost:
    sum {(i,j) in LINKS, p in PROD} cost[i,j,p] * Trans[i,j,p];
```

Here we see how a set of triples can be specified as combinations from a set of pairs (LINKS) and a set of single members (PROD). Since cost and Trans are indexed over \{LINKS, PROD\}, their first two subscripts must come from a pair in LINKS, and their third subscript from a member of PROD. Sets of longer tuples can be built up in an analogous way.

As a final possibility, it may be that only certain combinations of origins, destinations, and products are workable. Then it makes sense to define a set that contains only the triples of allowed combinations:

```
set ROUTES within {ORIG,DEST,PROD};
```

The costs and amounts shipped are indexed over this set:

```
param cost {ROUTES} >= 0;
var Trans {ROUTES} >= 0;
```

and in the objective, the total cost is a sum over all triples in this set:

```
minimize Total_Cost:
    sum {(i,j,p) in ROUTES} cost[i,j,p] * Trans[i,j,p];
```

Individual triples are written, by analogy with pairs, as a parenthesized and commaseparated list (i, j, p). Longer lists specify longer tuples.

In the three constraints of this model, the summations must be taken over three different slices through the set ROUTES:

```
subject to Supply {i in ORIG, p in PROD}:
    sum {(i,j,p) in ROUTES} Trans[i,j,p] = supply[i,p];
subject to Demand {j in DEST, p in PROD}:
    sum {(i,j,p) in ROUTES} Trans[i,j,p] = demand[j,p];
subject to Multi {i in ORIG, j in DEST}:
    sum {(i,j,p) in ROUTES} Trans[i,j,p] <= limit[i,j];
```

In the Supply constraint, for instance, indices i and p are defined before the sum, so $\{(i, j, p)$ in ROUTES $\}$ refers to all j such that (i, j, p) is a triple in ROUTES. AMPL allows comparable slices through any set of tuples, in any number of dimensions and any combination of coordinates.

When you declare a high-dimensional set such as ROUTES, a phrase like within \{ORIG, DEST, PROD\} may specify a set with a huge number of members. With 10 origins, 100 destinations and 100 products, for instance, this set potentially has 100,000 members. Fortunately, AMPL does not create this set when it processes the declaration, but merely checks that each tuple in the data for ROUTES has its first component in ORIG, its second in DEST, and its third in PROD. The set ROUTES can thus be handled efficiently so long as it does not itself contain a huge number of triples.

When using high-dimensional sets in other contexts, you may have to be more careful that you do not inadvertently force AMPL to generate a large set of tuples. As an example, consider how you could constrain the volume of all products shipped out of each origin to be less than some amount. You might write either

```
subject to Supply_All {i in ORIG}:
    sum {j in DEST, p in PROD: (i,j,p) in ROUTES}
        Trans[i,j,p] <= supply_all[i];
```

or, using the more compact slice notation,

```
subject to Supply_All {i in ORIG}:
    sum {(i,j,p) in ROUTES} Trans[i,j,p] <= supply_all[i];
```

In the first case, AMPL explicitly generates the set \{j in DEST, p in PROD\} and checks for membership of (i, j, p) in ROUTES, while in the second case it is able to use a more efficient approach to finding all (i, j, p) from ROUTES that have a given i. In our small examples this may not seem critical, but for problems of realistic size the slice version may be the only one that can be processed in a reasonable amount of time and space.

6.4 Operations on sets of tuples

Operations on compound sets are, as much as possible, the same as the operations introduced for simple sets in Chapter 5. Sets of pairs, triples, or longer tuples can be combined with union, inter, diff, and symdiff; can be tested by in and within; and can be counted with card. Dimensions of operands must match appropriately, so for example you may not form the union of a set of pairs with a set of triples. Also, compound sets in AMPL cannot be declared as ordered or circular, and hence also cannot be arguments to functions like first and next that take only ordered sets.

Another set operator, cross, gives the set of all pairs of its arguments - the cross or Cartesian product. Thus the set expression

```
ORIG cross DEST
```

represents the same set as the indexing expression \{ORIG, DEST \}, and
ORIG cross DEST cross PROD
is the same as \{ORIG, DEST, PROD\}.
Our examples so far have been constructed so that every compound set has a domain within a cross product of previously specified simple sets; LINKS lies within ORIG cross DEST, for example, and ROUTES within ORIG cross DEST cross PROD. This practice helps to produce clear and correct models. Nevertheless, if you find it inconvenient to specify the domains as part of the data, you may define them instead within the model. AMPL provides an iterated setof operator for this purpose, as in the following example:

```
set ROUTES dimen 3;
set PROD = setof {(i,j,p) in ROUTES} p;
set LINKS = setof {(i,j,p) in ROUTES} (i,j);
```

Like an iterated sum operator, setof is followed by an indexing expression and an argument, which can be any expression that evaluates to a legal set member. The argument is evaluated for each member of the indexing set, and the results are combined into a new set that is returned by the operator. Duplicate members are ignored. Thus these
expressions for PROD and LINKS give the sets of all objects p and pairs (i,j) such that there is some member (i, j, p) in ROUTES.

As with simple sets, membership in a compound set may be restricted by a logical condition at the end of an indexing expression. For example, the multicommodity transportation model could define

```
set DEMAND = {j in DEST, p in PROD: demand[j,p] > 0};
```

so that DEMAND contains only those pairs (j, p) with positive demand for product p at destination j. As another example, suppose that we also wanted to model transfers of the products from one origin to another. We could simply define

```
set TRANSF = {ORIG,ORIG};
```

to specify the set of all pairs of members from ORIG. But this set would include pairs like ("PITT", "PITT"); to specify the set of all pairs of different members from ORIG, a condition must be added:

```
set TRANSF = {i1 in ORIG, i2 in ORIG: i1 <> i2};
```

This is another case where two different dummy indices, i1 and i2, need to be defined to run over the same set; the condition selects those pairs where i1 is not equal to i2.

If a set is ordered, the condition within an indexing expression can also refer to the ordering. We could declare

```
set ORIG ordered;
set TRANSF = {i1 in ORIG, i2 in ORIG: ord(i1) < ord(i2)};
```

to define a 'triangular"' set of pairs from ORIG that does not contain any pair and its reverse. For example, TRANSF would contain either of the pairs ("PITT", "CLEV") or ("CLEV", "PITT"), depending on which came first in ORIG, but it would not contain both.

Sets of numbers can be treated in a similar way, since they are naturally ordered. Suppose that we want to accommodate inventories of different ages in the multiperiod production model of Figure 4-4, by declaring:

```
set PROD; # products
param T > 0; # number of weeks
param A > 0; # maximum age of inventory
var Inv {PROD,0..T,0..A} >= 0; # tons inventoried
```

Depending on how initial inventories are handled, we might have to include a constraint that no inventory in period t can be more than t weeks old:

```
subject to Too_Old
    {p in PROD, t in 1..T, a in 1..A: a > t}: Inv[p,t,a] = 0;
```

In this case, there is a simpler way to write the indexing expression:

```
subject to Too_Old
    {p in PROD, t in 1..T, a in t+1..A}: Inv[p,t,a] = 0;
```

Here the dummy index defined by t in $1 \ldots T$ is immediately used in the phrase a in $t+1$..A. In this and other cases where an indexing expression specifies two or more sets, the comma-separated phrases are evaluated from left to right. Any dummy index defined in one phrase is available for use in all subsequent phrases.

6.5 Indexed collections of sets

Although declarations of individual sets are most common in AMPL models, sets may also be declared in collections indexed over other sets. The principles are much the same as for indexed collections of parameters, variables or constraints.

As an example of how indexed collections of sets can be useful, let us extend the multiperiod production model of Figure 4-4 to recognize different market areas for each product. We begin by declaring:

```
set PROD;
set AREA {PROD};
```

This says that for each member p of PROD, there is to be a set AREA [p; its members will denote the market areas in which product p is sold.

The market demands, expected sales revenues and amounts to be sold should be indexed over areas as well as products and weeks:

```
param market {p in PROD, AREA[p], 1..T} >= 0;
param revenue {p in PROD, AREA[p], 1..T} >= 0;
var Sell {p in PROD, a in AREA[p], t in 1..T}
    >= 0, <= market[p,a,t];
```

In the declarations for market and revenue, we define only the dummy index p that is needed to specify the set AREA [p], but for the Sell variables we need to define all the dummy indices, so that they can be used to specify the upper bound market $[p, a, t]$. This is another example in which an index defined by one phrase of an indexing expression is used by a subsequent phrase; for each p from the set PROD, a runs over a different set AREA [p].

In the objective, the expression revenue [p,t] * Sell [p,t] from Figure 4-4 must be replaced by a sum of revenues over all areas for product p :

```
maximize Total_Profit:
    sum {p in PROD, t in 1..T}
        (sum {a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
            prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);
```

The only other change is in the Balance constraints, where $\operatorname{Sell}[\mathrm{p}, \mathrm{t}]$ is similarly replaced by a summation:

```
subject to Balance {p in PROD, t in 1..T}:
    Make[p,t] + Inv[p,t-1]
        = sum {a in AREA[p]} Sell[p,a,t] + Inv[p,t];
```

```
set PROD; # products
set AREA {PROD}; # market areas for each product
param T > 0; # number of weeks
param rate {PROD} > 0; # tons per hour produced
param inv0 {PROD} >= 0; # initial inventory
param avail {1..T} >= 0; # hours available in week
param market {p in PROD, AREA[p], 1..T} >= 0;
    # limit on tons sold in week
param prodcost {PROD} >= 0; # cost per ton produced
param invcost {PROD} >= 0; # carrying cost/ton of inventory
param revenue {p in PROD, AREA[p], 1..T} >= 0;
    # revenue per ton sold
var Make {PROD,1..T} >= 0; # tons produced
var Inv {PROD,0..T} >= 0; # tons inventoried
var Sell {p in PROD, a in AREA[p], t in 1..T} # tons sold
            >= 0, <= market[p,a,t];
maximize Total_Profit:
    sum {p in PROD, t in 1..T}
        (sum {a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
            prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);
                # Total revenue less costs for all products in all weeks
subject to Time {t in 1..T}:
    sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];
                    # Total of hours used by all products
                    # may not exceed hours available, in each week
subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];
            # Initial inventory must equal given value
subject to Balance {p in PROD, t in 1..T}:
    Make[p,t] + Inv[p,t-1]
        = sum {a in AREA[p]} Sell[p,a,t] + Inv[p,t];
            # Tons produced and taken from inventory
            # must equal tons sold and put into inventory
```

Figure 6-3: Multiperiod production with indexed sets (steelT3.mod).

The complete model is shown in Figure 6-3.
In the data for this model, each set within the indexed collection AREA is specified like an ordinary set:

```
set PROD := bands coils;
set AREA[bands] := east north ;
set AREA[coils] := east west export ;
```

The parameters revenue and market are now indexed over three sets, so their data values are specified in a series of tables. Since the indexing is over a different set

```
param T := 4;
set PROD := bands coils;
set AREA[bands] := east north ;
set AREA[coils] := east west export ;
param avail := 1 40 2 40 3 32 4 40;
param rate := bands 200 coils 140 ;
param inv0 := bands 10 coils 0 ;
param prodcost := bands 10 coils 11 ;
param invcost := bands 2.5 coils 3 ;
param revenue :=
    [bands,*,*]: 1 2 4 :=
        east 25.0 26.0 27.0 27.0
        north 26.5 27.5 28.0 28.5
    [coils,*,*]: 1 2 3 4 :=
        east 30 35 37 39
        west 29 32 33 35
        export 25 25 25 28 ;
param market :=
\begin{tabular}{crrrrl} 
[bands,*,*]: & 1 & 2 & 3 & 4 & \(:=\) \\
east & 2000 & 2000 & 1500 & 2000 & \\
north & 4000 & 4000 & 2500 & 4500 & \\
[coils,*,*]: & 1 & 2 & 3 & 4 & \(:=\) \\
east & 1000 & 800 & 1000 & 1100 & \\
west & 2000 & 1200 & 2000 & 2300 & \\
export & 1000 & 500 & 500 & 800 & \(;\)
\end{tabular}
```

Figure 6-4: Data for multiperiod production with indexed sets (steelT3 . dat).

AREA [p] for each product p, the values are most conveniently arranged as one table for each product, as shown in Figure 6-4. (Chapter 9 explains the general rules behind this arrangement.)

We could instead have written this model with a set PRODAREA of pairs, such that product p will be sold in area a if and only if (p, a) is a member of PRODAREA. Our formulation in terms of PROD and AREA[p] seems preferable, however, because it emphasizes the hierarchical relationship between products and areas. Although the model must refer in many places to the set of all areas selling one product, it never refers to the set of all products sold in one area.

As a contrasting example, we can consider how the multicommodity transportation model might use indexed collections of sets. As shown in Figure 6-5, for each product we define a set of origins where that product is supplied, a set of destinations where the product is demanded, and a set of links that represent possible shipments of the product:

```
set ORIG; # origins
set DEST; # destinations
set PROD; # products
set orig {PROD} within ORIG;
set dest {PROD} within DEST;
set links {p in PROD} = orig[p] cross dest[p];
param supply {p in PROD, orig[p]} >= 0; # available at origins
param demand {p in PROD, dest[p]} >= 0; # required at destinations
    check {p in PROD}: sum {i in orig[p]} supply[p,i]
                = sum {j in dest[p]} demand[p,j];
param limit {ORIG,DEST} >= 0;
param cost {p in PROD, links[p]} >= 0; # shipment costs per unit
var Trans {p in PROD, links[p]} >= 0; # units to be shipped
minimize Total_Cost:
    sum {p in PROD, (i,j) in links[p]} cost[p,i,j] * Trans[p,i,j];
subject to Supply {p in PROD, i in orig[p]}:
    sum {j in dest[p]} Trans[p,i,j] = supply[p,i];
subject to Demand {p in PROD, j in dest[p]}:
    sum {i in orig[p]} Trans[p,i,j] = demand[p,j];
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD: (i,j) in links[p]} Trans[p,i,j] <= limit[i,j];
```

Figure 6-5: Multicommodity transportation with indexed sets (multic.mod).

```
set orig {PROD} within ORIG;
set dest {PROD} within DEST;
set links {p in PROD} = orig[p] cross dest[p];
```

The declaration of links demonstrates that it is possible to have an indexed collection of compound sets, and that an indexed collection may be defined through set operations from other indexed collections. In addition to the operations previously mentioned, there are iterated union and intersection operators that apply to sets in the same way that an iterated sum applies to numbers. For example, the expressions

```
union {p in PROD} orig[p]
inter {p in PROD} orig[p]
```

represent the subset of origins that supply at least one product, and the subset of origins that supply all products.

The hierarchical relationship based on products that was observed in Figure 6-3 is seen in most of Figure 6-5 as well. The model repeatedly deals with the sets of all origins, destinations, and links associated with a particular product. The only exception comes in the last constraint, where the summation must be over all products shipped via a particular link:

```
subject to Multi {i in ORIG, j in DEST}:
    sum {p in PROD: (i,j) in links[p]} Trans[p,i,j] <= limit[i,j];
```

Here it is necessary, following sum, to use a somewhat awkward indexing expression to describe a set that does not match the hierarchical organization.

In general, almost any model that can be written with indexed collections of sets can also be written with sets of tuples. As our examples suggest, indexed collections are most suitable for entities such as products and areas that have a hierarchical relationship. Sets of tuples are preferable, on the other hand, in dealing with entities like origins and destinations that are related symmetrically.

Exercises

6-1. Return to the production and transportation model of Figures 4-6 and 4-7. Using the display command, together with indexing expressions as demonstrated in Section 6.4, you can determine the membership of a variety of compound sets; for example, you can use

```
ampl: display {j in DEST, p in PROD: demand[j,p] > 500};
set {j in DEST, p in PROD: demand[j,p] > 500} :=
(DET,coils) (STL,bands) (STL,coils) (FRE,coils);
```

to show the set of all combinations of products and destinations where the demand is greater than 500.
(a) Use display to determine the membership of the following sets, which depend only on the data:

- All combinations of origins and products for which the production rate is greater than 150 tons per hour.
- All combinations of origins, destinations and products for which there is a shipping cost of \leq $\$ 10$ per ton.
- All combinations of origins and destinations for which the shipping cost of coils is $\leq \$ 10$ per ton.
- All combinations of origins and products for which the production cost per hour is less than \$30,000.
- All combinations of origins, destinations and products for which the transportation cost is more than 15% of the production cost.
- All combinations of origins, destinations and products for which the transportation cost is more than 15% but less than 25% of the production cost.
(b) Use display to determine the membership of the following sets, which depend on the optimal solution as well as on the data:
- All combinations of origins and products for which there is production of at least 1000 tons.
- All combinations of origins, destinations and products for which there is a nonzero amount shipped.
- All combinations of origins and products for which more than 10 hours are used in production.
- All combinations of origins and products such that the product accounts for more than 25% of the hours available at the origin.
- All combinations of origins and products such that the total amount of the product shipped from the origin is at least 1000 tons.
6-2. This exercise resembles the previous one, but asks about the ordered-pair version of the transportation model in Figure 6-2.
(a) Use display and indexing expressions to determine the membership of the following sets:
- Origin-destination links that have a transportation cost less than $\$ 10$ per ton.
- Destinations that can be served by GARY.
- Origins that can serve FRE.
- Links that are used for transportation in the optimal solution.
- Links that are used for transportation from CLEV in the optimal solution.
- Destinations to which the total cost of shipping, from all origins, exceeds $\$ 20,000$.
(b) Use the display command and the setof operator to determine the membership of the following sets:
- Destinations that have a shipping cost of more than 20 from any origin.
- All destination-origin pairs (j, i) such that the link from i to j is used in the optimal solution.

6-3. Use display and appropriate set expressions to determine the membership of the following sets from the multiperiod production model of Figures 6-3 and 6-4:

- All market areas served with any of the products.
- All combinations of products, areas and weeks such that the amount actually sold in the optimal solution equals the maximum that can be sold.
- All combinations of products and weeks such that the total sold in all areas is greater than or equal to 6000 tons.
6-4. To try the following experiment, first enter these declarations:

```
ampl: set Q = {1..10,1..10,1..10,1..10,1..10,1..10};
ampl: set S within Q;
ampl: data;
ampl: set S := 1 2 3 3 4 5 2 3 4 4 5 6 3 4 5 5 6 7 4 5 6 7 8 9 ;
```

(a) Now try the following two commands:

```
display S;
display {(a,b,c,a,e,f) in Q: (a,b,c,d,e,f) in S};
```

The two expressions in these commands represent the same set, but do you get the same speed of response from AMPL? Explain the cause of the difference.
(b) Predict the result of the command display Q .

6-5. This exercise asks you to reformulate the diet model of Figure 2-1 in a variety of ways, using compound sets.
(a) Reformulate the diet model so that it uses a declaration

```
set GIVE within {NUTR,FOOD};
```

to define a subset of pairs (i, j) such that nutrient i can be found in food j.
(b) Reformulate the diet model so that it uses a declaration

```
set FN {NUTR} within FOOD;
```

to define, for each nutrient i, the set FN [i] of all foods that can supply that nutrient.
(c) Reformulate the diet model so that it uses a declaration

```
set NF {FOOD} within NUTR;
```

to define, for each food j, the set $N F[j]$ of all nutrients supplied by that food. Explain why you find this formulation more or less natural and convenient than the one in (b).

6-6. Re-read the suggestions in Section 6.3, and complete the following reformulations of the multicommodity transportation model:
(a) Use a subset LINKS of origin-destination pairs.
(b) Use a subset ROUTES of origin-destination-product triples.
(c) Use a subset MARKETS of destination-product pairs, with the property that product p can be sold at destination j if and only if (j, p) is in the subset.

6-7. Carry through the following two suggestions from Section 6.4 for enhancements to the multicommodity transportation problem of Figure 4-1.
(a) Add a declaration

```
set DEMAND = {j in DEST, p in PROD: demand[j,p] > 0};
```

and index the variables over \{ORIG, DEMAND\}, so that variables are defined only where they might be needed to meet demand. Make all of the necessary changes in the rest of the model to use this set.
(b) Add the declarations

```
set LINKS within {ORIG,DEST};
set TRANSF = {i1 in ORIG, i2 in ORIG: i1 <> i2};
```

Define variables over LINKS to represent shipments to destinations, and over TRANSF to represent shipments between origins. The constraint at each origin now must say that total shipments out - to other origins as well as to destinations - must equal supply plus shipments in from other origins. Complete the formulation for this case.

6-8. Reformulate the model from Exercise 3-3(b) so that it uses a set LINK1 of allowable plantmill shipment pairs, and a set LINK2 of allowable mill-factory shipment pairs.

6-9. As chairman of the program committee for a prestigious scientific conference, you must assign submitted papers to volunteer referees. To do so in the most effective way, you can formulate an LP model along the lines of the assignment model discussed in Chapter 3, but with a few extra twists.
After looking through the papers and the list of referees, you can compile the following data:

```
set Papers;
set Referees;
set Categories;
set PaperKind within {Papers,Categories};
set Willing within {Referees,Categories};
```

The contents of the first two sets are self-evident, while the third set contains subject categories into which papers may be classified. The set PaperKind contains a pair (p, c) if paper p falls
into category c; in general, a paper can fit into several categories. The set Willing contains a pair (r, c) if referee r is willing to handle papers in category c.
(a) What is the dimension of the set

```
{(r,c) in Willing, (p,c) in PaperKind}
```

and what is the significance of the tuples contained in this set?
(b) Based on your answer to (a), explain why the declaration

```
set CanHandle = setof {(r,c) in Willing, (p,c) in PaperKind} (r,p);
```

gives the set of pairs (r, p) such that referee r can be assigned paper p.
Your model could use parameters ppref and variables Review indexed over CanHandle; ppref [r, p] would be the preference of referee r for paper p, and Review $[r, p]$ would be 1 if referee r were assigned paper p, or 0 otherwise. Assuming higher preferences are better, write out the declarations for these components and for an objective function to maximize the sum of preferences of all assignments.
(c) Unfortunately, you don't have the referees' preferences for individual papers, since they haven't seen any papers yet. What you have are their preferences for different categories:

```
param cpref {Willing} integer >= 0, <= 5;
```

Explain why it would make sense to replace ppref $[\mathrm{r}, \mathrm{p}]$ in your objective by

```
max {(r,c) in Willing: (p,c) in PaperKind} cpref[r,c]
```

(d) Finally, you must define the following parameters that indicate how much work is to be done:

```
param nreferees integer > 0; # referees needed per paper
param minwork integer > 0; # min papers to each referee
param maxwork integer > minwork; # max papers to each referee
```

Formulate the appropriate assignment constraints. Complete the model, by formulating constraints that each paper must have the required number of referees, and that each referee must be assigned an acceptable number of papers.

7

Parameters and Expressions

A large optimization model invariably uses many numerical values. As we have explained before, only a concise symbolic description of these values need appear in an AMPL model, while the explicit data values are given in separate data statements, to be described in Chapter 9.

In AMPL a single named numerical value is called a parameter. Although some parameters are defined as individual scalar values, most occur in vectors or matrices or other collections of numerical values indexed over sets. We will thus loosely refer to an indexed collection of parameters as "a parameter" when the meaning is clear. To begin this chapter, Section 7.1 describes the rules for declaring parameters and for referring to them in an AMPL model.

Parameters and other numerical values are the building blocks of the expressions that make up a model's objective and constraints. Sections 7.2 and 7.3 describe arithmetic expressions, which have a numerical value, and logical expressions, which evaluate to true or false. Along with the standard unary and binary operators of conventional algebraic notation, AMPL provides iterated operators like sum and prod, and a conditional (if-then-else) operator that chooses between two expressions, depending on the truth of a third expression.

The expressions in objectives and constraints necessarily involve variables, whose declaration and use will be discussed in Chapter 8. There are several common uses for expressions that involve only sets and parameters, however. Section 7.4 describes how logical expressions are used to test the validity of data, either directly in a parameter declaration, or separately in a check statement. Section 7.5 introduces features for defining new parameters through arithmetic expressions in previously declared parameters and sets, and 7.6 describes randomly-generated parameters.

Although the key purpose of parameters is to represent numerical values, they can also represent logical values or arbitrary strings. These possibilities are covered in Sections 7.7 and 7.8 , respectively. AMPL provides a range of operators for strings, but as they are most often used in AMPL commands and programming rather than in models, we defer their introduction to Section 13.7.

7.1 Parameter declarations

A parameter declaration describes certain data required by a model, and indicates how the model will refer to data values in subsequent expressions.

The simplest parameter declaration consists of the keyword param and a name:

```
param T;
```

At any point after this declaration, T can be used to refer to a numerical value.
More often, the name in a parameter declaration is followed by an indexing expression:

```
param avail {1..T};
param demand {DEST,PROD};
param revenue {p in PROD, AREA[p], 1..T};
```

One parameter is defined for each member of the set specified by the indexing expression. Thus a parameter is uniquely determined by its name and its associated set member; throughout the rest of the model, you would refer to this parameter by writing the name and bracketed 'subscripts'":

```
avail[i]
demand[j,p]
revenue [p,a,t]
```

If the indexing is over a simple set of objects as described in Chapter 5, there is one subscript. If the indexing is over a set of pairs, triples, or longer tuples as described in Chapter 6, there must be a corresponding pair, triple, or longer list of subscripts separated by commas. The subscripts can be any expressions, so long as they evaluate to members of the underlying index set.

An unindexed parameter is a scalar value, but a parameter indexed over a simple set has the characteristics of a vector or an array; when the indexing is over a sequence of integers, say

```
param avail {1..T};
```

the individual subscripted parameters are avail[1], avail[2],. , avail [T], and there is an obvious analogy to the vectors of linear algebra or the arrays of a programming language like Fortran or C. AMPL's concept of a vector is more general, however, since parameters may also be indexed over sets of strings, which need not even be ordered. Indexing over sets of strings is best suited for parameters that correspond to places, products and other entities for which no numbering is especially natural. Indexing over sequences of numbers is more appropriate for parameters that correspond to weeks, stages, and the like, which by their nature tend to be ordered and numbered; even for these, you may prefer to use ordered sets of strings as described in Section 5.6.

A parameter indexed over a set of pairs is like a two-dimensional array or matrix. If the indexing is over all pairs from two sets, as in

```
set ORIG;
set DEST;
param cost {ORIG,DEST};
```

then there is a parameter cost [i,j] for every combination of i from ORIG and j from DEST, and the analogy to a matrix is strongest - although again the subscripts are more likely to be strings than numbers. If the indexing is over a subset of pairs, however:

```
set ORIG;
set DEST;
set LINKS within {ORIG,DEST};
param cost {LINKS};
```

then cost $[i, j]$ exists only for those i from ORIG and j from DEST such that (i, j) is a member of LINKS. In this case, you can think of cost as being a "sparse" matrix.

Similar comments apply to parameters indexed over triples and longer tuples, which resemble arrays of higher dimension in programming languages.

7.2 Arithmetic expressions

Arithmetic expressions in AMPL are much the same as in other computer languages. Literal numbers consist of an optional sign preceding a sequence of digits, which may or may not include a decimal point (for example, -17 or 2.71828 or +.3). At the end of a literal there may also be an exponent, consisting of the letter d, D, e, or E and an optional sign followed by digits (1e30 or 7.66439D-07).

Literals, parameters, and variables are combined into expressions by the standard operations of addition (+), subtraction (-), multiplication (*), division (/), and exponentiation (^). The familiar conventions of arithmetic apply. Exponentiation has higher precedence than multiplication and division, which have higher precedence than addition and subtraction; successive operations of the same precedence group to the left, except for exponentiation, which groups to the right. Parentheses may be used to change the order of evaluation.

Arithmetic expressions may also use the div operator, which returns the truncated quotient when its left operand is divided by its right operand; the mod operator, which computes the remainder; and the less operator, which returns its left operand minus its right operand if the result is positive, or zero otherwise. For purposes of precedence and grouping, AMPL treats div and mod like division, and less like subtraction.

A list of arithmetic operators (and logical operators, to be described shortly) is given in Table 7-1. As much as possible, AMPL follows common programming languages in its choice of operator symbols, such as * for multiplication and / for division. There is sometimes more than one standard, however, as with exponentiation, where some languages use ^ while others use **. In this and other cases, AMPL provides alternate forms. Table 7-1 shows the more common forms to the left, and the alternatives (if any)

Usual style	alternative style	type of operands	type of result
if-then-else		logical, arithmetic	arithmetic
or	\|	logical	logical
exists forall		logical	logical
and	\& \&	logical	logical
not (unary)	!	logical	logical
\ll= = <\ggg=	\ll= == ! = \gg=	arithmetic	logical
in notin		object, set	logical
+ - less		arithmetic	arithmetic
sum prod min max		arithmetic	arithmetic
* / div mod		arithmetic	arithmetic
+ - (unary)		arithmetic	arithmetic
	**	arithmetic	arithmetic

Exponentiation and if-then-else are right-associative; the other operators are left-associative. The logical operand of if-then-else appears after if, and the arithmetic operands after then and (optionally) else.

Table 7-1: Arithmetic and logical operators, in increasing precedence.
to the right; you can mix them as you like, but your models will be easier to read and understand if you are consistent in your choices.

Another way to build arithmetic expressions is by applying functions to other expressions. A function reference consists of a name followed by a parenthesized argument or comma-separated list of arguments; an arithmetic argument can be any arithmetic expression. Here are a few examples, which compute the minimum, absolute value, and square root of their arguments, respectively:

```
min(T,20)
abs(sum {i in ORIG} supply[i] - sum {j in DEST} demand[j])
sqrt((tan[j]-tan[k])^2)
```

Table 7-2 lists the built-in arithmetic functions that are typically found in models. Except for min and max, the names of any of these functions may be redefined, but their original meanings will become inaccessible. For example, a model may declare a parameter named \tan as in the last example above, but then it cannot also refer to the function tan.

The set functions card and ord, which were described in Chapter 5, also produce an arithmetic result. In addition, AMPL provides several 'rounding' functions (Section 11.3) and a variety of random-number functions (Section 7.6 below). A mechanism for "importing" functions defined by your own programs is described in Appendix A. 22.

```
abs(x) absolute value, }|x
acos (x) inverse cosine, cos
```



```
asin (x) inverse sine, 到-1}(x
asinh (x) inverse hyperbolic sine, 利-1}(x
atan(x) inverse tangent, tan -1}(x
atan2 (y,x) inverse tangent, tan }\mp@subsup{}{}{-1}(y/x
atanh (x) inverse hyperbolic tangent, tanh }\mp@subsup{}{}{-1}(x
cos(x) cosine
cosh (x) hyperbolic cosine
exp (x) exponential, e}\mp@subsup{e}{}{x
log}(x) natural logarithm, 每ogege (x
log10(x) common logarithm, 年啎(x)
max (x,y,\ldots) maximum (2 or more arguments)
min}(x,y,\ldots) minimum (2 or more arguments
sin}(x)\quad\mathrm{ sine
sinh (x) hyperbolic sine
sqre(x) square root
tan (x) tangent
tanh (x) hyperbolic tangent
```

Table 7－2：Built－in arithmetic functions for use in models．

Finally，the indexed operators such as Σ and Π from algebraic notation are generalized in AMPL by expressions for iterating operations over sets．In particular，most large－scale linear programming models contain iterated summations：

```
sum {i in ORIG} supply[i]
```

The keyword sum may be followed by any indexing expression．The subsequent arith－ metic expression is evaluated once for each member of the index set，and all the resulting values are added．Thus the sum above，from the transportation model of Figure 3－1a，rep－ resents the total supply available，at all origins．The sum operator has lower precedence than＊，so the objective of the same model can be written

```
sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j]
```

to represent the total of cost［i，j］＊Trans［i，j］over all combinations of origins and destinations．The precedence of sum is higher than that of + or - ，however，so for the objective of the multiperiod production model in Figure 6－3 we must write

```
sum {p in PROD, t in 1..T}
    (sum {a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
        prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);
```

The outer sum applies to the entire parenthesized expression following it，while the inner sum applies only to the term revenue $[p, a, t] * \operatorname{Sell}[p, a, t]$ ．

Other iterated arithmetic operators are prod for multiplication, min for minimum, and max for maximum. As an example, we could use

```
max {i in ORIG} supply[i]
```

to describe the greatest supply available at any origin.
Bear in mind that, while an AMPL arithmetic function or operator may be applied to variables as well as to parameters or to numeric members of sets, most operations on variables are not linear. AMPL's requirements for arithmetic expressions in a linear program are described in Section 8.2. Some of the nonlinear functions of variables that can be handled by certain solvers are discussed in Chapter 18.

7.3 Logical and conditional expressions

The values of arithmetic expressions can be tested against each other by comparison operators:

$=$	equal to
$<>$	not equal to
$<$	less than
$<=$	less than or equal to
$>$	greater than
$>=$	greater than or equal to

The result of a comparison is either "true" or "false". Thus T > 1 is true if the parameter T has a value greater than 1 , and is false otherwise; and

```
sum {i in ORIG} supply[i] = sum {j in DEST} demand[j]
```

is true if and only if total supply equals total demand.
Comparisons are one example of AMPL's logical expressions, which evaluate to true or false. Set membership tests using in and within, described in Section 5.4, are another example. More complex logical expressions can be built up with logical operators. The and operator returns true if and only if both its operands are true, while or returns true if and only if at least one of its operands is true; the unary operator not returns false for true and true for false. Thus the expression

$$
T>=0 \text { and } T<=10
$$

is only true if T lies in the interval $[0,10]$, while the following from Section 5.5,

```
i in MAXREQ or n_min[i] > 0
```

is true if i is a member of MAXREQ, or $n _m i n[i]$ is positive, or both. Where several operators are used together, any comparison, membership or arithmetic operator has higher precedence than the logical operators; and has higher precedence than or, while not has higher precedence than either. Thus the expression

```
not i in MAXREQ or n_min[i] > 0 and n_min[i] <= 10
```

is interpreted as

```
(not (i in MAXREQ)) or ((n_min[i] > 0) and (n_min[i] <= 10))
```

Alternatively, the not in operator could be used:

```
i not in MAXREQ or n_min[i] > 0 and n_min[i] <= 10
```

The precedences are summarized in Table 7-1, which also gives alternative forms.
Like + and *, the operators or and and have iterated versions. The iterated or is denoted by exists, and the iterated and by forall. For example, the expression

```
exists {i in ORIG} demand[i] > 10
```

is true if and only if at least one origin has a demand greater than 10 , while

```
forall {i in ORIG} demand[i] > 10
```

is true if and only if every origin has demand greater than 10 .
Another use for a logical expression is as an operand to the conditional or if-thenelse operator, which returns one of two different arithmetic values depending on whether the logical expression is true or false. Consider the two collections of inventory balance constraints in the multiperiod production model of Figure 5-3:

```
subject to Balance0 {p in PROD}:
    Make[p,first(WEEKS)] + inv0[p]
        = Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];
subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
    Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];
```

The Balance 0 constraints are basically the Balance constraints with t set to first (WEEKS). The only difference is in the second term, which represents the previous week's inventory; it is given as inv0 [p] for the first week (in the Balance0 constraints) but is represented by the variable Inv [p, prev (t)] for subsequent weeks (in the Balance constraints). We would like to combine these constraints into one declaration, by having a term that takes the value inv0 [p] when t is the first week, and takes the value Inv [p, prev (t)] otherwise. Such a term is written in AMPL as:

```
if t = first(WEEKS) then inv0[p] else Inv[p,prev(t)]
```

Placing this expression into the constraint declaration, we can write

```
subject to Balance {p in PROD, t in WEEKS}:
    Make[p,t] +
        (if t = first(WEEKS) then inv0[p] else Inv[p,prev(t)])
            = Sell[p,t] + Inv[p,t];
```

This form communicates the inventory balance constraints more concisely and directly than two separate declarations.

The general form of a conditional expression is

```
if }a\mathrm{ then b else c
```

where a is a logical expression. If a evaluates to true, the conditional expression takes the value of b; if a is false, the expression takes the value of c. If c is zero, the else c part can be dropped. Most often b and c are arithmetic expressions, but they can also be string or set expressions, so long as both are expressions of the same kind. Because then and else have lower precedence than any other operators, a conditional expression needs to be parenthesized (as in the example above) unless it occurs at the end of a statement.

AMPL also has an if-then-else for use in programming; like the conditional statements in many programming languages, it executes one or another block of statements depending on the truth of some logical expression. We describe it with other AMPL programming features in Chapter 13. The if-then-else that we have described here is not a statement, but rather an expression whose value is conditionally determined. It therefore belongs inside a declaration, in a place where an expression would normally be evaluated.

7.4 Restrictions on parameters

If T is intended to represent the number of weeks in a multiperiod model, it should be an integer and greater than 1. By including these conditions in T 's declaration,

```
param T > 1 integer;
```

you instruct AMPL to reject your data if you inadvertently set T to 1 :

```
error processing param T:
    failed check: param T = 1
        is not > 1;
```

or to 2.5:

```
error processing param T:
    failed check: param T = 2.5
                        is not an integer;
```

AMPL will not send your problem instance to a solver as long as any errors of this kind remain.

In the declaration of an indexed collection of parameters, a simple restriction such as integer or >= 0 applies to every parameter defined. Our examples often use this option to specify that vectors and arrays are nonnegative:

```
param demand {DEST,PROD} >= 0;
```

If you include dummy indices in the indexing expression, however, you can use them to specify a different restriction for each parameter:

```
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
```

The effect of these declarations is to define a pair of parameters f _max[j] >= f_min [j] for every j in the set FOOD.

A restriction phrase for a parameter declaration may be the word integer or binary or a comparison operator followed by an arithmetic expression. While integer restricts a parameter to integral (whole-number) values, binary restricts it to zero or one. The arithmetic expression may refer to sets and parameters previously defined in the model, and to dummy indices defined by the current declaration. There may be several restriction phrases in the same declaration, in which case they may optionally be separated by commas.

In special circumstances, a restriction phrase may even refer to the parameter in whose declaration it appears. Some multiperiod production models, for example, are defined in terms of a parameter cumulative_market $[p, t]$ that represents the cumulative demand for product p in weeks 1 through t. Since cumulative demand does not decrease, you might try to write a restriction phrase like this:

```
param cumulative_market {p in PROD, t in 1..T}
    >= cumulative_market[p,t-1]; # ERROR
```

For the parameters cumulative_market $[p, 1]$, however, the restriction phrase will refer to cumulative_market [$p, 0$], which is undefined; AMPL will reject the declaration with an error message. What you need here again is a conditional expression that handles the first period specially:

```
param cumulative_market {p in PROD, t in 1..T}
    >= if t = 1 then 0 else cumulative_market[p,t-1];
```

The same thing could be written a little more compactly as

```
param cumulative_market {p in PROD, t in 1..T}
    >= if t > 1 then cumulative_market[p,t-1];
```

since "else 0 "' is assumed. Almost always, some form of if-then-else expression is needed to make this kind of self-reference possible.

As you might suspect from this last example, sometimes it is desirable to place a more complex restriction on the model's data than can be expressed by a restriction phrase within a declaration. This is the purpose of the check statement. For example, in the transportation model of Figure 3-1a, total supply must equal total demand:

```
check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
```

The multicommodity version, in Figure 4-1, uses an indexed check to say that total supply must equal total demand for each product:

```
check {p in PROD}:
    sum {i in ORIG} supply[i,p] = sum {j in DEST} demand[j,p];
```

Here the restriction is tested once for each member p of PROD. If the check fails for any member, AMPL prints an error message and rejects all of the data.

You can think of the check statement as specifying a kind of constraint, but only on the data. The restriction clause is a logical expression, which may use any previously
defined sets and parameters as well as dummy indices defined in the statement's indexing expression. After the data values have been read, the logical expression must evaluate to true; if an indexing expression has been specified, the logical expression is evaluated separately for each assignment of set members to the dummy indices, and must be true for each.

We strongly recommend the use of restriction phrases and check statements to validate a model's data. These features will help you to catch data errors at an early stage, when they are easy to fix. Data errors not caught will, at best, cause errors in the generation of the variables and constraints, so that you will get some kind of error message from AMPL. In other cases, data errors lead to the generation of an incorrect linear program. If you are fortunate, the incorrect LP will have a meaningless optimal solution, so that possibly after a good deal of effort - you will be able to work backward to find the error in the data. At worst, the incorrect LP will have a plausible solution, and the error will go undetected.

7.5 Computed parameters

It is seldom possible to arrange that the data values available to a model are precisely the coefficient values required by the objective and constraints. Even in the simple production model of Figure 1-4, for example, we wrote the constraint as

```
sum {p in PROD} (1/rate[p]) * Make[p] <= avail;
```

because production rates were given in tons per hour, while the coefficient of Make [p] had to be in hours per ton. Any parameter expression may be used in the constraints and objective, but the expressions are best kept simple. When more complex expressions are needed, the model is usually easier to understand if new, computed parameters are defined in terms of the data parameters.

The declaration of a computed parameter has an assignment phrase, which resembles the restriction phrase described in the previous section except for the use of an = operator to indicate that the parameter is being set equal to a certain expression, rather than merely being restricted by an inequality. As a first example, suppose that the data values provided to the multicommodity transportation model of Figure 4-1 consist of the total demand for each product, together with each destination's share of demand. The destinations' shares are percentages between zero and 100, but their sum over all destinations might not exactly equal 100%, because of rounding and approximation. Thus we declare data parameters to represent the shares, and a computed parameter equal to their sum:

```
param share {DEST} >= 0, <= 100;
param tot_sh = sum {j in DEST} share[j];
```

We can then declare a data parameter to represent total demands, and a computed parameter that equals demand at each destination:

```
param tot_dem {PROD} >= 0;
param demand {j in DEST, p in PROD}
    = share[j] * tot_dem[p] / tot_sh;
```

The division by tot_sh acts as a correction factor for a sum not equal to 100%. Once demand has been defined in this way, the model can use it as in Figure 4-1:

```
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p] = demand[j,p];
```

We could avoid computed parameters by substituting the formulas for tot_sh and demand [j, p] directly into this constraint:

```
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p]
        = share[j] * tot_dem[p] / sum {k in DEST} share[k];
```

This alternative makes the model a little shorter, but the computation of the demand and the structure of the constraint are both harder to follow.

As another example, consider a scenario for the multiperiod production model (Figure 4-4) in which minimum inventories are computed. Specifically, suppose that the inventory of product p for week t must be at least a certain fraction of market [$p, t+1$], the maximum that can be sold in the following week. We thus use the following declarations for the data to be supplied:

```
param frac > 0;
param market {PROD,1..T+1} >= 0;
```

and then declare

```
param mininv {p in PROD, t in 0..T} = frac * market[p,t+1];
var Inv {p in PROD, t in 0..T} >= mininv[p,t];
```

to define and use parameters mininv $[p, t]$ that represent the minimum inventory of product p for week t. AMPL keeps all = definitions of parameters up to date throughout a session. Thus for example if you change the value of frac the values of all the mininv parameters automatically change accordingly.

If you define a computed parameter as in the examples above, then you cannot also specify a data value for it. An attempt to do so will result in an error message:

```
mininv was defined in the model
context: param >>> mininv <<< := bands 2 3000
```

However, there is an alternative way in which you can define an initial value for a parameter but allow it to be changed later.

If you define a parameter using the default operator in place of $=$, then the parameter is initialized rather than defined. Its value is taken from the value of the expression to the right of the default operator, but does not change if the expression's value later changes. Initial values can be overridden by data statements, and they also may be changed by subsequent assignment statements. This feature is most useful for writing AMPL scripts that update certain values repeatedly, as shown in Section 13.2.

If you define a parameter using the operator default in place of $=$, then you can specify values in data statements to override the ones that would otherwise be computed. For instance, by declaring

```
param mininv {p in PROD, t in 0..T}
    default frac * market[p,t+1];
```

you can allow a few exceptional minimum inventories to be specified as part of the data for the model, either in a list:

```
param mininv :=
    bands 2 3000
    coils 2 2000
    coils 3 2000 ;
```

or in a table:

param market:	1	2	3	4	$:=$
bands	.	3000	\dot{D}^{2}	.	
coils	.	2000	2000	.	

(AMPL uses " ."' in a data statement to indicate an omitted entry, as explained in Chapter 9 and A.12.2.)

The expression that gives the default value of a parameter is evaluated only when the parameter's value is first needed, such as when an objective or constraint that uses the parameter is processed by a solve command.

In most = and default phrases, the operator is followed by an arithmetic expression in previously defined sets and parameters (but not variables) and currently defined dummy indices. Some parameters in an indexed collection may be given a computed or default value in terms of others in the same collection, however. As an example, you can smooth out some of the variation in the minimum inventories by defining the mininv parameter to be a running average like this:

```
param mininv {p in PROD, t in 0..T} =
    if t = 0 then inv0[p]
        else 0.5 * (mininv[p,t-1] + frac * market[p,t+1]);
```

The values of mininv for week 0 are set explicitly to the initial inventories, while the values for each subsequent week t are defined in terms of the previous week's values. AMPL permits any "recursive" definition of this kind, but will signal an error if it detects a circular reference that causes a parameter's value to depend directly or indirectly on itself.

You can use the phrases defined in this section together with the restriction phrases of the previous section, to further check the values that are computed. For example the declaration

```
param mininv {p in PROD, t in 0..T}
    = frac * market[p,t+1], >= 0;
```

will cause an error to be signaled if the computed value of any of the mininv parameters is negative. This check is triggered whenever an AMPL session uses mininv for any purpose.

7.6 Randomly generated parameters

When you're testing out a model, especially in the early stages of development, you may find it convenient to let randomly generated data stand in for actual data to be obtained later. Randomly generated parameters can also be useful in experimenting with alternative model formulations or solvers.

Randomly generated parameters are like the computed parameters introduced in the preceding section, except that their defining expressions are made random by use of AMPL's built-in random number generation functions listed in Table A-3. As an example of the simplest case, the individual parameter avail representing hours available in steel.mod may be defined to equal a random function:

```
param avail_mean > 0;
param avail_variance > 0, < avail_mean / 2;
param avail = max(Normal(avail_mean, avail_variance), 0);
```

Adding some indexing gives a multi-stage version of this model:

```
param avail {STAGE} =
    max(Normal (avail_mean, avail_variance), 0);
```

For each stage s, this gives avail [s] a different random value from the same random distribution. To specify stage-dependent random distributions, you would add indexing to the mean and variance parameters as well:

```
param avail_mean {STAGE} > 0;
param avail_variance {s in STAGE} > 0, < avail_mean[s] / 2;
param avail {s in STAGE} =
    max(Normal(avail_mean[s], avail_variance[s]), 0);
```

The max $(\ldots, 0)$ expression is included to handle the rare case in which the normal distribution with a positive mean returns a negative value.

More general ways of randomly computing parameters arise naturally from the preceding section's examples. In the multicommodity transportation problem, you can define random shares of demand:

```
param share {DEST} = Uniform(0,100);
param tot_sh = sum {j in DEST} share[j];
param tot_dem {PROD} >= 0;
param demand {j in DEST, p in PROD}
    = share[j] * tot_dem[p] / tot_sh;
```

Parameters tot_sh and demand then also become random, because they are defined in terms of random parameters. In the multiperiod production model, you can define the demand quantities market [p, t] in terms of an initial value and a random amount of increase per period:

```
param market1 {PROD} >= 0;
param max_incr {PROD} >= 0;
param market {p in PROD, t in 1..T+1} =
    if t = 1 then market1[p]
        else Uniform(0,max_incr) * market[p,t-1];
```

A recursive definition of this kind provides a way of generating simple random processes over time.

All of the AMPL random functions are based on a uniform random number generator with a very long period. When you start AMPL or give a reset command, however, the generator is reset and the "random"' values are the same as before. You can request different values by changing the AMPL option randseed to some integer other than its default value of 1 ; the command for this purpose is

```
option randseed n;
```

where n is some integer value. Nonzero values give sequences that repeat each time AMPL is reset. A value of 0 requests AMPL to pick a seed based on the current value of the system clock, resulting (for practical purposes) in a different seed at each reset.

AMPL's reset data command, when applied to a randomly computed parameter, also causes a new sample of random values to be determined. The use of this command is discussed in Section 11.3.

7.7 Logical parameters

Although parameters normally represent numeric values, they can optionally be used to stand for true-false values or for character strings.

The current version of AMPL does not support a full-fledged 'logical'' type of parameter that would stand for only the values true and false, but a parameter of type binary may be used to the same effect. As an illustration, we describe an application of the preceding inventory example to consumer goods. Certain products in each week may be specially promoted, in which case they require a higher inventory fraction. Using parameters of type binary, we can represent this situation by the following declarations:

```
param fr_reg > 0; # regular inventory fraction
param fr_pro > fr_reg; # fraction for promoted items
param promote {PROD,1..T+1} binary;
param market {PROD,1..T+1} >= 0;
```

The binary parameters promote $[\mathrm{p}, \mathrm{t}]$ are 0 when there is no promotion, and 1 when there is a promotion. Thus we can define the minimum-inventory parameters by use of an if-then-else expression as follows:

```
param mininv {p in PROD, t in 0..T} =
    (if promote[p,t] = 1 then fr_pro else fr_reg)
            * market[p,t+1];
```

We can also say the same thing more concisely:

```
param mininv {p in PROD, t in 0..T} =
    (if promote[p,t] then fr_pro else fr_reg) * market[p,t+1];
```

When an arithmetic expression like promote [p, t] appears where a logical expression is required, AMPL interprets any nonzero value as true, and zero as false. You do need to exercise a little caution to avoid being tripped up by this implicit conversion. For example, in Section 7.4 we used the expression

```
if t = 1 then 0 else cumulative_market[p,t-1]
```

If you accidentally write

```
if t then 0 else cumulative_market[p,t-1] # DIFFERENT
```

it's perfectly legal, but it doesn't mean what you intended.

7.8 Symbolic parameters

You may permit a parameter to represent character string values, by including the keyword symbolic in its declaration. A symbolic parameter's values may be strings or numbers, just like a set's members, but the string values may not participate in arithmetic.

A major use of symbolic parameters is to designate individual set members that are to be treated specially. For example, in a model of traffic flow, there is a set of intersections, two of whose members are designated as the entrance and exit. Symbolic parameters can be used to represent these two members:

```
set INTER;
param entr symbolic in INTER;
param exit symbolic in INTER, <> entr;
```

In the data statements, an appropriate string is assigned to each symbolic parameter:

```
set INTER := a b c d e f g ;
param entr := a ;
param exit := g ;
```

These parameters are subsequently used in defining the objective and constraints; the complete model is developed in Section 15.2.

Another use of symbolic parameters is to associate descriptive strings with set members. Consider for example the set of 'origins'" in the transportation model of Figure 3-1a. When we introduced this set at the beginning of Chapter 3, we described each originating city by means of a 4 -character string and a longer descriptive string. The short strings became the members of the AMPL set ORIG, while the longer strings played no further role. To make both available, we could declare

```
set ORIG;
param orig_name {ORIG} symbolic;
param supply {ORIG} >= 0;
```

Then in the data we could specify

```
param: ORIG: orig_name supply :=
    GARY "Gary, Indiana" }140
    CLEV "Cleveland, Ohio" 2600
    PITT "Pittsburgh, Pennsylvania" 2900 ;
```

Since the long strings do not have the form of AMPL names, they do need to be quoted. They still play no role in the model or the resulting linear program, but they can be retrieved for documentary purposes by the display and printf commands described in Chapter 12.

Just as there are arithmetic and logical operators and functions, there are AMPL string operators and functions for working with string values. These features are mostly used in AMPL command scripts rather than in models, so we defer their description to Section 13.7.

Exercises

7-1. Show how the multicommodity transportation model of Figure 4-1 could be modified so that it applies the following restrictions to the data. Use either a restriction phrase in a set or param declaration, or a check statement, whichever is appropriate.

- No city is a member of both ORIG and DEST.
- The number of cities in DEST must be greater than the number in ORIG.
- Demand does not exceed 1000 at any one city in DEST.
- Total supply for each product at all origins must equal total demand for that product at all destinations.
- Total supply for all products at all origins must equal total demand for all products at all destinations.
- Total supply of all products at an origin must not exceed total capacity for all shipments from that origin.
- Total demand for all products at a destination must not exceed total capacity for all shipments to that destination.

7-2. Show how the multiperiod production model of Figure 4-4 could be modified so that it applies the following restrictions to the data.

- The number of weeks is a positive integer greater than 1.
- The initial inventory of a product does not exceed the total market demand for that product over all weeks.
- The inventory cost for a product is never more than 10% of the expected revenue for that product in any one week.
- The number of hours in a week is between 24 and 40 , and does not change by more than 8 hours from one week to the next.
- For each product, the expected revenue never decreases from one week to the next.

7-3. The solutions to the following exercises involve the use of an if-then-else operator to formulate a constraint.
(a) In the example of the constraint Balance in Section 7.3, we used an expression beginning

```
if t = first(WEEKS) then ...
```

Find an equivalent expression that uses the function ord (t).
(b) Combine the Diet_Min and Diet_Max constraints of Figure 5-1's diet model into one constraint declaration.
(c) In the multicommodity transportation model of Figure 4-1, imagine that there is more demand at the destinations than we can meet from the supply produced at the origins. To make up the difference, a limited number of additional tons can be purchased (rather than manufactured) for shipment at certain origins.
To model this situation, suppose that we declare a subset of origins,

```
set BUY_ORIG within ORIG;
```

where the additional tons can be bought. The relevant data values and decision variables could be indexed over this subset:

```
param buy_supply {BUY_ORIG,PROD} >= 0; # available for purchase
param buy_cost {BUY_ORIG,PROD} > 0; # purchase cost per ton
var Buy {i in BUY_ORIG, p in PROD} >= 0, <= buy_supply[i,p];
    # amount to buy
```

Revise the objective function to include the purchase costs. Revise the Supply constraints to say that, for each origin and each product, total tons shipped out must equal tons of supply from production plus (if applicable) tons purchased.
(d) Formulate the same model as in (c), but with BUY_ORIG being the set of pairs (i,p) such that product p can be bought at origin i.
7-4. This exercise is concerned with the following sets and parameters from Figure 4-1:

```
set ORIG; # origins
set DEST; # destinations
set PROD; # products
param supply {ORIG,PROD} >= 0;
param demand {DEST,PROD} >= 0;
```

(a) Write param declarations, using the $=$ operator, to compute parameters having the following definitions:

- prod_supply [p] is the total supply of product p at all origins.
- dest_demand [j] is the total demand for all products at destination j.
- true_limit $[i, j, p]$ is the largest quantity of product p that can be shipped from i to j - that is, the largest value that does not exceed limit [i,j], or the supply of pat i, or the demand for p at j .
- max_supply [p] is the largest supply of product p available at any origin.
- max_diff[p] is the largest difference, over all combinations of origins and destinations, between the supply and demand for product p .
(b) Write set declarations, using the $=$ operator, to compute these sets:
- Products p whose demand is at least 500 at some destination j.
- Products p whose demand is at least 250 at all destinations j.
- Products p whose demand is equal to 500 at some destination j.

7-5. AMPL parameters can be defined to contain many kinds of series, especially by using recursive definitions. For example, we can make $s[j]$ equal the sum of the first j integers, for j from 1 to some given limit N , by writing

```
param N;
param s {j in 1..N} = sum {jj in 1..j} jj;
```

or, using a formula for the sum,

```
param s {j in 1..N} = j * (j+1) / 2;
```

or, using a recursive definition,

```
param s {j in 1..N} = if j = 1 then 1 else s[j-1] + j;
```

This exercise asks you to play with some other possibilities.
(a) Define fact $[\mathrm{n}]$ to be n factorial, the product of the first n integers. Give both a recursive and a nonrecursive definition as above.
(b) The Fibonacci numbers are defined mathematically by $f_{0}=f_{1}=1$ and $f_{n}=f_{n-1}+f_{n-2}$. Using a recursive declaration, define $f i b[\mathrm{n}]$ in AMPL to equal the n -th Fibonacci number.
Use another AMPL declaration to verify that the n-th Fibonacci number equals the closest integer to $(1 / 2+1 / 2 \sqrt{5})^{n} / \sqrt{5}$.
(c) Here's another recursive definition, called Ackermann's function, for positive integers i and j :

$$
\begin{aligned}
A(i, 0) & =i+1 \\
A(0, j+1) & =A(1, j) \\
A(i+1, j+1) & =A(A(i, j+1), j)
\end{aligned}
$$

Using a recursive declaration, define ack $[i, j]$ in AMPL so that it will equal $A(i, j)$. Use display to print ack $[0,0]$, ack $[1,1]$, ack $[2,2]$ and so forth. What difficulty do you encounter?
(d) What are the values odd[i] defined by the following odd declaration?

```
param odd {i in 1..N} =
    if i = 1 then 3 else
        min {j in odd[i-1]+2 .. odd[i-1]*2 by 2:
            not exists {k in 1 .. i-1} j mod odd[k] = 0} j;
```

Once you've figured it out, create a simpler and more efficient declaration that gives a set rather than an array of these numbers.
(e) A "tree" consists of a collection of nodes, one of which we designate as the "root". Each node except the root has a unique predecessor node in the tree, such that if you work backwards from a node to its predecessor, then to its predecessor's predecessor, and so forth, you always eventually reach the root. A tree can be drawn like this, with the root at the left and an arrow from each node to its successors:

We can store the structure of a tree in AMPL sets and parameters as follows:

```
set NODES;
param Root symbolic in NODES;
param pred {i in NODES diff {Root}} symbolic in NODES diff {i};
```

Every node i, except Root, has a predecessor pred[i].
The depth of a node is the number of predecessors that you encounter on tracing back to the root; the depth of the root is 0 . Give an AMPL definition for depth [i] that correctly computes the depth of each node i. To check your answer, apply your definition to AMPL data for the tree depicted above; after reading in the data, use display to view the parameter depth.
An error in the data could give a tree plus a disconnected cycle, like this:

If you enter such data, what will happen when you try to display depth?

8

Linear Programs: Variables, Objectives and Constraints

The best-known kind of optimization model, which has served for all of our examples so far, is the linear program. The variables of a linear program take values from some continuous range; the objective and constraints must use only linear functions of the variables. Previous chapters have described these requirements informally or implicitly; here we will be more specific.

Linear programs are particularly important because they accurately represent many practical applications of optimization. The simplicity of linear functions makes linear models easy to formulate, interpret, and analyze. They are also easy to solve; if you can express your problem as a linear program, even in thousands of constraints and variables, then you can be confident of finding an optimal solution accurately and quickly.

This chapter describes how variables are declared, defines the expressions that AMPL recognizes as being linear in the variables, and gives the rules for declaring linear objectives and constraints. Much of the material on variables, objectives and constraints is basic to other AMPL models as well, and will be used in later chapters.

Because AMPL is fundamentally an algebraic modeling language, this chapter concentrates on features for expressing linear programs in terms of algebraic objectives and constraints. For linear programs that have certain special structures, such as networks, AMPL offers alternative notations that may make models easier to write, read and solve. Such special structures are among the topics of Chapters 15 through 17.

8.1 Variables

The variables of a linear program have much in common with its numerical parameters. Both are symbols that stand for numbers, and that may be used in arithmetic expressions. Parameter values are supplied by the modeler or computed from other values,
while the values of variables are determined by an optimizing algorithm (as implemented in one of the packages that we refer to as solvers).

Syntactically, variable declarations are the same as the parameter declarations defined in Chapter 7, except that they begin with the keyword var rather than param. The meaning of qualifying phrases within the declaration may be different, however, when these phrases are applied to variables rather than to parameters.

Phrases beginning with $>=$ or $<=$ are by far the most common in declarations of variables for linear programs. They have appeared in all of our examples, beginning with the production model of Figure 1-4:

```
var Make {p in PROD} >= 0, <= market[p];
```

This declaration creates an indexed collection of variables Make [p], one for each member p of the set PROD; the rules in this respect are exactly the same as for parameters. The effect of the two qualifying phrases is to impose a restriction, or constraint, on the permissible values of the variables. Specifically, >= 0 implies that all of the variables Make [p] must be assigned nonnegative values by the optimizing algorithm, while the phrase $<=$ market [p] says that, for each product p, the value given to Make [p] may not exceed the value of the parameter market [p].

In general, either $>=$ or $<=$ may be followed by any arithmetic expression in previously defined sets and parameters and currently defined dummy indices. Most linear programs are formulated in such a way that every variable must be nonnegative; an AMPL variable declaration can specify nonnegativity either directly by $>=0$, or indirectly as in the diet model of Figure 5-1:

```
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
```

The values following $>=$ and $<=$ are lower and upper bounds on the variables. Because these bounds represent a kind of constraint, they could just as well be imposed by the constraint declarations described later in this chapter. By placing bounds in the var declaration instead, you may be able to make the model shorter or clearer, although you will not make the optimal solution any different or easier to find. Some solvers do treat bounds specially in order to speed up their algorithms, but with AMPL all bounds are identified automatically, no matter how they are expressed in your model.

Variable declarations may not use the comparison operators $<$, > or <> in qualifying phrases. For linear programming it makes no sense to constrain a variable to be, say, <3, since it could always be chosen as $2.99999 \ldots$ or as close to 3 as you like.
$\mathrm{An}=$ phrase in a variable declaration gives rise to a definition, as in a parameter declaration. Because a variable is being declared, however, the expression to the right of the $=$ operator may contain previously declared variables as well as sets and parameters. For example, instead of writing the complicated objective from the multi-period production model of Figure 6-3 (steelT3.mod) as

```
maximize Total_Profit:
    sum {p in PROD, t in 1..T}
            (sum {a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
                prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);
```

you could instead define variables to represent the total revenues, production costs, and inventory costs:

```
var Total_Revenue =
    sum {p in PROD, t in 1..T}
        sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t];
var Total_Prod_Cost =
    sum {p in PROD, t in 1..T} prodcost[p] * Make[p,t];
var Total_Inv_Cost =
    sum {p in PROD, t in 1..T} invcost[p] * Inv[p,t];
```

The objective would then be the sum of these three defined variables:

```
maximize Total_Profit:
    Total_Revenue - Total_Prod_Cost - Total_Inv_Cost;
```

The structure of the objective is clearer this way. Also the defined variables are conveniently available to a display statement to show how the three main components of profit compare:

```
ampl: display Total_Revenue, Total_Prod_Cost, Total_Inv_Cost;
Total_Revenue = 801385
Total_Prod_Cost = 285643
Total_Inv_Cost = 1221
```

Declarations of defined variables like these do not give rise to additional constraints in the resulting problem instance. Rather, the linear expression to the right of the $=$ is substituted for every occurrence of the defined variable in the objective and constraints. Defined variables are even more useful for nonlinear programming, where the substitution may be only implicit, so we will return to this topic in Chapter 18.

If the expression to the right of the $=$ operator contains no variables, then you are merely defining variables to be fixed to values given by the data. In that case you should use a param declaration instead. On the other hand, if you only want to fix some variables temporarily while developing or analyzing a model, then you should leave the declarations unchanged and instead fix them with the fix command described in Section 11.4 .

A := or default phrase in a variable declaration gives initial values to the indicated variables. Variables not assigned an initial value by $:=$ can also be assigned initial values from a data file. Initial values of variables are normally changed - ideally to optimal values - when a solver is invoked. Thus the main purpose of initial values of variables is to give the solver a good starting solution. Solvers for linear programming can seldom make good use of a starting solution, however, so we defer further discussion of this topic to Chapter 18 on nonlinear programming.

Finally, variables may be declared as integer so that they must take whole number values in any optimal solution, or as binary so that they may only take the values 0 and

1. Models that contain any such variables are integer programs, which are the topic of Chapter 20.

8.2 Linear expressions

An arithmetic expression is linear in a given variable if, for every unit increase or decrease in the variable, the value of the expression increases or decreases by some fixed amount. An expression that is linear in all its variables is called a linear expression. (Strictly speaking, these are affine expressions, and a linear expression is an affine expression with constant term zero. For simplicity, we will ignore this distinction.)

AMPL recognizes as a linear expression any sum of terms of the form

```
constant-expr
variable-ref
    (constant-expr) * variable-ref
```

provided that each constant-expr is an arithmetic expression that contains no variables, while var-ref is a reference (possibly subscripted) to a variable. The parentheses around the constant-expr may be omitted if the result is the same according to the rules of operator precedence (Table A-1). The following examples, from the constraints in the multiperiod production model of Figure 6-3, are all linear expressions under this definition:

```
avail[t]
Make[p,t] + Inv[p,t-1]
sum {p in PROD} (1/rate[p]) * Make[p,t]
sum {a in AREA[p]} Sell[p,a,t] + Inv[p,t]
```

The model's objective,

```
sum {p in PROD, t in 1..T}
    (sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -
        prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t])
```

is also linear because subtraction of a term is the addition of its negative, and a sum of sums is itself a sum.

Various kinds of expressions are equivalent to a sum of terms of the forms above, and are also recognized as linear by AMPL. Division by an arithmetic expression is equivalent to multiplication by its inverse, so

```
(1/rate[p]) * Make[p,t]
```

may be written in a linear program as

```
Make[p,t] / rate[p]
```

The order of multiplications is irrelevant, so the variable-ref need not come at the end of a term; for instance,

```
revenue [p,a,t] * Sell[p,a,t]
```

is equivalent to

$$
\operatorname{Sell}[p, a, t] \text { * revenue }[p, a, t]
$$

As an example combining these principles, imagine that revenue $[p, a, t]$ is in dollars per metric ton, while Sell remains in tons. If we define conversion factors

```
param mt_t = 0.90718474; # metric tons per ton
param t_mt = 1 / mt_t; # tons per metric ton
```

then both

```
sum {a in AREA[p]} mt_t * revenue[p,a,t] * Sell[p,a,t]
```

and

```
sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] / t_mt
```

are linear expressions for total revenue.
To continue our example, if costs are also in dollars per metric ton, the objective could be written as

```
mt_t * sum {p in PROD, t in 1..T}
    (sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -
        prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t])
```

or as

```
sum {p in PROD, t in 1..T}
    (sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -
        prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t]) / t_mt
```

Multiplication and division distribute over any summation to yield an equivalent linear sum of terms. Notice that in the first form, mt_t multiplies the entire sum \{p in PROD, t in $1 . . T\}$, while in the second t _mt divides only the summand that follows sum $\{p$ in PROD, t in $1 \ldots \mathrm{~T}\}$, because the / operator has higher precedence than the sum operator. In these examples the effect is the same, however.

Finally, an if-then-else operator produces a linear result if the expressions following then and else are both linear and no variables appear in the logical expression between if and else. The following example appeared in a constraint in Section 7.3:

```
Make[j,t] +
    (if t = first(WEEKS) then inv0[j] else Inv[j,prev(t)])
```

The variables in a linear expression may not appear as the operands to any other operators, or in the arguments to any functions. This rule applies to iterated operators like max, min, abs, forall, and exists, as well as ^ and standard numerical functions like sqre, log, and cos.

To summarize, a linear expression may be any sum of terms in the forms

```
constant-expr
var-ref
(constant-expr) * (linear-expr)
(linear-expr) * (constant-expr)
(linear-expr) / (constant-expr)
if logical-expr then linear-expr else linear-expr
```

where constant-expr is any arithmetic expression that contains no references to variables, and linear-expr is any other (simpler) linear expression. Parentheses may be omitted if the result is the same by the rules of operator precedence in Table A-1. AMPL automatically performs the transformations that convert any such expression to a simple sum of linear terms.

8.3 Objectives

The declaration of an objective function consists of one of the keywords minimize or maximize, a name, a colon, and a linear expression in previously defined sets, parameters and variables. We have seen examples such as

```
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];
```

and

```
maximize Total_Profit:
    sum {p in PROD, t in 1..T}
        (sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -
            prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t]);
```

The name of the objective plays no further role in the model, with the exception of certain "columnwise" declarations to be introduced in Chapters 15 and 16. Within AMPL commands, the objective's name refers to its value. Thus for example after solving a feasible instance of the Figure 2-1 diet model we could issue the command

```
ampl: display {j in FOOD} 100 * cost[j] * Buy[j] / Total_Cost;
100*cost[j]*Buy[j]/Total_Cost [*] :=
BEEF 14.4845
    CHK 4.38762
FISH 3.8794
    HAM 24.4792
    MCH 16.0089
    MTL 16.8559
    SPG 15.6862
    TUR 4.21822
;
```

to show the percentage of the total cost spent on each food.
Although a particular linear program must have one objective function, a model may contain more than one objective declaration. Moreover, any minimize or maximize declaration may define an indexed collection of objective functions, by including an
indexing expression after the objective name. In these cases, you may issue an objective command, before typing solve, to indicate which objective is to be optimized.

As an example, recall that when trying to solve the model of Figure 2-1 with the data of Figure 2-2, we found that no solution could satisfy all of the constraints; we subsequently increased the sodium (NA) limit to 50000 to make a feasible solution possible. It is reasonable to ask: How much of an increase in the sodium limit is really necessary to permit a feasible solution? For this purpose we can introduce a new objective equal to the total sodium in the diet:

```
minimize Total_NA: sum {j in FOOD} amt["NA",j] * Buy[j];
```

(We create this objective only for sodium, because we have no reason to minimize most of the other nutrients.) We can solve the linear program for total cost as before, since AMPL chooses the model's first objective by default:

```
ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: display n_max["NA"];
n_max['NA'] = 50000
ampl: minimize Total_NA: sum {j in FOOD} amt["NA",j] * Buy[j];
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032
Objective = Total_Cost
```

The solver tells us the minimum cost, and we can also use display to look at the total sodium, even though it's not currently being minimized:

```
ampl: display Total_NA;
Total_NA = 50000
```

Next we can use the objective command to switch the objective to minimization of total sodium. The solve command then re-optimizes with this alternative objective, and we display Total_Cost to determine the resulting cost:

```
ampl: objective Total_NA;
ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 48186
ampl: display Total_Cost;
Total_Cost = 123.627
```

We see that sodium can be brought down by about 1800, though the cost is forced up by about $\$ 5.50$ as a result. (Healthier diets are in general more expensive, because they force the solution away from the one that minimizes costs.)

As another example, here's how we could experiment with different optimal solutions for the office assignment problem of Figure 3-2. First we solve the original problem:

```
ampl: model transp.mod; data assign.dat; solve;
CPLEX 8.0.0: optimal solution; objective 28
24 dual simplex iterations (0 in phase I)
ampl: option display_1col 1000, omit_zero_rows 1;
ampl: option display_eps .000001;
ampl: display Total_Cost,
ampl? {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
Total_Cost = 28
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Daskin D241 4
Hazen C246 1
Hopp D237 1
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C251 3
White M239 1
;
```

To keep the objective value at this optimal level while we experiment, we add a constraint that fixes the expression for the objective equal to the current value, 28 :

```
ampl: subject to Stay_Optimal:
ampl? sum {i in ORIG, j in DEST}
ampl? cost[i,j] * Trans[i,j] = 28;
```

Next, recall that cost $[i, j]$ is the ranking that person i has given to office j, while Trans [i, j] is set to 1 if it's optimal to put person i in office j, or 0 otherwise. Thus

```
sum {j in DEST} cost[i,j] * Trans[i,j]
```

always equals the ranking of person i for the office to which i is assigned. We use this expression to declare a new objective function:

```
ampl: minimize Pref_of {i in ORIG}:
ampl? sum {j in DEST} cost[i,j] * Trans[i,j];
```

This statement creates, for each person i, an objective Pref_of [i] that minimizes the ranking of i for the room that i is assigned. Then we can select any one person and optimize his or her ranking in the assignment:

```
ampl: objective Pref_of["Coullard"];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 3
3 simplex iterations (0 in phase I)
```

Looking at the new assignment, we see that the original objective is unchanged, and that the selected individual's situation is in fact improved, although of course at the expense of others:

```
ampl: display Total_Cost,
ampl? {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
Total_Cost = 28
cost[i,j]*Trans[i,j] :=
Coullard D241 3
Daskin D237 1
Hazen C246 1
Hopp C251 5
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C118 5
White M239 1
;
```

We were able to make this change because there are several optimal solutions to the original total-ranking objective. A solver arbitrarily returns one of these, but by use of a second objective we can force it toward others.

8.4 Constraints

The simplest kind of constraint declaration begins with the keywords subject to, a name, and a colon. Even the subject to is optional; AMPL assumes that any declaration not beginning with a keyword is a constraint. Following the colon is an algebraic description of the constraint, in terms of previously defined sets, parameters and variables. Thus in the production model introduced in Figure 1-4, we have the following constraint imposed by limited processing time:

```
subject to Time:
    sum {p in PROD} (1/rate[p]) * Make[p] <= avail;
```

The name of a constraint, like the name of an objective, is not used anywhere else in an algebraic model, though it figures in alternative "columnwise" formulations (Chapter 16) and is used in the AMPL command environment to specify the constraint's dual value and other associated quantities (Chapter 14).

Most of the constraints in large linear programming models are defined as indexed collections, by giving an indexing expression after the constraint name. The constraint Time, for example, is generalized in subsequent examples to say that the production time may not exceed the time available in each processing stage s (Figure 1-6a):

```
subject to Time {s in STAGE}:
    sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];
```

or in each week t (Figure 4-4):

```
subject to Time {t in 1..T}:
    sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];
```

Another constraint from the latter example says that production, sales and inventories must balance for each product p in each week t :

```
subject to Balance {p in PROD, t in 1..T}:
    Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];
```

A constraint declaration can specify any valid indexing expression, which defines a set (as explained in Chapters 5 and 6); there is one constraint for each member of this set. The constraint name can be subscripted, so that Time [1] or Balance [p,t+1] refers to a particular constraint from an indexed collection.

The indexing expression in a constraint declaration should specify a dummy index (like s, t and p in the preceding examples) for each dimension of the indexing set. Then when the constraint corresponding to a particular indexing-set member is processed by AMPL, the dummy indices take their values from that member. This use of dummy indices is what permits a single constraint expression to represent many constraints; the indexing expression is AMPL's translation of a phrase such as 'for all products p and weeks $t=1$ to T " that might be seen in an algebraic statement of the model.

By using more complex indexing expressions, you can specify more precisely the constraints to be included in a model. Consider, for example, the following variation on the production time constraint:

```
subject to Time {t in 1..T: avail[t] > 0}:
    sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];
```

This says that if avail [t] is specified as zero in the data for any week t, it is to be interpreted as meaning "no constraint on time available in week t ' rather than "limit of zero on time available in week t ', In the simpler case where there is just one Time constraint not indexed over weeks, you can specify an analogous conditional definition as follows:

```
subject to Time {if avail > 0}:
    sum {p in PROD} (1/rate[p]) * Make[p] <= avail;
```

The pseudo-indexing expression $\{i f$ avail > 0 \} causes one constraint, named Time, to be generated if the condition avail >0 is true, and no constraint at all to be generated if the condition is false. (The same notation can be used to conditionally define other model components.)

AMPL's algebraic description of a constraint may consist of any two linear expressions separated by an equality or inequality operator:

```
linear-expr <= linear-expr
linear-expr = linear-expr
linear-expr >= linear-expr
```

While it is customary in mathematical descriptions of linear programming to place all terms containing variables to the left of the operator and all other terms to the right (as in constraint Time), AMPL imposes no such requirement (as seen in constraint Balance).

Convenience and readability should determine what terms you place on each side of the operator. AMPL takes care of canonicalizing constraints, such as by combining linear terms involving the same variable and moving variables from one side of a constraint to the other. The expand command described in Section 1.4 shows the canonical forms of the constraints.

AMPL also allows double-inequality constraints such as the following from the diet model of Figure 2-1:

```
subject to Diet {i in NUTR}:
    n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];
```

This says that the middle expression, the amount of nutrient i supplied by all foods, must be greater than or equal to $n _m i n[i]$ and also less than or equal to $n _m a x[i]$. The permissible forms for a constraint of this kind are

```
const-expr <= linear-expr <= const-expr
const-expr >= linear-expr >= const-expr
```

where each const-expr must contain no variables. The effect is to give upper and lower bounds on the value of the linear-expr. If your model requires variables in the left-hand or right-hand const-expr, you must define two different constraints in separate declarations.

For most applications of linear programming, you need not worry about the form of the constraints. If you simply write the constraints in the most convenient way, they will be recognized as proper linear constraints according to the rules in this chapter. There do exist situations, however, in which your choice of formulation will determine whether AMPL recognizes your model as linear. Imagine that we want to further constrain the production model so that no product p may represent more than a certain fraction of total production. We define a parameter max_frac to represent the limiting fraction; the constraint then says that production of p divided by total production must be less than or equal to max_frac:

```
subject to Limit {p in PROD}:
    Make[p] / sum {q in PROD} Make[q] <= max_frac;
```

This is not a linear constraint to AMPL, because its left-hand expression contains a division by a sum of variables. But if we rewrite it as

```
subject to Limit {p in PROD}:
    Make[p] <= max_frac * sum {q in PROD} Make[q];
```

then AMPL does recognize it as linear.
AMPL simplifies constraints as it prepares the model and data for handing to a solver. For example, it may eliminate variables fixed at a value, combine single-variable constraints with the simple bounds on the variables, or drop constraints that are implied by other constraints. You can normally ignore this presolve phase, but there are ways to observe its effects and modify its actions, as explained in Section 14.1.

Exercises

8-1. In the diet model of Figure 5-1, add a := phrase to the var declaration (as explained in Section 8.1) to initialize each variable to a value midway between its lower and upper bounds.
Read this model into AMPL along with the data from Figure 5-2. Using display commands, determine which constraints (if any) the initial solution fails to satisfy, and what total cost this solution gives. Is the total cost more or less than the optimal total cost?
8-2. This exercise asks you to reformulate various kinds of constraints to make them linear.
(a) The following constraint says that the inventory $\operatorname{Inv}[p, t]$ for product p in any period t must not exceed the smallest one-period production Make $[p, t]$ of product p :

```
subject to Inv_Limit {p in PROD, t in 1..T}:
    Inv[p,t] <= min {tt in 1..T} Make[p,tt];
```

This constraint is not recognized as linear by AMPL, because it applies the min operator to variables. Formulate a linear constraint that has the same effect.
(b) The following constraint says that the change in total inventories from one period to the next may not exceed a certain parameter max_change:

```
subject to Max_Change {t in 1..T}:
    abs(sum {p in PROD} Inv[p,t-1] - sum {p in PROD} Inv[p,t])
        <= max_change;
```

This constraint is not linear because it applies the abs function to an expression involving variables. Formulate a linear constraint that has the same effect.
(c) The following constraint says that the ratio of total production to total inventory in a period may not exceed max_inv_ratio:

```
subject to Max_Inv_Ratio {t in 1..T}:
    (sum {p in PROD} Inv[p,t]) / (sum {p in PROD} Make[p,t])
        <= max_inv_ratio;
```

This constraint is not linear because it divides one sum of variables by another. Formulate a linear constraint that has the same effect.
(d) What can you say about formulation of an alternative linear constraint for the following cases?

- In (a), min is replaced by max.
- In (b), <= max_change is replaced by >= min_change.
- In (c), the parameter max_inv_ratio is replaced by a new variable, Ratio [t].

8-3. This exercise deals with some more possibilities for using more than one objective function in a diet model. Here we consider the model of Figure 5-1, together with the data from Figure 5-2.
Suppose that the costs are indexed over stores as well as foods:

```
set STORE:
param cost {STORE,FOOD} > 0;
```

A separate objective function may then be defined for each store:

```
minimize Total_Cost {s in STORE}:
    sum {j in FOOD} cost[s,j] * Buy[j];
```

Consider the following data for three stores:

```
set STORE := "A&P" JEWEL VONS ;
param cost: BEEF CHK FISH HAM MCH MTL SPG TUR :=
    "A&P" 3.19 2.59 2.29 2. 29 1.89 1.99 1.99 2.49
    JEWEL 3.09 2.79 2.29 2.59 1.59 1.99 2.09 2.30
    VONS 2.59 2.99 2.49 2.69 1.99 2.29 2.00 2.69;
```

Using the objective command, find the lowest-cost diet for each store. Which store offers the lowest total cost?

Consider now an additional objective that represents total packages purchased, regardless of cost:

```
minimize Total_Number:
    sum {j in FOOD} Buy[j];
```

What is the minimum value of this objective? What are the costs at the three stores when this objective is minimized? Explain why you would expect these costs to be higher than the costs computed in (a).

8-4. This exercise relates to the assignment example of Section 8.3.
(a) What is the best-ranking office that you can assign to each individual, given that the total of the rankings must stay at the optimal value of 28 ? How many different optimal assignments do there seem to be, and which individuals get different offices in different assignments?
(b) Modify the assignment example so that it will find the best-ranking office that you can assign to each individual, given that the total of the rankings may increase from 28, but may not exceed 30 .
(c) After making the modification suggested in (b), the person in charge of assigning offices has tried again to minimize the objective Pref_of ["Coullard"]. This time, the reported solution is as follows:

```
ampl: display Total_Cost,
ampl? {i in ORIG, j in DEST} cost[i,j]*Trans[i,j];
Total_Cost = 30
cost[i,j]*Trans[i,j] :=
Coullard M239 1
Daskin D241 4
Hazen C246 1
Hopp C251 2.5
Hopp D237 0.5
Iravani C138 2
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C118 5
White C251 2.5
White D237 1.5
```

Coullard is now assigned her first choice, but what is the difficulty with the overall solution? Why doesn't it give a useful resolution to the assignment problem as we have stated it?

8-5. Return to the assignment version of the transportation model, in Figures 3-1a and 3-2.
(a) Add parameters worst [i] for each i in ORIG, and constraints saying that Trans [i,j] must equal 0 for every combination of i in ORIG and j in DEST such that cost $[i, j]$ is greater
than worst[i]. (See the constraint Time in Section 8.4 for a similar example.) In the assignment interpretation of this model, what do the new constraints mean?
(b) Use the model from (a) to show that there is an optimal solution, with the objective equal to 28 , in which no one gets an office worse than their fifth choice.
(c) Use the model from (a) to show that at least one person must get an office worse than fourth choice.
(d) Use the model from (a) to show that if you give Nelson his first choice, without any restrictions on the other individuals' choices, the objective cannot be made smaller than 31. Determine similarly how small the objective can be made if each other individual is given first choice.

9

Specifying Data

As we emphasize throughout this book, there is a distinction between an AMPL model for an optimization problem, and the data values that define a particular instance of the problem. Chapters 5 through 8 focused on the declarations of sets, parameters, variables, objectives and constraints that are necessary to describe models. In this chapter and the next, we take a closer look at the statements that specify the data.

Examples of AMPL data statements appear in almost every chapter. These statements offer several formats for lists and tables of set and parameter values. Some formats are most naturally created and maintained in a text editing or word processing environment, while others are easy to generate from programs like database systems and spreadsheets. The display command (Chapter 12) also produces output in these formats. Wherever possible, similar syntax and concepts are used for both sets and parameters.

This chapter first explains how AMPL's data command is used, in conjunction with data statements, to read data values from files such as those whose names end in . dat throughout our examples. Options to the data command also allow or force selected sets and parameters to be read again.

Subsequent sections describe data statements, first for lists and then for tables of set and parameter data, followed by brief sections on initial values for variables, values for indexed collections of sets, and default values. A summary of data statement formats appears in Section A. 12.

A final section describes the read command, which reads unformatted lists of values into sets and parameters. Chapter 10 is devoted to AMPL's features for data stored in relational database tables.

9.1 Formatted data: the data command

Declarations like param and var, and commands like solve and display, are executed in model mode, the standard mode for most modeling activity. But model mode is inconvenient for reading long lists of set and parameter values. Instead AMPL reads its
data statements in a data mode that is initiated by the data command. In its most common use, this command consists of the keyword data followed by the name of a file. For example,

```
ampl: data diet.dat;
```

reads data from a file named diet. dat. Filenames containing spaces, semicolons, or nonprinting characters must be enclosed in quotes.

While reading in data mode, AMPL treats white space, that is, any sequence of space, tab, and 'newline"' characters, as a single space. Commas separating strings or numbers are also ignored. Judicious use of these separators can help to arrange data into easy-toread lists and tables; our examples use a combination of spaces and newlines. If data statements are produced as output from other data management software and sent directly to AMPL, however, then you may ignore visual appearance and use whatever format is convenient.

Data files often contain numerous character strings, representing set members or the values of symbolic parameters. Thus in data mode AMPL does not, in general, require strings to be enclosed in quotes. Strings that include any character other than letters, digits, underscores, period, + and - must be quoted, however, as in the case of $A \& P$. You may use a pair of either single quotes ('A\&P') or double quotes ("A\&P"), unless the string contains a quote, in which case the other kind of quote must surround it ("DOMINICK'S") or the surrounding quote must be doubled within it ('DOMINICK' ${ }^{\prime}$ ').

A string that looks like a number (for example "+1" or " 3 e 4 ") must also be quoted, to distinguish it from a set member or parameter value that is actually a number. Numbers that have the same internal representation are considered to be the same, so that for example $2,2.00,2 . \mathrm{e} 0$ and $0.02 \mathrm{E}+2$ all denote the same set member.

When AMPL finishes reading a file in data mode, it normally reverts to whatever mode it was in before the data command was executed. Hence a data file can itself contain data commands that read data from other files. If the last data statement in a data file lacks its terminating semicolon, however, then data mode persists regardless of the previous mode.

A data command with no filename puts AMPL into data mode, so subsequent input is taken as data statements:

```
ampl: model dietu.mod;
ampl: data;
ampl data: set MINREQ := A B1 B2 C CAL;
ampl data: set MAXREQ := A NA CAL;
ampl data: display NUTR;
set NUTR := A B1 B2 C CAL NA;
ampl:
```

AMPL leaves data mode when it sees any statement (like display) that does not begin with a keyword (like set or param) that begins a data statement. The model command, with or without filename, also causes a return to model mode.

Model components may be assigned values from any number of data files, by using multiple data commands. Regardless of the number of files, AMPL checks that no component is assigned a value more than once, and duplicate assignments are flagged as errors. In some situations, however, it is convenient to be able to change the data by issuing new data statements; for example, after solving for one scenario of a model, you may want to modify some of the data by reading a new data file that corresponds to a second scenario. The data values in the new file would normally be treated as erroneous duplicates, but you can tell AMPL to accept them by first giving a reset data or update data command. These alternatives are described in Section 11.3, along with the use of reset data to resample randomly-computed parameters, and of let to directly assign new set or parameter values.

9.2 Data in lists

For an unindexed (scalar) parameter, a data statement assigns one value:

```
param avail := 40;
```

Most of a typical model's parameters are indexed over sets, however, and their values are specified in a variety of lists and tables that are introduced in this section and the next, respectively.

We start with sets of simple one-dimensional objects, and the one-dimensional collections of parameters indexed over them. We then turn to two-dimensional sets and parameters, for which we have the additional option of organizing the data into "slices". The options for two dimensions are then shown to generalize readily to higher dimensions, for which we present some three-dimensional examples. Finally, we show how data statements for a set and the parameters indexed over it can be combined to provide a more concise and convenient representation.

Lists of one-dimensional sets and parameters

For a parameter indexed over a one-dimensional set like

```
set PROD;
param rate {PROD} > 0;
```

the specification of the set can be simply a listing of its members:

```
set PROD := bands coils plate ;
```

and the parameter's specification may be virtually the same except for the addition of a value after each set member:

```
param rate := bands 200 coils 140 plate 160 ;
```

The parameter specification could equally well be written

```
param rate :=
    bands 200
    coils }14
    plate 160 ;
```

since extra spaces and line breaks are ignored.
If a one-dimensional set has been declared with the attribute ordered or circular (Section 5.6), then the ordering of its members is taken from the data statement that defines it. For example, we specified

```
set WEEKS := 27sep 04oct 11oct 18oct ;
```

as the membership of the ordered set WEEKS in Figure 5-4.
Members of a set must all be different; AMPL will warn of duplicates:

```
duplicate member coils for set PROD
context: set PROD := bands coils plate coils >>> ; <<<
```

Also a parameter may not be given more than one value for each member of the set over which it is indexed. A violation of this rule provokes a similar message:

```
rate['bands'] already defined
context: param rate := bands 200 bands 160 >>> ; <<<
```

The context bracketed by >>> and <<< isn't the exact point of the error, but the message makes the situation clear.

A set may be specified as empty by giving an empty list of members; simply put the semicolon right after the : = operator. A parameter indexed over an empty set has no data associated with it.

Lists of two-dimensional sets and parameters

The extension of data lists to the two-dimensional case is largely straightforward, but with each set member denoted by a pair of objects. As an example, consider the following sets from Figure 6-2a:

```
set ORIG; # origins
set DEST; # destinations
set LINKS within {ORIG,DEST}; # transportation links
```

The members of ORIG and DEST can be given as for any one-dimensional sets:

```
set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;
```

Then the membership of LINKS may be specified as a list of tuples such as you would find in a model's indexing expressions,

```
set LINKS :=
    (GARY,DET) (GARY,LAN) (GARY,STL) (GARY,LAF) (CLEV,FRA)
    (CLEV,DET) (CLEV,LAN) (CLEV,WIN) (CLEV,STL) (CLEV,LAF)
    (PITT,FRA) (PITT,WIN) (PITT,STL) (PITT,FRE) ;
```

or as a list of pairs, without the parentheses and commas:

```
set LINKS :=
    GARY DET GARY LAN GARY STL GARY LAF
    CLEV FRA CLEV DET CLEV LAN CLEV WIN
    CLEV STL CLEV LAF PITT FRA PITT WIN
    PITT STL PITT FRE ;
```

The order of members within each pair is significant - the first must be from ORIG, and the second from DEST - but the pairs themselves may appear in any order.

An alternative, more concise way to describe this set of pairs is to list all second components that go with each first component:

```
set LINKS :=
    (GARY,*) DET LAN STL LAF
    (CLEV,*) FRA DET LAN WIN STL LAF
    (PITT,*) FRA WIN STL FRE ;
```

It is also easy to list all first components that go with each second component:

```
set LINKS :=
    (*,FRA) CLEV PITT (*,DET) GARY CLEV (*,LAN) GARY CLEV
    (*,WIN) CLEV PITT (*,LAF) GARY CLEV (*,FRE) PITT
    (*,STL) GARY CLEV PITT ;
```

An expression such as (GARY, *) or (*, FRA), resembling a pair but with a component replaced by a *, is a data template. Each template is followed by a list, whose entries are substituted for the * to generate pairs; these pairs together make up a slice through the dimension of the set where the * appears. A tuple without any *'s, like (GARY, DET), is in effect a template that specifies only itself, so it is not followed by any values. At the other extreme, in the table that consists of pairs alone,

```
set LINKS :=
    GARY DET GARY LAN GARY STL GARY LAF
    CLEV FRA CLEV DET CLEV LAN CLEV WIN
    CLEV STL CLEV LAF PITT FRA PITT WIN
    PITT STL PITT FRE ;
```

a default template ($*, *$) applies to all entries.
For a parameter indexed over a two-dimensional set, the AMPL list formats are again derived from those for sets by placing parameter values after the set members. Thus if we have the parameter cost indexed over the set LINKS:

```
param cost {LINKS} >= 0;
```

then the set data statement for LINKS is extended to become the following param data statement for cost:

```
param cost :=
    GARY DET 14
    CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN 9
    CLEV STL 26 CLEV LAF 17 PITT FRA 24 PITT WIN 13
    PITT STL 28 PITT FRE 99;
```

Lists of slices through a set extend similarly, by placing a parameter value after each implied set member. Thus, corresponding to our concise data statement for LINKS:

```
set LINKS :=
    (GARY,*) DET LAN STL LAF
    (CLEV,*) FRA DET LAN WIN STL LAF
    (PITT,*) FRA WIN STL FRE ;
```

there is the following statement for the values of cost:

```
param cost :=
    [GARY,*] DET 14 LAN 11 STL 16 LAF 8
    [CLEV,*] FRA 27 DET 9 LAN 12 WIN 9 STL 26 LAF 17
    [PITT,*] FRA 24 WIN 13 STL 28 FRE 99 ;
```

The templates are given in brackets to distinguish them from the set templates in parentheses, but they work in the same way. Thus a template such as [GARY, *] indicates that the ensuing entries will be for values of cost that have a first index of GARY, and an entry such as DET 14 gives cost ["GARY", "DET"] a value of 14 .

All of the above applies just as well to the use of templates that slice on the first dimension, so that for instance you could also specify parameter cost by:

```
param cost :=
    [*,FRA] CLEV 27 PITT 24
    [*,DET] GARY 14 CLEV 9
    [*,LAN] GARY 11 CLEV 12
    [*,WIN] CLEV 9 PITT 13
    [*,STL] GARY 16 CLEV 26 PITT 28
    [*,FRE] PITT 99
    [*,LAF] GARY 8 CLEV }1
```

You can even think of the list-of-pairs example,

```
param cost :=
    GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
```

as also being a case of this form, corresponding to the default template $[$ *, *].

Lists of higher-dimensional sets and parameters

The concepts underlying data lists for two-dimensional sets and parameters extend straightforwardly to higher-dimensional cases. The only difference of any note is that nontrivial slices may be made through more than one dimension. Hence we confine the presentation here to some illustrative examples in three dimensions, followed by a sketch of the general rules for the AMPL data list format that are given in Section A.12.

We take our example from Section 6.3, where we suggest a version of the multicommodity transportation model that defines a set of triples and costs indexed over them:

```
set ROUTES within {ORIG,DEST,PROD};
param cost {ROUTES} >= 0;
```

Suppose that ORIG and DEST are as above, that PROD only has members bands and coils, and that ROUTES has as members certain triples from \{ORIG, DEST, PROD\}. Then the membership of ROUTES can be given most simply by a list of triples, either

```
set ROUTES :=
    (GARY,LAN, coils) (GARY,STL,coils) (GARY,LAF,coils)
    (CLEV,FRA, bands) (CLEV,FRA,coils) (CLEV,DET,bands)
    (CLEV,DET, coils) (CLEV,LAN,bands) (CLEV,LAN, coils)
    (CLEV,WIN,coils) (CLEV,STL,bands) (CLEV,STL,coils)
    (CLEV, LAF,bands) (PITT, FRA,bands) (PITT,WIN, bands)
    (PITT,STL,bands) (PITT,FRE,bands) (PITT,FRE,coils) ;
```

or

```
set ROUTES :=
    GARY LAN coils GARY STL coils GARY LAF coils
    CLEV FRA bands CLEV FRA coils CLEV DET bands
    CLEV DET coils CLEV LAN bands CLEV LAN coils
    CLEV WIN coils CLEV STL bands CLEV STL coils
    CLEV LAF bands PITT FRA bands PITT WIN bands
    PITT STL bands PITT FRE bands PITT FRE coils ;
```

Using templates as before, but with three items in each template, we can break the specification into slices through one dimension by placing one * in each template. In the following example, we slice through the second dimension:

```
set ROUTES :=
    (CLEV,*,bands) FRA DET LAN STL LAF
    (PITT,*,bands) FRA WIN STL FRE
    (GARY,*,coils) LAN STL LAF
    (CLEV,*,coils) FRA DET LAN WIN STL
    (PITT,*,coils) FRE ;
```

Because the set contains no members with origin GARY and product bands, the template (GARY, *, bands) is omitted.

When the set's dimension is more than two, the slices can also be through more than one dimension. A slice through two dimensions, in particular, naturally involves placing two *'s in each template. Here we slice through both the first and third dimensions:

```
set ROUTES :=
    (*,FRA,*) CLEV bands CLEV coils PITT bands
    (*,DET,*) CLEV bands CLEV coils
    (*,LAN,*) GARY coils CLEV bands CLEV coils
    (*,WIN,*) CLEV coils PITT bands
    (*,STL,*) GARY coils CLEV bands CLEV coils PITT bands
    (*,FRE,*) PITT bands PITT coils
    (*,LAF,*) GARY coils CLEV bands ;
```

Since these templates have two *'s, they must be followed by pairs of components, which are substituted from left to right to generate the set members. For instance the template (*, FRA ${ }^{*}$) followed by CLEV bands specifies that (CLEV, FRA, bands) is a member of the set.

Any of the above forms suffices for giving the values of parameter cost as well. We could write

```
param cost :=
    [CLEV,*,bands] FRA 27 DET 9 LAN 12 STL 26 LAF 17
    [PITT,*,bands] FRA 24 WIN 13 STL 28 FRE 99
    [GARY,*,coils] LAN 11 STL 16 LAF 8
    [CLEV,*,coils] FRA 23 DET 8 LAN 10 WIN 9 STL 21
    [PITT,*,coils] FRE 81 ;
```

or

```
param cost :=
    [ * , *, bands]
        CLEV FRA 27 CLEV DET 9 CLEV LAN 1
        CLEV STL 26 CLEV LAF 17 PITT FRA 24
        PITT WIN 13 PITT STL 28 PITT FRE 99
        [*,*,coils] GARY LAN 11 GARY STL 16 GARY LAF 8
        CLEV FRA 23 CLEV DET 8 CLEV LAN 10
        CLEV WIN 9 CLEV STL 21 PITT FRE 81
```

or

```
param cost :=
    CLEV DET bands }
    GARY STL coils 16
```

 CLEV FRA coils 23 CLEV LAF bands 17
 CLEV LAN coils 10 CLEV STL bands 26
 CLEV WIN coils 9 GARY LAF coils 8
 PITT FRE coils 81 PITT STL bands 28 PITT WIN bands
 By placing the *'s in different positions within the templates, we can slice onedimensionally in any of three different ways, or two-dimensionally in any of three different ways. (The template $[*, *, *$] would specify a three-dimensional list like

```
param cost :=
    CLEV DET bands 9 CLEV DET coils 8 CLEV FRA bands 27
```

as already shown above.)
More generally, a template for an n-dimensional set or parameter in list form must have n entries. Each entry is either a legal set member or a *. Templates for sets are enclosed in parentheses (like the tuples in set-expressions) and templates for parameters are enclosed in brackets (like the subscripts of parameters). Following a template is a series of items, each item consisting of one set member for each *, and additionally one parameter value in the case of a parameter template. Each item defines an n-tuple, by substituting its set members for the $*$ s in the template; either this tuple is added to the set being specified, or the parameter indexed by this tuple is assigned the value in the item.

A template applies to all items between it and the next template (or the end of the data statement). Templates having different numbers of *s may even be used together in the
same data statement, so long as each parameter is assigned a value only once. Where no template appears, a template of all $*$ s is assumed.

Combined lists of sets and parameters

When we give data statements for a set and a parameter indexed over it, like

```
set PROD := bands coils plate ;
param rate := bands 200 coils 140 plate 160 ;
```

we are specifying the set's members twice. AMPL lets us avoid this duplication by including the set's name in the param data statement:

```
param: PROD: rate := bands 200 coils 140 plate 160 ;
```

AMPL uses this statement to determine both the membership of PROD and the values of rate.

Another common redundancy occurs when we need to supply data for several parameters indexed over the same set, such as rate, profit and market all indexed over PROD in Figure 1-4a. Rather than write a separate data statement for each parameter,

```
param rate := bands 200 coils 140 plate 160 ;
param profit := bands 25 coils 30 plate 29 ;
param market := bands 6000 coils 4000 plate 3500 ;
```

we can combine these statements into one by listing all three parameter names after the keyword param:

```
param: rate profit market :=
    bands 200 25 6000 coils 140 30 4000 plate 160 29 3500 ;
```

Since AMPL ignores extra spaces and line breaks, we have the option of rearranging this information into an easier-to-read table:

param:	rate	profit	market $:=$
bands	200	25	6000
coils	140	30	4000
plate	160	29	3500

Either way, we still have the option of adding the indexing set's name to the statement,

param:	PROD:	rate	profit	market : =
	bands	200	25	6000
	coils	140	30	4000
	plate	160	29	3500 ;

so that the specifications of the set and all three parameters are combined.
The same rules apply to lists of any higher-dimensional sets and the parameters indexed over them. Thus for our two-dimensional example LINKS we could write

```
param: LINKS: cost :=
    GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
    CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN 9
    CLEV STL 26 CLEV LAF 17 PITT FRA 24 PITT WIN 13
    PITT STL 28 PITT FRE 99 ;
```

to specify the membership of LINKS and the values of the parameter cost indexed over it, or

param: LINKS: cost	limit $:=$	
GARY DET	14	1000
GARY LAN	11	800
GARY STL	16	1200
GARY LAF	8	1100
CLEV FRA	27	1200
CLEV DET	9	600
CLEV LAN	12	900
CLEV WIN	9	950
CLEV STL	26	1000
CLEV LAF	17	800
PITT FRA	24	1500
PITT WIN	13	1400
PITT STL	28	1500
PITT FRE	99	$1200 ;$

to specify the values of cost and limit together. The same options apply when templates are used, making possible further alternatives such as

```
param: LINKS: cost :=
    [GARY,*] DET 14 LAN 11 STL 16 LAF 8
    [CLEV,*] FRA 27 DET 9 LAN 12 WIN 9 STL 26 LAF 17
    [PITT,*] FRA 24 WIN 13 STL 28 FRE 99 ;
```

and

param: LINKS:	cost	limit	
[GARY, *]	DET	14	1000
	LAN	11	800
	STL	16	1200
	LAF	8	1100
[CLEV, *]	FRA	27	1200
	DET	9	600
	LAN	12	900
	WIN	9	950
	STL	26	1000
	LAF	17	800
$[P I T T, *]$	FRA	24	1500
	WIN	13	1400
	STL	28	1500
	FRE	99	$1200 ;$

Here the membership of the indexing set is specified along with the two parameters; for example, the template [GARY,*] followed by the set member DET and the values 14
and 1000 indicates that (GARY, DET) is to be added to the set LINKS, that cost [GARY, DET] has the value 14, and that limit[GARY,DET] has the value 1000.

As our illustrations suggest, the key to the interpretation of a param statement that provides values for several parameters or for a set and parameters is in the first line, which consists of param followed by a colon, then optionally the name of an indexing set followed by a colon, then by a list of parameter names terminated by the := assignment operator. Each subsequent item in the list consists of a number of set members equal to the number of $* \mathrm{~s}$ in the most recent template and then a number of parameter values equal to the number of parameters listed in the first line.

Normally the parameters listed in the first line of a param statement are all indexed over the same set. This need not be the case, however, as seen in the case of Figure 5-1. For this variation on the diet model, the nutrient restrictions are given by

```
set MINREQ;
set MAXREQ;
param n_min {MINREQ} >= 0;
param n_max {MAXREQ} >= 0;
```

so that $n _m i n$ and $n _m a x$ are indexed over sets of nutrients that may overlap but that are not likely to be the same.

Our sample data for this model specifies:

```
set MINREQ := A B1 B2 C CAL ;
set MAXREQ := A NA CAL ;
\begin{tabular}{ccr} 
param: & n_min & n_max \\
A & 700 & 20000 \\
C & 700 &. \\
B1 & 0 &. \\
B2 & 0 &. \\
NA &. & 50000 \\
CAL & 16000 & 24000
\end{tabular}
```

Each period or dot (.) indicates to AMPL that no value is being given for the corresponding parameter and index. For example, since MINREQ does not contain a member NA, the parameter $n _m i n[N A]$ is not defined; consequently a . is given as the entry for NA and $n _m i n$ in the data statement. We cannot simply leave a space for this entry, because AMPL will take it to be 50000: data mode processing ignores all extra spaces. Nor should we put a zero in this entry; in that case we will get a message like

```
error processing param n_min:
    invalid subscript n_min['NA'] discarded.
```

when AMPL first tries to access $n _m i n$, usually at the first solve.
When we name a set in the first line of a param statement, the set must not yet have a value. If the specification of parameter data in Figure 5-1 had been given as

param:NUTR: A	n_min	n_max
C	700	20000
B1	700	.
B2	0	.
NA	0	.
CAL	16000	240000

AMPL would have generated the error message

```
dietu.dat, line 16 (offset 366):
    NUTR was defined in the model
context: param: NUTR >>> : <<< n_min n_max :=
```

because the declaration of NUTR in the model,

```
set NUTR = MINREQ union MAXREQ;
```

defines it already as the union of MINREQ and MAXREQ.

9.3 Data in tables

The table format of data, with indices running along the left and top edges and values corresponding to pairs of indices, can be more concise or easier to read than the list format described in the previous section. Here we describe tables first for two-dimensional parameters and then for slices from higher-dimensional ones. We also show how the corresponding multidimensional sets can be specified in tables that have entries of + or rather than parameter value entries.

AMPL also supports a convenient extension of the table format, in which more than two indices may appear along the left and top edge. The rules for specifying such tables are provided near the end of this section.

Two-dimensional tables

Data values for a parameter indexed over two sets, such as the shipping cost data from the transportation model of Figure 3-1a:

```
set ORIG;
set DEST;
param cost {ORIG,DEST} >= 0;
```

are very naturally specified in a table (Figure 3-1b):

param cost:	FRA	DET	LAN	WIN	STL	FRE	LAF	$:=$
GARY	39	14	11	14	16	82	8	
CLEV	27	9	12	9	26	95	17	
PITT	24	14	17	13	28	99	20	;

The row labels give the first index and the column labels the second index, so that for example cost ["GARY", "FRA"] is set to 39. To enable AMPL to recognize this as a table, a colon must follow the parameter name, while the $:=$ operator follows the list of column labels.

For larger index sets, the columns of tables become impossible to view within the width of a single screen or page. To deal with this situation, AMPL offers several alternatives, which we illustrate on the small table above.

When only one of the index sets is uncomfortably large, the table may be transposed so that the column labels correspond to the smaller set:

param cost (tr):				
GARY	CLEV	PITT $:=$		
FRA	39	27	24	
DET	14	9	14	
LAN	11	12	17	
WIN	14	9	13	
STL	16	26	28	
FRE	82	95	99	
LAF	8	17	$20 ;$	

The notation (tr) after the parameter name indicates a transposed table, in which the column labels give the first index and the row labels the second index. When both of the index sets are large, either the table or its transpose may be divided up in some way. Since line breaks are ignored, each row may be divided across several lines:

param cost:	FRA	DET	LAN	WIN	
	STL	FRE	LAF		:
GARY	39	14	11	14	
	16	82	8		
CLEV	27	9	12	9	
	26	95	17		
	PITT	24	14	17	13
	28	99	20		

Or the table may be divided columnwise into several smaller ones:

| param cost: | FRA | DET | LAN | WIN $:=$ |
| ---: | ---: | ---: | ---: | ---: | :--- |
| GARY | 39 | 14 | 11 | 14 |
| CLEV | 27 | 9 | 12 | 9 |
| PITT | 24 | 14 | 17 | 13 |
| $:$ | STL | FRE | LAF | $:=$ |
| GARY | 16 | 82 | 8 | |
| CLEV | 26 | 95 | 17 | |
| PITT | 28 | 99 | 20 | $;$ |

A colon indicates the start of each new sub-table; in this example, each has the same row labels, but a different subset of the column labels.

In the alternative formulation of this model presented in Figure 6-2a, cost is not indexed over all combinations of members of ORIG and DEST, but over a subset of pairs from these sets:

```
set LINKS within {ORIG,DEST};
param cost {LINKS} >= 0;
```

As we have seen in Section 9.2, the membership of LINKS can be given concisely by a list of pairs:

```
set LINKS :=
    (GARY,*) DET LAN STL LAF
    (CLEV,*) FRA DET LAN WIN STL LAF
    (PITT,*) FRA WIN STL FRE ;
```

Rather than being given in a similar list, the values of cost can be given in a table like this:

param cost:	FRA	DET	LAN	WIN	STL	FRE	LAF	: $=$
GARY	.	14	11	.	16	.	8	
CLEV	27	9	12	9	26	.	17	
PITT	24	.	.	13	28	99	.	;

A cost value is given for all pairs that exist in LINKS, while a dot (.) serves as a place-holder for pairs that are not in LINKS. The dot can appear in any AMPL table to indicate "no value specified here".

The set LINKS may itself be given by a table that is analogous to the one for cost:

set LINKS:	FRA	DET	LAN	WIN	STL	FRE	LAF	$:=$
GARY	-	+	+	-	+	-	+	
CLEV	+	+	+	+	+	-	+	
PITT	+	-	-	+	+	+	-	$;$

A + indicates a pair that is a member of the set, and a - indicates a pair that is not a member. Any of AMPL's table formats for specifying parameters can be used for sets in this way.

Two-dimensional slices of higher-dimensional data

To provide data for parameters of more than two dimensions, we can specify the values in two-dimensional slices that are represented as tables. The rules for using slices are much the same as for lists. As an example, consider again the three-dimensional parameter cost defined by

```
set ROUTES within {ORIG,DEST,PROD};
param cost {ROUTES} >= 0;
```

The values for this parameter that we specified in list format in the previous section as

```
param cost :=
    [*,*,bands] CLEV FRA 27 CLEV DET 9 CLEV LAN 12
            CLEV STL 26 CLEV LAF 17 PITT FRA 24
            PITT WIN 13 PITT STL 28 PITT FRE 99
    [*,*,coils] GARY LAN 11 GARY STL 16 GARY LAF 8
            CLEV FRA }23\mathrm{ CLEV DET 8 CLEV LAN 10
                    CLEV WIN }9\mathrm{ CLEV STL 21 PITT FRE 81
```

can instead be written in table format as

[*, *, bands] :	FRA	DET	LAN	WIN	STL	FRE	LAF
CLEV	27	9	12	.	26	.	17
PITT	24	.	.	13	28	99	.
[*, *, coils]:	FRA	DET	LAN	WIN	STL	FRE	LAF
GARY	.	.	11	-	16	.	8
CLEV	23	8	10	9	21	.	
PITT	-	.	.	-	.	81	

Since we are working with two-dimensional tables, there must be two *'s in the templates. A table value's row label is substituted for the first *, and its column label for the second, unless the opposite is specified by (tr) right after the template. You can omit any rows or columns that would have no significant entries, such as the row for GARY in the [*, *, bands] table above.

As before, a dot in the table for any slice indicates a tuple that is not a member of the table.

An analogous table to specify the set ROUTES can be constructed by putting a + where each number appears:

```
set ROUTES :=
    (*,*,bands) : FRA DET LAN WIN STL FRE LAF :=
            CLEV + + + - + - +
            PITT + - - + + + -
    (*,*,coils) : FRA DET LAN WIN STL FRE LAF :=
            GARY - - + - + - +
            CLEV + + + + + - -
            PITT - - - - - + - ;
```

Since the templates are now set templates rather than parameter templates, they are enclosed in parentheses rather than brackets.

Higher-dimensional tables

By putting more than one index to the left of each row or at the top of each column, you can describe multidimensional data in a single table rather than a series of slices. We'll continue with the three-dimensional cost data to illustrate some of the wide variety of possibilities.

By putting the first two indices, from sets ORIG and DEST, to the left, with the third index from set PROD at the top, we produce the following three-dimensional table of the costs:

| param cost: | bands coils $:=$ | |
| ---: | :---: | :---: | :---: |
| CLEV FRA | 27 | 23 |
| CLEV DET | 8 | 8 |
| CLEV LAN | 12 | 10 |
| CLEV WIN | . | 9 |
| CLEV STL | 26 | 21 |
| CLEV LAF | 17 | . |
| PITT FRA | 24 | . |
| PITT WIN | 13 | . |
| PITT STL | 28 | . |
| PITT FRE | 99 | 81 |
| GARY LAN | . | 11 |
| GARY STL | . | 16 |
| GARY LAF | . | $8 ;$ |

Putting only the first index to the left, and the second and third at the top, we arrive instead at the following table, which for convenience we break into two pieces:

```
param cost: FRA DET LAN WIN STL FRE LAF
\begin{tabular}{rccccccc} 
: bands & \(:=\) \\
CLEV & 27 & 9 & 12 &. & 26 &. & 17
\end{tabular}
\begin{tabular}{ccccccccc} 
: & FRA & DET & LAN & WIN & STL & FRE & LAF & \\
: coils coils coils coils coils coils coils & \(:=\) \\
GARY &. &. & 11 &. & 16 &. & 8 & \\
CLEV & 23 & 8 & 10 & 9 & 21 &. &. & \\
PITT &. &. &. &. &. & 81 &. & \(;\)
\end{tabular}
```

In general a colon must precede each of the table heading lines, while a := is placed only after the last heading line.

The indices are taken in the order that they appear, first at the left and then at the top, if no indication is given to the contrary. As with other tables, you can add the indicator (tr) to transpose the table, so that the indices are still taken in order but first from the top and then from the left:

Templates can also be used to specify more precisely what goes where. For multidimensional tables the template has two symbols in it, * to indicate those indices that appear at the left and : to indicate those that appear at the top. For example the template $[*,:, *]$ gives a representation in which the first and third indices are at the left and the second is at the top:

param cost $:=$							
$\left[*,:,{ }^{*}\right]:$	FRA	DET	LAN	WIN	STL	FRE	LAF $:=$
CLEV bands	27	9	12	.	26	.	17
CLEV coils	23	8	10	9	21	.	.
PITT bands	24	.	.	13	28	99	.
PITT coils	81	.
GARY coils	.	.	11	.	16	.	8

The ordering of the indices is always preserved in tables of this kind. The third index is never correctly placed before the first, for example, no matter what transposition or templates are employed.

For parameters of four or more dimensions, the ideas of slicing and multidimensional tables can be applied together provide an especially broad choice of table formats. If cost were indexed over ORIG, DEST, PROD, and $1 \ldots$, for instance, then the templates [*, : , bands,*] and [*, : coils,*] could be used to specify two slices through the third index, each specified by a multidimensional table with two indices at the left and one at the top.

Choice of format

The arrangement of slices to represent multidimensional data has no effect on how the data values are used in the model, so you can choose the most convenient format. For the cost parameter above, it may be appealing to slice along the third dimension, so that the data values are organized into one shipping-cost table for each product. Alternatively, placing all of the origin-product pairs at the left gives a particularly concise representation. As another example, consider the revenue parameter from Figure 6-3:

```
set PROD; # products
set AREA {PROD}; # market areas for each product
param T > 0; # number of weeks
param revenue {p in PROD, AREA[p], 1..T} >= 0;
```

Because the index set AREA [p] is potentially different for each product p, slices through the first (PROD) dimension are most attractive. In the sample data from Figure 6-4, they look like this:

```
param T := 4 ;
set PROD := bands coils ;
set AREA[bands] := east north ;
set AREA[coils] := east west export ;
param revenue :=
    [bands,*,*]: 1 2 3 :=
        east 25.0 26.0 27.0 27.0
        north 26.5 27.5 28.0 28.5
    [coils,*,*]: 1 2 3 :=
        east 30 35 37 37
        west 29 32 33 35
        export 25 25 25 28 ;
```

We have a separate revenue table for each product p, with market areas from AREA [p] labeling the rows, and weeks from $1 \ldots$ T labeling the columns.

9.4 Other features of data statements

Additional features of the AMPL data format are provided to handle special situations. We describe here the data statements that specify default values for parameters, that define the membership of individual sets within an indexed collection of sets, and that assign initial values to variables.

Default values

Data statements must provide values for exactly the parameters in your model. You will receive an error message if you give a value for a nonexistent parameter:

```
error processing param cost:
    invalid subscript cost['PITT','DET','coils'] discarded.
```

or if you fail to give a value for a parameter that does exist:

```
error processing objective Total_Cost:
    no value for cost['CLEV','LAN','coils']
```

The error message appears the first time that AMPL tries to use the offending parameter, usually after you type solve.

If the same value would appear many times in a data statement, you can avoid specifying it repeatedly by including a default phrase that provides the value to be used when no explicit value is given. For example, suppose that the parameter cost above is indexed over all possible triples:

```
set ORIG;
set DEST;
set PROD;
param cost {ORIG,DEST,PROD} >= 0;
```

but that a very high cost is assigned to routes that should not be used. This can be expressed as

[*, *, bands] :	FRA	DET	LAN	WIN	STL	FRE	LAF
CLEV	27	9	12	.	26	.	17
PITT	24	-	.	13	28	99	.
[*,*, coils]:	FRA	DET	LAN	WIN	STL	FRE	LAF
GARY	.	-	11	.	16		8
CLEV	23	8	10	9	21	.	
PITT	.	-	.	.	.	81	-

Missing parameters like cost ["GARY", "FRA", "bands"], as well as those explicitly marked "omitted'" by use of a dot (like cost ["GARY", "FRA", "coils"]), are given the value 9999. In total, 24 values of 9999 are assigned.

The default feature is especially useful when you want all parameters of an indexed collection to be assigned the same value. For instance, in Figure 3-2, we apply a transportation model to an assignment problem by setting all supplies and demands to 1 . The model declares

```
param supply {ORIG} >= 0;
param demand {DEST} >= 0;
```

but in the data we give only a default value:

```
param supply default 1 ;
param demand default 1 ;
```

Since no other values are specified, the default of 1 is automatically assigned to every element of supply and demand.

As explained in Chapter 7, a parameter declaration in the model may include a default expression. This offers an alternative way to specify a single default value:

```
param cost {ORIG,DEST,PROD} >= 0, default 9999;
```

If you just want to avoid storing a lot of 9999's in a data file, however, it is better to put the default phrase in the data statement. The default phrase should go in the model when you want the default value to depend in some way on other data. For instance, a different arbitrarily large cost could be given for each product by specifying:

```
param huge_cost {PROD} > 0;
param cost {ORIG, DEST, p in PROD} >= 0, default huge_cost[p];
```

A discussion of default's relation to the = phrase in param statements is given in Section 7.5.

Indexed collections of sets

For an indexed collection of sets, separate data statements specify the members of each set in the collection. In the example of Figure 6-3, for example, the sets named AREA are indexed by the set PROD:

```
set PROD; # products
set AREA {PROD}; # market areas for each product
```

The membership of these sets is given in Figure 6-4 by:

```
set PROD := bands coils ;
set AREA[bands] := east north ;
set AREA[coils] := east west export ;
```

Any of the data statement formats for a set may be used with indexed collections of sets. The only difference is that the set name following the keyword set is subscripted.

As for other sets, you may specify one or more members of an indexed collection to be empty, by giving an empty list of elements. If you want to provide a data statement only for those members of an indexed collection that are not empty, define the empty set as the default value in the model:

```
set AREA {PROD} default {};
```

Otherwise you will be warned about any set whose data statement is not provided.

Initial values for variables

You may optionally assign initial values to the variables of a model, using any of the options for assigning values to parameters. A variable's name stands for its value, and a constraint's name stands for the associated dual variable's value. (See Section 12.5 for a short explanation of dual variables.)

Any param data statement may specify initial values for variables. The variable or constraint name is simply used in place of a parameter name, in any of the formats described by the previous sections of this chapter. To help clarify the intent, the keyword var may be substituted for param at the start of a data statement. For example, the following data table gives initial values for the variable Trans of Figure 3-1a:

var Trans:	FRA	DET	LAN	WIN	STL	FRE	LAF	$:=$
GARY	100	100	800	100	100	500	200	
CLEV	900	100	100	500	500	200	200	
PITT	100	900	100	500	100	900	200	;

As another example, in the model of Figure 1-4, a single table can give values for the parameters rate, profit and market, and initial values for the variables Make:

param:	rate	profit	market	Make	:
bands	200	25	6000	3000	
coils	140	30	4000	2500	
plate	160	29	3500	1500	;

All of the previously described features for default values also apply to variables.
Initial values of variables (as well as the values of expressions involving these initial values) may be viewed before you type solve, using the display, print or printf commands described in Sections 12.1 through 12.4. Initial values are also optionally passed to the solver, as explained in Section 14.1 and A.18.1. After a solution is returned, the variables no longer have their initial values, but even then you can refer to the initial values by placing an appropriate suffix after the variable's name, as shown in Section A. 11.

The most common use of initial values is to give a good starting guess to a solver for nonlinear optimization, which is discussed in Chapter 18.

9.5 Reading unformatted data: the read command

The read command provides a particularly simple way of getting values into AMPL, given that the values you need are listed in a regular order in a file. The file must be unformatted in the sense that it contains nothing except the values to be read - no set or parameter names, no colons or $:=$ operators.

In its simplest form, read specifies a list of parameters and a file from which their values are to be read. The values in the file are assigned to the entries in the list in the order that they appear. For example, if you want to read the number of weeks and the hours available each week for our simple production model (Figure 4-4),

```
param T > 0;
param avail {1..T} >= 0;
```

from a file week_data.txt containing

```
4
40 40 32 40
```

then you can give the command

```
read T, avail[1], avail[2], avail[3], avail[4] <week_data.txt;
```

Or you can use an indexing expression to say the same thing more concisely and generally:

```
read T, {t in 1..T} avail[t] <week_data.txt;
```

The notation < filename specifies the name of a file for reading. (Analogously, > indicates writing to a file; see A.15.)

In general, the read command has the form

```
read item-list < filename ;
```

with the item-list being a comma-separated list of items that may each be any of the following:

```
parameter
    { indexing } parameter
    { indexing } ( item-list )
```

The first two are used in our example above, while the third allows for the same indexing to be applied to several items. Using the same production example, to read in values for

```
param prodcost {PROD} >= 0;
param invcost {PROD} >= 0;
param revenue {PROD,1..T} >= 0;
```

from a file organized by parameters, you could read each parameter separately:

```
read {p in PROD} prodcost[p] < cost_data;
read {p in PROD} invcost[p] < cost_data;
read {p in PROD, t in 1..T} revenue [p,t] < cost_data;
```

reading from file cost_data first all the production costs, then all the inventory costs, and then all the revenues.

If the data were organized by product instead, you could say

```
read {p in PROD}
    (prodcost[p], invcost[p], {t in 1..T} revenue[p,t])
        <cost_data;
```

to read the production and inventory costs and the revenues for the first product, then for the second product, and so forth.

A parenthesized item-list may itself contain parenthesized item-lists, so that if you also want to read

```
param market {PROD,1..T} >= 0;
```

from the same file at the same time, you could say

```
read {p in PROD} (prodcost[p], invcost[p],
    {t in 1..T} (revenue[p,t], market[p,t])) <cost_data;
```

in which case for each product you would read the two costs as before, and then for each week the product's revenue and market demand.

As our descriptions suggest, the form of a read statement's item-list depends on how the data values are ordered in the file. When you are reading data indexed over sets of strings that, like PROD, are not inherently ordered, then the order in which values are read is the order in which AMPL is internally representing them. If the members of the set came directly from a set data statement, then the ordering will be the same as in the data statement. Otherwise, it is best to put an ordered or ordered by phrase in the model's set declaration to ensure that the ordering is always what you expect; see Section 5.6 for more about ordered sets.

An alternative that avoids knowing the order of the members in a set is to specify them explicitly in the file that is read. As an example, consider how you might use a read statement rather than a data statement to get the values from the cost parameter of Section 9.4 that was defined as

```
param cost {ORIG,DEST,PROD} >= 0, default 9999;
```

You could set up the read statement as follows:

```
param ntriples integer;
param ic symbolic in ORIG;
param jc symbolic in DEST;
param kc symbolic in PROD;
read ntriples, {1..ntriples}
    (ic, jc, kc, cost[ic,jc,kc]) <cost_data;
```

The corresponding file cost_data must begin something like this:

```
1 8
CLEV FRA bands 27
PITT FRA bands 24
CLEV FRA coils 23
```

with 15 more entries needed to give all 18 data values shown in the Section 9.4 example.
Strings in a file for the read command that include any character other than letters, digits, underscores, period, + and - must be quoted, just as for data mode. However, the read statement itself is interpreted in model mode, so if the statement refers to any particular string, as in, say,

```
read {t in 1..T} revenue ["bands",t];
```

that string must be quoted. The filename following < need not be quoted unless it contains spaces, semicolons, or nonprinting characters.

If a read statement contains no < filename, values are read from the current input stream. Thus if you have typed the read command at an AMPL prompt, you can type the values at subsequent prompts until all of the listed items have been assigned values. For example:

```
ampl: read T, {t in 1..T} avail[t];
ampl? 4
ampl? 40 40 32 40
ampl: display avail;
avail [*] :=
140 2 40 3 32 4 40
```

The prompt changes from ampl? back to ampl: when all the needed input has been read.

The filename " - " (a literal minus sign) is taken as the standard input of the AMPL process; this is useful for providing input interactively.

Further uses of read within AMPL scripts, to read values directly from script files or to prompt users for values at the command line, are described in Chapter 13.

All of our examples assume that underlying sets such as ORIG and PROD have already been assigned values, through data statements as described earlier in this chapter, or through other means such as database access or assignment to be described in later chapters. Thus the read statement would normally supplement rather than replace other input commands. It is particularly useful in handling long files of data that are generated for certain parameters by programs outside of AMPL.

Exercises

9-1. Section 9.2 gave a variety of data statements for a three-dimensional set, ROUTES. Construct some other alternatives for this set as follows:
(a) Use templates that look like (CLEV, FRA, *).
(b) Use templates that look like ($*, *$, bands), with the list format.
(c) Use templates that look like ($\mathrm{CLEV}, *, *$), with the table format.
(d) Specify some of the set's members using templates with one *, and some using templates with two *'s.

9-2. Rewrite the production model data of Figure $5-4$ so that it consists of just three data statements arranged as follows:
The set PROD and parameters rate, inv0, prodcost and invcost are given in one table.
The set WEEKS and parameter avail are given in one table.
The parameters revenue and market are given in one table.
9-3. For the assignment problem whose data is depicted in Figure 3-2, suppose that the only information you receive about people's preferences for offices is as follows:

Coullard	M239	M233	D241	D237	D239		
Daskin	D237	M233	M239	D241	D239	C246	C140
Hazen	C246	D237	M233	M239	C250	C251	D239
Hopp	D237	M233	M239	D241	C251	C250	
Iravani	D237	C138	C118	D241	D239		
Linetsky	M233	M239	C250	C251	C246	D237	
Mehrotra	D237	D239	M239	M233	D241	C118	C251
Nelson	D237	M233	M239				
Smilowitz	M233	M239	D239	D241	C251	C250	D237
Tamhane	M239	M233	C251	C250	C118	C138	D237
White	M239	M233	D237	C246			

This means that, for example, Coullard's first choice is M239, her second choice is M233, and so on through her fifth choice, D239, but she hasn't given any preference for the other offices.
To use this information with the transportation model of Figure 3-1a as explained in Chapter 3, you must set cost["Coullard", "M239"] to 1, cost["Coullard","M233"] to 2, and so forth. For an office not ranked, such as C246, you can set cost ["Coullard", "C246"] to 99, to indicate that it is a highly undesirable assignment.
(a) Using the list format and a default phrase, convert the information above to an appropriate AMPL data statement for the parameter cost.
(b) Do the same, but with a table format.

9-4. Sections 9.2 and 9.3 gave a variety of data statements for a three-dimensional parameter, cost, indexed over the set ROUTES of triples. Construct some other alternatives for this parameter as follows:
(a) Use templates that look like [CLEV, FRA, *].
(b) Use templates that look like $[*, *$, bands $]$, employing the list format.
(c) Use templates that look like [CLEV, *, *] , employing the table format.
(d) Specify some of the parameter values using templates with one *, and some using templates with two *'s.

9-5. For the three-dimensional parameter revenue of Figure 6-4, construct alternative data statements as follows:
(a) Use templates that look like [*, east, *] , employing the table format.
(b) Use templates that look like $[*, *, 1]$, employing the table format.
(c) Use templates that look like [bands, *, 1].

9-6. Given the following declarations,

```
set ORIG;
set DEST;
var Trans {ORIG, DEST} >= 0;
```

how could you use a data statement to assign an initial value of 300 to all of the Trans variables?

10

Database Access

The structure of indexed data in AMPL has much in common with the structure of the relational tables widely used in database applications. The AMPL table declaration lets you take advantage of this similarity to define explicit connections between sets, parameters, variables, and expressions in AMPL, and relational database tables maintained by other software. The read table and write table commands subsequently use these connections to import data values into AMPL and to export data and solution values from AMPL.

The relational tables read and written by AMPL reside in files whose names and locations you specify as part of the table declaration. To work with these files, AMPL relies on table handlers, which are add-ons that can be loaded as needed. Handlers may be provided by the vendors of solvers or database software. AMPL has built-in handlers for two simple relational table formats useful for experimentation, and the AMPL web site provides a handler that works with the widely available ODBC interface.

This chapter begins by showing how AMPL entities can be put into correspondence with the columns of relational tables, and how the same correspondences can be described and implemented by use of AMPL's table declaration. Subsequent sections present basic features for reading and writing external relational tables, additional rules for handling complications that arise when reading and writing the same table, and mechanisms for writing a series of tables or columns and for reading spreadsheet data. The final section briefly describes some standard and built-in handlers.

10.1 General principles of data correspondence

Consider the following declarations from diet.mod in Chapter 2, defining the set FOOD and three parameters indexed over it:

```
set FOOD;
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
```

A relational table giving values for these components has four columns:

FOOD	cost	f_min	f_max
BEEF	3.19	2	10
CHK	2.59	2	10
FISH	2.29	2	10
HAM	2.89	2	10
MCH	1.89	2	10
MTL	1.99	2	10
SPG	1.99	2	10
TUR	2.49	2	10

The column headed FOOD lists the members of the AMPL set also named FOOD. This is the table's key column; entries in a key column must be unique, like a set's members, so that each key value identifies exactly one row. The column headed cost gives the values of the like-named parameter indexed over set FOOD; here the value of cost["BEEF"] is specified as 3.19 , cost["CHK"] as 2.59 , and so forth. The remaining two columns give values for the other two parameters indexed over FOOD.

The table has eight rows of data, one for each set member. Thus each row contains all of the table's data corresponding to one member - one food, in this example.

In the context of database software, the table rows are often viewed as data records, and the columns as fields within each record. Thus a data entry form has one entry field for each column. A form for the diet example (from Microsoft Access) might look like Figure 10-1. Data records, one for each table row, can be entered or viewed one at a time by using the controls at the bottom of the form.

Figure 10-1: Access data entry form.

Parameters are not the only entities indexed over the set FOOD in this example. There are also the variables:

```
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
```

and assorted result expressions that may be displayed:

```
ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032
\begin{tabular}{lcccc} 
ampl: & display Buy, Buy.rc, \{j in FOOD\} Buy[j]/f_max[j]; \\
: & Buy & Buy.rc & Buy[j]/f_max[j] & : \\
BEEF & 5.36061 & \(8.88178 \mathrm{e}-16\) & 0.536061 & \\
CHK & 2 & 1.18884 & 0.2 & \\
FISH & 2 & 1.14441 & 0.2 & \\
HAM & 10 & -0.302651 & 1 & \\
MCH & 10 & -0.551151 & 1 & \\
MTL & 10 & -1.3289 & 1 & \\
SPG & 9.30605 & 0 & 0.930605 \\
TUR & 2 & 2.73162 & 0.2 &
\end{tabular}
```

All of these can be included in the relational table for values indexed over FOOD:

FOOD	cost	f_min	f_max	Buy	BuyRC	BuyFrac
BEEF	3.19	2	10	5.36061	$8.88178 \mathrm{e}-16$	0.536061
CHK	2.59	2	10	2	1.18884	0.2
FISH	2.29	2	10	2	1.14441	0.2
HAM	2.89	2	10	10	-0.302651	1
MCH	1.89	2	10	10	-0.551151	1
MTL	1.99	2	10	10	-1.3289	1
SPG	1.99	2	10	9.30605	0	0.930605
TUR	2.49	2	10	2	2.73162	0.2

Where the first four columns would typically be read into AMPL from a database, the last three are results that would be written back from AMPL to the database. We have invented the column headings BuyRC and BuyFrac, because the AMPL expressions for the quantities in those columns are typically not valid column headings in database management systems. The table declaration provides for input/output and naming distinctions such as these, as subsequent sections will show.

Other entities of diet.mod are indexed over the set NUTR of nutrients: parameters n_min and n_max, dual prices and other values associated with constraint Diet, and expressions involving these. Since nutrients are entirely distinct from foods, however, the values indexed over nutrients go into a separate relational table from the one for foods. It might look like this:

NUTR	n_min	n_max	NutrDual
A	700	20000	0
B1	700	20000	0
B2	700	20000	0.404585
C	700	20000	0
CAL	16000	24000	0
NA	0	50000	-0.00306905

As this example suggests, any model having more than one indexing set will require more than one relational table to hold its data and results. Databases that consist of multiple tables are a standard feature of relational data management, to be found in all but the simplest "flat file" database packages.

Entities indexed over the same higher-dimensional set have a similar correspondence to a relational table, but with one key column for each dimension. In the case of Chapter 4's steelT.mod, for example, the following parameters and variables are indexed over the same two-dimensional set of product-time pairs:

```
set PROD; # products
param T > 0; # number of weeks
param market {PROD,1..T} >= 0;
param revenue {PROD,1..T} >= 0;
var Make {PROD,1..T} >= 0;
var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t];
```

A corresponding relational table thus has two key columns, one containing members of PROD and the other members of $1 . . T$, and then a column of values for each parameter and variable. Here's an example, corresponding to the data in steelt.dat:

PROD	TIME	market	revenue	Make	Sell
bands	1	6000	25	5990	6000
bands	2	6000	26	6000	6000
bands	3	4000	27	1400	1400
bands	4	6500	27	2000	2000
coils	1	4000	30	1407	307
coils	2	2500	35	1400	2500
coils	3	3500	37	3500	3500
coils	4	4200	39	4200	4200

Each ordered pair of items in the two key columns is unique in this table, just as these pairs are unique in the set \{PROD,1..T\}. The market column of the table implies, for example, that market ["bands",1] is 6000 and that market ["coils", 3] is 3500. From the first row, we can also see that revenue["bands",1] is 25 , Make ["bands",1] is 5990, and Sell ["bands",1] is 6000. Again various names from the AMPL model are used as column headings, except for TIME, which must be invented to stand for the expression 1. .T. As in the previous example, the column headings can be any identifiers acceptable to the database software, and the table declaration will take care of the correspondences to AMPL names (as explained below).

AMPL entities that have sufficiently similar indexing generally fit into the same relational table. We could extend the steelT. mod table, for instance, by adding a column for values of

```
var Inv {PROD,0..T} >= 0;
```

The table would then have the following layout:

PROD	TIME	market	revenue	Make	Sell	Inv
bands	0	0.0	.		0.	10
bands	1	6000	25	5990	6000	0
bands	2	6000	26	6000	6000	0
bands	3	4000	27	1400	1400	0
bands	4	6500	27	2000	2000	0
coils	0	0.	0	0.	0.	0
coils	1	4000	30	1407	307	1100
coils	2	2500	35	1400	2500	0
coils	3	3500	37	3500	3500	0
coils	4	4200	39	4200	4200	0

We use "." here to mark table entries that correspond to values not defined by the model and data. There is no market["bands",0] in the data for this model, for example, although there does exist a value for Inv ["bands", 0] in the results. Database packages vary in their handling of "missing" entries of this sort.

Parameters and variables may also be indexed over a set of pairs that is read as data rather than being constructed from one-dimensional sets. For instance, in the example of transp3.mod from Chapter 3, we have:

```
set LINKS within {ORIG,DEST};
param cost {LINKS} >= 0; # shipment costs per unit
var Trans {LINKS} >= 0; # actual units to be shipped
```

A corresponding relational table has two key columns corresponding to the two components of the indexing set LINKS, plus a column each for the parameter and variable that are indexed over LINKS:

ORIG	DEST	cost	Trans
GARY	DET	14	0
GARY	LAF	8	600
GARY	LAN	11	0
GARY	STL	16	800
CLEV	DET	9	1200
CLEV	FRA	27	0
CLEV	LAF	17	400
CLEV	LAN	12	600
CLEV	STL	26	0
CLEV	WIN	9	400
PITT	FRA	24	900
PITT	FRE	99	1100
PITT	STL	28	900
PITT	WIN	13	0

The structure here is the same as in the previous example. There is a row in the table only for each origin-destination pair that is actually in the set LINKS, however, rather than for every possible origin-destination pair.

10.2 Examples of table-handling statements

To transfer information between an AMPL model and a relational table, we begin with a table declaration that establishes the correspondence between them. Certain details of this declaration depend on the software being used to create and maintain the table. In the case of the four-column table of diet data defined above, some of the possibilities are as follows:

- For a Microsoft Access table in a database file diet .mdb:

```
table Foods IN "ODBC" "diet.mdb":
    FOOD <- [FOOD], cost, f_min, f_max;
```

- For a Microsoft Excel range from a workbook file diet.xls:

```
table Foods IN "ODBC" "diet.xls":
    FOOD <- [FOOD], cost, f_min, f_max;
```

- For an ASCII text table in file Foods. tab:

```
table Foods IN:
    FOOD <- [FOOD], cost, f_min, f_max;
```

Each table declaration has two parts. Before the colon, the declaration provides general information. First comes the table name - Foods in the examples above - which will be the name by which the table is known within AMPL. The keyword IN states that the default for all non-key table columns will be read-only; AMPL will read values in from these columns and will not write out to them.

Details for locating the table in an external database file are provided by the character strings such as "ODBC" and "diet.mdb", with the AMPL table name (Foods) providing a default where needed:

- For Microsoft Access, the table is to be read from database file diet. mdb using AMPL's ODBC handler. The table's name within the database file is taken to be Foods by default.
- For Microsoft Excel, the table is to be read from spreadsheet file diet.xls using AMPL's ODBC handler. The spreadsheet range containing the table is taken to be Foods by default.
- Where no details are given, the table is read by default from the ASCII text file Foods. tab using AMPL's built-in text table handler.

㚗 Foods : Table				- - $^{\text {a }}$	
	F00D	cost	f_min	f_max	
	3EEF	3.19	2	10	
	CHK	2.59	2	10	
	FISH	2.29	2	10	
	HAM	2.89	2	10	
	MCH	1.89	2	10	
	MTL	1.99	2	10	
	SPG	1.99	2	10	
	TUR	2.49	2	10	
	cord: 14\|1/	$1 \rightarrow \mid$			

Figure 10-2: Access relational table.

In general, the format of the character strings in the table declaration depends upon the table handler being used. The strings required by the handlers used in our examples are described briefly in Section 10.7, and in detail in online documentation for specific table handlers.

After the colon, the table declaration gives the details of the correspondence between AMPL entities and relational table columns. The four comma-separated entries correspond to four columns in the table, starting with the key column distinguished by surrounding brackets [...]. In this example, the names of the table columns (FOOD, cost, f _min, f _max) are the same as the names of the corresponding AMPL components. The expression FOOD <- [FOOD] indicates that the entries in the key column FOOD are to be copied into AMPL to define the members of the set FOOD.

The table declaration only defines a correspondence. To read values from columns of a relational table into AMPL sets and parameters, it is necessary to give an explicit

```
read table
```

command.
Thus, if the data values were in an Access relational table like Figure 10-2, the table declaration for Access could be used together with the read table command to read the members of FOOD and values of cost, f _min and f _max into the corresponding AMPL set and parameters:

Figure 10-3: Excel worksheet range.

```
ampl: model diet.mod;
ampl: table Foods IN "ODBC" "diet.mdb":
ampl? FOOD <- [FOOD], cost, f_min, f_max;
ampl: read table Foods;
ampl: display cost, f_min, f_max;
: cost f_min f_max :=
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 2 10
IUR 2.49 2 10
```

(The display command confirms that the database values were read as intended.) If the data values were instead in an Excel worksheet range like Figure 10-3, the values would be read in the same way, but using the table declaration for Excel:

```
ampl: model diet.mod;
ampl: table Foods IN "ODBC" "diet.xls":
ampl? FOOD <- [FOOD], cost, f_min, f_max;
ampl: read table Foods;
```

And if the values were in a file Foods . tab containing a text table like this:

ampl.tab $1 \quad 3$			
FOOD	Cost	f_min	f_max
BEEF	3.19	2	10
CHK	2.59	2	10
FISH	2.29	2	10
HAM	2.89	2	10
MCH	1.89	2	10
MTL	1.99	2	10
SPG	1.99	2	10
TUR	2.49	2	10

the declaration for a text table would be used:

```
ampl: model diet.mod;
ampl: table Foods IN: FOOD <- [FOOD], cOst, f_min, f_max;
ampl: read table Foods;
```

Because the AMPL table name Foods is the same in all three of these examples, the read table command is the same for all three: read table Foods. In general, the read table command only specifies the AMPL name of the table to be read. All information about what is to be read, and how it is to be handled, is taken from the named table's definition in the table declaration.

To create the second (7-column) relational table example of the previous section, we could use a pair of table declarations:

```
table ImportFoods IN "ODBC" "diet.mdb" "Foods":
    FOOD <- [FOOD], cost, f_min, f_max;
table ExportFoods OUT "ODBC" "diet.mdb" "Foods":
    FOOD <- [FOOD], Buy, Buy.rc ~ BuyRC,
    {j in FOOD} Buy[j]/f_max[j] ~ BuyFrac;
```

or a single table declaration combining the input and output information:

```
table Foods "ODBC" "diet.mdb": [FOOD] IN, cost IN,
    f_min IN, f_max IN, Buy OUT, Buy.rc ~ BuyRC OUT,
    {j in FOOD} Buy[j]/f_max[j] ~ BuyFrac OUT;
```

These examples show how the AMPL table name (such as ExportFoods) may be different from the name of the corresponding table within the external file (as indicated by the subsequent string "Foods"). A number of other useful options are also seen here: IN and OUT are associated with individual columns of the table, rather than with the whole table; [FOOD] IN is used as an abbreviation for FOOD <- [FOOD]; columns of the table are associated with the values of variables Buy and expressions Buy.rc and Buy[j]/f_max[j]; Buy.rc ~ BuyRC and \{jin FOOD\} Buy[j]/f_max[j] ~ BuyFrac associate an AMPL expression (to the left of the ~ operator) with a database column heading (to the right).

To write meaningful results back to the Access database, we need to read all of the diet model's data, then solve, and then give a write table command. Here's how it
all might look using separate table declarations to read and write the Access table Foods:

```
ampl: model diet.mod;
ampl: table ImportFoods IN "ODBC" "diet.mdb" "Foods":
ampl? FOOD <- [FOOD], cost, f_min, f_max;
ampl: table Nutrs IN "ODBC" "diet.mdb": NUTR <- [NUTR],
ampl? n_min, n_max;
ampl: table Amts IN "ODBC" "diet.mdb": [NUTR, FOOD], amt;
ampl: read table ImportFoods;
ampl: read table Nutrs;
ampl: read table Amts;
ampl: solve;
ampl: table ExportFoods OUT "ODBC" "diet.mdb" "Foods":
ampl? FOOD <- [FOOD],
ampl? Buy, Buy.rc ~ BuyRC,
ampl? {j in FOOD} Buy[j]/f_max[j] ~ BuyFrac;
ampl: write table ExportFoods;
```

and here is an alternative using a single declaration to both read and write Foods:

```
ampl: model diet.mod;
ampl: table Foods "ODBC" "diet.mdb":
ampl? [FOOD] IN, cost IN, f_min IN, f_max IN,
ampl? Buy OUT, Buy.rc ~ BuyRC OUT,
ampl? {j in FOOD} Buy[j]/f_max[j] ~ BuyFrac OUT;
ampl: table Nutrs IN "ODBC" "diet.mdb":
ampl? NUTR <- [NUTR], n_min, n_max;
ampl: table Amts IN "ODBC" "diet.mdb": [NUTR, FOOD], amt;
ampl: read table Foods;
ampl: read table Nutrs;
ampl: read table Amts;
ampl: solve;
ampl: write table Foods;
```

Either way, the Access table Foods would end up having three additional columns, as seen in Figure 10-4.

The same operations are handled similarly for other types of database files. In general, the actions of a write table command are determined by the previously declared AMPL table named in the command, and by the status of the external file associated with the AMPL table through its table declaration. Depending on the circumstances, the write table command may create a new external file or table, overwrite an existing table, overwrite certain columns within an existing table, or append columns to an existing table.

The table declaration is the same for multidimensional AMPL entities, except that there must be more than one key column specified between brackets [and]. For the steel production example discussed previously, the correspondence to a relational table could be set up like this:

䩀 Foods: Table							- $\square^{\text {ax }}$
	F00D	cost	f_min	f_max	Buy	BuyRC	BuyFrac
	3EEF	3.19	2	10	5.360613811	3.05311E-16	0.536061381
	CHK	2.59	2	10	2	1.18884058	0.2
	FISH	2.29	2	10	2	1.144407502	0.2
	HAM	2.89	2	10	10	-0.30265132	1
	MCH	1.89	2	10	10	-0.5511509	1
	MTL	1.99	2	10	10	-1.32890026	1
	SPG	1.99	2	10	9.306052856	-2.0123E-15	0.930605286
	TUR	2.49	2	10	2	2.731619778	0.2
*							
	cord: If		1	1) ${ }^{\text {a }}$			

Figure 10-4: Access relational table with output columns.

```
table SteelProd "ODBC" "steel.mdb":
    [PROD, TIME], market IN, revenue IN,
    Make OUT, Sell OUT, Inv OUT;
```

Here the key columns PROD and TIME are not specified as IN. This is because the parameters to be read in, market and revenue, are indexed in the AMPL model over the set $\{P R O D, 1 \ldots T\}$, whose membership would be specified by use of other, simpler tables. The read table SteelProd command merely uses the PROD and TIME entries of each database row to determine the pair of indices (subscripts) that are to be associated with the market and revenue entries in the row.

Our transportation example also involves a relational table for two-dimensional entities, and the associated table declaration is similar:

```
table TransLinks "ODBC" "trans.xls" "Links":
    LINKS <- [ORIG, DEST], cost IN, Trans OUT;
```

The difference here is that LINKS, the AMPL set of pairs over which cost and Trans are indexed, is part of the data rather than being determined from simpler sets or parameters. Thus we write LINKS <- [ORIG, DEST], to request that pairs from the key columns be read into LINKS at the same time that the corresponding values are read into cost. This distinction is discussed further in the next section.

As you can see from even our simple examples so far, table statements tend to be cumbersome to type interactively. Instead they are usually placed in AMPL programs, or scripts, which are executed as described in Chapter 13. The read table and write table statements may be included in the scripts as well. You can define a table and
then immediately read or write it, as seen in some of our examples, but a script is often more readable if the complex table statements are segregated from the statements that read and write the tables.

The rest of this chapter will concentrate on table statements. Complete sample scripts and Access or Excel files for the diet, production, and transportation examples can be obtained from the AMPL web site.

10.3 Reading data from relational tables

To use an external relational table for reading only, you should employ a table declaration that specifies a read/write status of IN. Thus it should have the general form

```
table table-name IN string-list opt :
    key-spec, data-spec, data-spec, ... ;
```

where the optional string-list is specific to the database type and access method being used. (In the interest of brevity, most subsequent examples do not show a string-list.) The key-spec names the key columns, and the data-spec gives the data columns. Data values are subsequently read from the table into AMPL entities by the command

```
read table table-name ;
```

which determines the values to be read by referring to the table declaration that defined table-name.

Reading parameters only

To assign values from data columns to like-named AMPL parameters, it suffices to give a bracketed list of key columns and then a list of data columns. The simplest case, where there is only one key column, is exemplified by

```
table Foods IN: [FOOD], cost, f_min, f_max;
```

This indicates that the relational table has four columns, comprising a key column FOOD and data columns cost, $f _m i n$ and f _max. The data columns are associated with parameters cost, f _min and f _max in the current AMPL model. Since there is only one key column, all of these parameters must be indexed over one-dimensional sets.

When the command

```
read table Foods
```

is executed, the relational table is read one row at a time. A row's entry in the key column is interpreted as a subscript to each of the parameters, and these subscripted parameters are assigned the row's entries from the associated data columns. For example, if the relational table is

FOOD	cost	f_min	f_max
BEEF	3.19	2	10
CHK	2.59	2	10
FISH	2.29	2	10
HAM	2.89	2	10
MCH	1.89	2	10
MTL	1.99	2	10
SPG	1.99	2	10
TUR	2.49	2	10

processing the first row assigns the values 3.19 to parameter cost ['BEEF'], 2 to f_min['BEEF'], and 10 to f_max['BEEF']; processing the second row assigns 2.59 to cost['CHK'], 2 to $£$ _min['CHK'], and 10 to f _max['CHK']; and so forth through the six remaining rows.

At the time that the read table command is executed, AMPL makes no assumptions about how the parameters are declared; they need not be indexed over a set named FOOD, and indeed the members of their indexing sets may not yet even be known. Only later, when AMPL first uses each parameter in some computation, does it check the entries read from key column FOOD to be sure that each is a valid subscript for that parameter.

The situation is analogous for multidimensional parameters. The name of each data column must also be the name of an AMPL parameter, and the dimension of the parameter's indexing set must equal the number of key columns. For example, when two key columns are listed within the brackets:

```
table SteelProd IN: [PROD, TIME], market, revenue;
```

the listed data columns, market and revenue, must correspond to AMPL parameters market and revenue that are indexed over two-dimensional sets.

When read table SteelProd is executed, each row's entries in the key columns are interpreted as a pair of subscripts to each of the parameters. Thus if the relational table has contents

PROD	TIME	market	revenue
bands	1	6000	25
bands	2	6000	26
bands	3	4000	27
bands	4	6500	27
coils	1	4000	30
coils	2	2500	35
coils	3	3500	37
coils	4	4200	39

processing the first row will assign 6000 to market['bands',1] and 25 to revenue['bands',1]; processing the second row will assign 6000 to market ['bands', 2] and 26 to revenue['bands', 2]; and so forth through all eight rows. The pairs of subscripts given by the key column entries must be valid for market and revenue when the values of these parameters are first needed by AMPL, but the parameters need not be declared over sets named PROD and TIME. (In fact, in the
model from which this example is taken, the parameters are indexed by \{PROD, $1 \ldots \mathrm{~T}$ \} where T is a previously defined parameter.)

Since a relational table has only one collection of key columns, AMPL applies the same subscripting to each of the parameters named by the data columns. These parameters are thus usually indexed over the same AMPL set. Parameters indexed over similar sets may also be accommodated in one database table, however, by leaving blank any entries in rows corresponding to invalid subscripts. The way in which a blank entry is indicated is specific to the database software being used.

Values of unindexed (scalar) parameters may be supplied by a relational table that has one row and no key columns, so that each data column contains precisely one value. The corresponding table declaration has an empty key-spec, []. For example, to read a value for the parameter T that gives the number of periods in steelT.mod, the table declaration is

```
table SteelPeriods IN: [], T;
```

and the corresponding relational table has one column, also named T, whose one entry is a positive integer.

Reading a set and parameters

It is often convenient to read the members of a set from a table's key column or columns, at the same time that parameters indexed over that set are read from the data columns. To indicate that a set should be read from a table, the key-spec in the table declaration is written in the form

```
set-name <- [key-col-spec, key-col-spec, ...]
```

The <- symbol is intended as an arrow pointing in the direction that the information is moved, from the key columns to the AMPL set.

The simplest case involves reading a one-dimensional set and the parameters indexed over it, as in this example for diet. mod:

```
table Foods IN: FOOD <- [FoodName], cost, f_min, f_max;
```

When the command read table Foods is executed, all entries in the key column FoodName of the relational table are read into AMPL as members of the set FOOD, and the entries in the data columns cost, f _min and f _max are read into the like-named AMPL parameters as previously described. If the key column is named FOOD like the AMPL set, the appropriate table declaration becomes

```
table Foods IN: FOOD <- [FOOD], cost, f_min, f_max;
```

In this special case only, the key-spec can also be written in the abbreviated form [FOOD] IN.

An analogous syntax is employed for reading a multidimensional set along with parameters indexed over it. In the case of transp3.mod, for instance, the table declaration could be:

```
table TransLinks IN: LINKS <- [ORIG, DEST], cost;
```

When read table TransLinks is executed, each row of the table provides a pair of entries from key columns ORIG and DEST. All such pairs are read into AMPL as members of the two-dimensional set LINKS. Finally, the entries in column cost are read into parameter cost in the usual way.

As in our previous multidimensional example, the names in brackets need not correspond to sets in the AMPL model. The bracketed names serve only to identify the key columns. The name to the left of the arrow is the only one that must name a previously declared AMPL set; moreover, this set must have been declared to have the same dimension, or arity, as the number of key columns.

It makes sense to read the set LINKS from a relational table, because LINKS is specifically declared in the model in a way that leaves the corresponding data to be read separately:

```
set ORIG;
set DEST;
set LINKS within {ORIG,DEST};
param cost {LINKS} >= 0;
```

By contrast, in the similar model transp2.mod, LINKS is defined in terms of two one-dimensional sets:

```
set ORIG;
set DEST;
set LINKS = {ORIG,DEST};
param cost {LINKS} >= 0;
```

and in transp.mod, no named two-dimensional set is defined at all:

```
set ORIG;
set DEST;
param cost {ORIG,DEST} >= 0;
```

In these latter cases, a table declaration would still be needed for reading parameter cost, but it would not specify the reading of any associated set:

```
table TransLinks IN: [ORIG, DEST], cost;
```

Separate relational tables would instead be used to provide members for the onedimensional sets ORIG and DEST and values for the parameters indexed over them.

When a table declaration specifies an AMPL set to be assigned members, its list of data-specs may be empty. In that case only the key columns are read, and the only action of read table is to assign the key column values as members of the specified AMPL set. For instance, with the statement

```
table TransLinks IN: LINKS <- [ORIG, DEST];
```

a subsequent read table statement would cause just the values for the set LINKS to be read, from the two key columns in the corresponding database table.

Establishing correspondences

An AMPL model's set and parameter declarations do not necessarily correspond in all respects to the organization of tables in relevant databases. Where the difference is substantial, it may be necessary to use the database's query language (often SQL) to derive temporary tables that have the structure required by the model; an example is given in the discussion of the ODBC handler later in this chapter. A number of common, simple differences can be handled directly, however, through features of the table declaration.

Differences in naming are perhaps the most common. A table declaration can associate a data column with a differently named AMPL parameter by use of a data-spec of the form param-name ~ data-col-name. Thus, for example, if table Foods were instead defined by

```
table Foods IN:
    [FOOD], cost, f_min ~ lowerlim, f_max ~ upperlim;
```

the AMPL parameters f _min and f _max would be read from data columns lowerlim and upperlim in the relational table. (Parameter cost would be read from column cost as before.)

A similarly generalized form, index ~ key-col-name, can be used to associate a kind of dummy index with a key column. This index may then be used in a subscript to the optional param-name in one or more data-specs. Such an arrangement is useful in a number of situations where the key column entries do not exactly correspond to the subscripts of the parameters that are to receive table values. Here are three common cases.

Where a numbering of some kind in the relational table is systematically different from the corresponding numbering in the AMPL model, a simple expression involving a key column index can translate from the one numbering scheme to the other. For example, if time periods were counted from 0 in the relational table data rather than from 1 as in the model, an adjustment could be made in the table declaration as follows:

```
table SteelProd IN: [p ~ PROD, t ~ TIME],
    market[p,t+1] ~ market, revenue[p,t+1] ~ revenue;
```

In the second case, where AMPL parameters have subscripts from the same sets but in different orders, key column indexes must be employed to provide a correct index order. If market is indexed over $\{P R O D, 1 . . T\}$ but revenue is indexed over $\{1 . . T$, PROD \}, for example, a table declaration to read values for these two parameters should be written as follows:

```
table SteelProd IN: [p ~ PROD, t ~ TIME],
    market, revenue[t,p] ~ revenue;
```

Finally, where the values for an AMPL parameter are divided among several database columns, key column indexes can be employed to describe the values to be found in each column. For instance, if the revenue values are given in one column for "bands " and in another column for "coils", the corresponding table declaration could be written like this:

```
table SteelProd IN: [t ~ TIME],
    revenue["bands",t] ~ revbands,
    revenue["coils",t] ~ revcoils;
```

It is tempting to try to shorten declarations of these kinds by dropping the \sim data-colname, to produce, say,

```
table SteelProd IN:
    [p ~ PROD, t ~ TIME], market, revenue[t,p]; # ERROR
```

This will usually be rejected as an error, however, because revenue [$t, p]$ is not a valid name for a relational table column in most database software. Instead it is necessary to write

```
table SteelProd IN:
    [p ~ PROD, t ~ TIME], market, revenue[t,p] ~ revenue;
```

to indicate that the AMPL parameters revenue $[t, p]$ receive values from the column revenue of the table.

More generally, a ~ synonym will have to be used in any situation where the AMPL expression for the recipient of a column's data is not itself a valid name for a database column. The rules for valid column names tend to be the same as the rules for valid component names in AMPL models, but they can vary in details depending on the database software that is being used to create and maintain the tables.

Reading other values

In a table declaration used for input, an assignable AMPL expression may appear anywhere that a parameter name would be allowed. An expression is assignable if it can be assigned a value, such as by placing it on the left side of $:=$ in a let command.

Variable names are assignable expressions. Thus a table declaration can specify columns of data to be read into variables, for purposes of evaluating a previously stored solution or providing a good initial solution for a solver.

Constraint names are also assignable expressions. Values 'read into a constraint'" are interpreted as initial dual values for some solvers, such as MINOS.

Any variable or constraint name qualified by an assignable suffix is also an assignable expression. Assignable suffixes include the predefined .sstatus and .relax as well as any user-defined suffixes. For example, if the diet problem were changed to have integer variables, the following table declaration could help to provide useful information for the CPLEX solver (see Section 14.3):

```
table Foods IN: FOOD IN,
    cost, f_min, f_max, Buy, Buy.priority ~ prior;
```

An execution of read table Foods would supply members for set FOOD and values for parameters cost, f_min and f_max in the usual way, and would also assign initial values and branching priorities to the Buy variables.

10.4 Writing data to relational tables

To use an external relational table for writing only, you should employ a table declaration that specifies its read/write status to be OUT. The general form of such a declaration is

```
table table-name OUT string-list opt :
    key-spec, data-spec, data-spec, ... ;
```

where the optional string-list is specific to the database type and access method being used. (Again, most subsequent examples do not include a string-list.) AMPL expression values are subsequently written to the table by the command

```
write table table-name ;
```

which uses the table declaration that defined table-name to determine the information to be written.

A table declaration for writing specifies an external file and possibly a relational table within that file, either explicitly in the string-list or implicitly by default rules. Normally the named external file or table is created if it does not exist, or is overwritten otherwise. To specify that instead certain columns are to be replaced or are to be added to a table, the table declaration must incorporate one or more data-specs that have read/write status IN or INOUT, as discussed in Section 10.5. A specific table handler may also have its own more detailed rules for determining when files and tables are modified or overwritten, as explained in its documentation.

The key-specs and data-specs of table declarations for writing external tables superficially resemble those for reading. The range of AMPL expressions allowed when writing is much broader, however, including essentially all set-valued and numeric-valued expressions. Moreover, whereas the table rows to be read are those of some existing table, the rows to be written must be determined from AMPL expressions in some part of a table declaration. Specifically, rows to be written can be inferred either from the data-specs, using the same conventions as in display commands, or from the key-spec. Each of these alternatives employs a characteristic table syntax as described below.

Writing rows inferred from the data specifications

If the key-spec is simply a bracketed list of the names of key columns,
[key-col-name, key-col-name, ...]
the table declaration works much like the display command. It determines the external table rows to be written by taking the union of the indexing sets stated or implied in the data-specs. The format of the data-spec list is the same as in display, except that all of the items listed must have the same dimension.

In the simplest case, the data-specs are the names of model components indexed over the same set:

```
table Foods OUT: [FoodName], f_min, Buy, f_max;
```

When write table Foods is executed, it creates a key column FoodName and data columns f _min, Buy, and f _max. Since the AMPL components corresponding to the data columns are all indexed over the AMPL set FOOD, one row is created for each member of FOOD. In a representative row, a member of FOOD is written to the key column FoodName, and the values of $f _$min, Buy, and $f _$max subscripted by that member are written to the like-named data columns. For the data used in the diet example, the resulting relational table would be:

FoodName	f_min	Buy	f_max
BEEF	2	5.36061	10
CHK	2	2	10
FISH	2	2	10
HAM	2	10	10
MCH	2	10	10
MTL	2	10	10
SPG	2	9.30605	10
TUR	2	2	10

Tables corresponding to higher-dimensional sets are handled analogously, with the number of bracketed key-column names listed in the key-spec being equal to the dimension of the items in the data-spec. Thus a table containing the results from steelT.mod could be defined as

```
table SteelProd OUT: [PROD, TIME], Make, Sell, Inv;
```

Because Make and Sell are indexed over \{PROD, 1..T\}, while Inv is indexed over $\{P R O D, 0 . T\}$, a subsequent write table SteelProd command would produce a table with one row for each member of the union of these sets:

PROD	TIME	Make	Sell	Inv
bands	0	\dot{c}		
bands	1	5990	6000	10
bands	2	6000	6000	0
bands	3	1400	1400	0
bands	4	2000	2000	0
coils	0	.	.	0
coils	1	1407	307	1100
coils	2	1400	2500	0
coils	3	3500	3500	0
coils	4	4200	4200	0

Two rows are empty in the columns for Make and Sell, because ("bands", 0) and ("coils", 0) are not members of the index sets of Make and Sell. We use a "." here to indicate the empty table entries, but the actual appearance and handling of empty entries will vary depending on the database software being used.

If this form is applied to writing suffixed variable or constraint names, such as the dual and slack values related to the constraint Diet:

```
table Nutrs OUT: [Nutrient],
    Diet.lslack, Diet.ldual, Diet.uslack, Diet.udual; # ERROR
```

a subsequent write table Nutrs command is likely to be rejected, because names with a 'dot"' in the middle are not allowed as column names by most database software:

```
ampl: write table Nutrs;
Error executing "write table" command:
    Error writing table Nutrs with table handler ampl.odbc:
    Column 2's name "Diet.lslack" contains non-alphanumeric
        character '.'.
```

This situation requires that each AMPL expression be followed by the operator \sim and a corresponding valid column name for use in the relational table:

```
table Nutrs OUT: [Nutrient],
    Diet.lslack ~ lb_slack, Diet.ldual ~ lb_dual,
    Diet.uslack ~ ub_slack, Diet.udual ~ ub_dual;
```

This says that the values represented by Diet.lslack should be placed in a column named lb_slack, the values represented by Diet.ldual should be placed in a column named lb_dual, and so forth. With the table defined in this way, a write table Nutrs command produces the intended relational table:

Nutrient	lb_slack	lb_dual	ub_slack	ub_dual
A	1256.29	0	18043.7	0
B1	336.257	0	18963.7	0
B2	0	0.404585	19300	0
C	982.515	0	18317.5	0
CAL	3794.62	0	4205.38	0
NA	50000	0	0	-0.00306905

The ~ can also be used with unsuffixed names, if it is desired to assign the dabatase column a name different from the corresponding AMPL entity.

More general expressions for the values in data columns require the use of dummy indices, in the same way that they are used in the data-list of a display command. Since indexed AMPL expressions are rarely valid column names for a database, they should generally be followed by ~ data-col-name to provide a valid name for the corresponding relational table column that is to be written. To write a column servings containing the number of servings of each food to be bought and a column percent giving the amount bought as a percentage of the maximum allowed, for example, the table declaration could be given as either

```
table Purchases OUT: [FoodName],
    Buy ~ servings, {j in FOOD} 100*Buy[j]/f_max[j] ~ percent;
```

or

```
table Purchases OUT: [FoodName],
    {j in FOOD} (Buy[j] ~ servings,
        100*Buy[j]/f_max[j] ~ percent);
```

Either way, since both data-specs give expressions indexed over the AMPL set FOOD, the resulting table has one row for each member of that set:

FoodName	servings	percent
BEEF	5.36061	53.6061
CHK	2	20
FISH	2	20
HAM	10	100
MCH	10	100
MTL	10	100
SPG	9.30605	93.0605
TUR	2	20

The expression in a data-spec may also use operators like sum that define their own dummy indices. Thus a table of total production and sales by period for steelt.mod could be specified by

```
table SteelTotal OUT: [TIME],
    {t in 1..T} (sum {p in PROD} Make[p,t] ~ Made,
    sum {p in PROD} Sell[p,t] ~ Sold);
```

As a two-dimensional example, a table of the amounts sold and the fractions of demand met could be specified by

```
table SteelSales OUT: [PROD, TIME], Sell,
    {p in PROD, t in 1..T} Sell[p,t]/market[p,t] ~ FracDemand;
```

The resulting external table would have key columns PROD and TIME, and data columns Sell and FracDemand.

Writing rows inferred from a key specification

An alternative form of table declaration specifies that one table row is to be written for each member of an explicitly specified AMPL set. For the declaration to work in this way, the key-spec must be written as

```
set-spec -> [key-col-spec, key-col-spec, ...]
```

In contrast to the arrow <- that points from a key-column list to an AMPL set, indicating values to be read into the set, this form uses an arrow -> that points from an AMPL set to a key column list, indicating information to be written from the set into the key columns.

An explicit expression for the row index set is given by the set-spec, which can be the name of an AMPL set, or any AMPL set-expression enclosed in braces \{ \}. The key-colspecs give the names of the corresponding key columns in the database. Dummy indices, if needed, can appear either with the set-spec or the key-col-specs, as we will show.

The simplest case of this form involves writing database columns for model components indexed over the same one-dimensional set, as in this example for diet.mod:

```
table Foods OUT: FOOD -> [FoodName], f_min, Buy, f_max;
```

When write table Foods is executed, a table row is created for each member of the AMPL set FOOD. In that row, the set member is written to the key column FoodName, and the values of $f _m i n$, Buy, and $f _m a x$ subscripted by the set member are written to
the like-named data columns. (For the data used in our diet example, the resulting table would be the same as for the FoodName table given previously in this section.) If the key column has the same name, FOOD, as the AMPL set, the appropriate table declaration becomes

```
table Foods OUT: FOOD -> [FOOD], f_min, Buy, f_max;
```

In this special case only, the key-spec can also be written in the abbreviated form [FOOD] OUT.

The use of ~ with AMPL names and suffixed names is governed by the considerations previously described, so that the example of diet slack and dual values would be written

```
table Nutrs OUT: NUTR -> [Nutrient],
    Diet.lslack ~ lb_slack, Diet.ldual ~ lb_dual,
    Diet.uslack ~ ub_slack, Diet.udual ~ ub_dual;
```

and write table Nutrs would give the same table as previously shown.
More general expressions for the values in data columns require the use of dummy indices. Since the rows to be written are determined from the key-spec, however, the dummies are also defined there (rather than in the data-specs as in the alternative form above). To specify a column containing the amount of a food bought as a percentage of the maximum allowed, for example, it is necessary to write $100 * B u y[j] / f _m a x[j]$, which in turn requires that dummy index j be defined. The definition may appear either in a set-spec of the form \{ index-list in set-expr \}:

```
table Purchases OUT: {j in FOOD} -> [FoodName],
    Buy[j] ~ servings, 100*Buy[j]/f_max[j] ~ percent;
```

or in a key-col-spec of the form index ~ key-col-name:

```
table Purchases OUT: FOOD -> [j ~ FoodName],
    Buy[j] ~ servings, 100*Buy[j]/f_max[j] ~ percent;
```

These two forms are equivalent. Either way, as each row is written, the index j takes the key column value, which is used in interpreting the expressions that give the values for the data columns. For our example, the resulting table, having key column FoodName and data columns servings and percent, is the same as previously shown. Similarly, the previous example of the table SteelTotal could be written as either

```
table SteelTotal OUT: {t in 1..T} -> [TIME],
    sum {p in PROD} Make[p,t] ~ Made,
    sum {p in PROD} Sell[p,t] ~ Sold;
```

or

```
table SteelTotal OUT: {1..T} -> [t ~ TIME],
    sum {p in PROD} Make[p,t] ~ Made,
    sum {p in PROD} Sell[p,t] ~ Sold;
```

The result will have a key column TIME containing the integers 1 through T, and data columns Made and Sold containing the values of the two summations. (Notice that
since $1 \ldots \mathrm{~T}$ is a set-expression, rather than the name of a set, it must be included in braces to be used as a set-spec.)

Tables corresponding to higher-dimensional sets are handled analogously, with the number of key-col-specs listed in brackets being equal to the dimension of the set-spec. Thus a table containing the results from steelt.mod could be defined as

```
table SteelProd OUT:
    {PROD, 1..T} -> [PROD, TIME], Make, Sell, Inv;
```

and a subsequent write table SteelProd would produce a table of the form

PROD	TIME	Make	Sell	Inv
bands	1	5990	6000	0
bands	2	6000	6000	0
bands	3	1400	1400	0
bands	4	2000	2000	0
coils	1	1407	307	1100
coils	2	1400	2500	0
coils	3	3500	3500	0
coils	4	4200	4200	0

This result is not quite the same as the table produced by the previous SteelProd example, because the rows to be written here correspond explicitly to the members of the set $\{P R O D, 1 \ldots T\}$, rather than being inferred from the indexing sets of Make, Sell, and Inv. In particular, the values of Inv["bands",0] and Inv["coils",0] do not appear in this table.

The options for dummy indices in higher dimensions are the same as in one dimension. Thus our example SteelSales could be written either using dummy indices defined in the set-spec:

```
table SteelSales OUT:
    {p in PROD, t in 1..T} -> [PROD, TIME],
    Sell[p,t] ~ sold, Sell[p,t]/market[p,t] ~ met;
```

or with dummy indices added to the key-col-specs:

```
table SteelSales OUT:
    {PROD,1..T} -> [p ~ PROD, t ~ TIME],
    Sell[p,t] ~ sold, Sell[p,t]/market[p,t] ~ met;
```

If dummy indices happen to appear in both the set-spec and the key-col-specs, ones in the key-col-specs take precedence.

10.5 Reading and writing the same table

To read data from a relational table and then write results to the same table, you can use a pair of table declarations that reference the same file and table names. You may also be able to combine these declarations into one that specifies some columns to be read
and others to be written. This section gives examples and instructions for both of these possibilities.

Reading and writing using two table declarations

A single external table can be read by one table declaration and later written by another. The two table declarations follow the rules for reading and writing given above.

In this situation, however, one usually wants write table to add or rewrite selected columns, rather than overwriting the entire table. This preference can be communicated to the AMPL table handler by including input as well as output columns in the table declaration that is to be used for writing. Columns intended for input to AMPL can be distinguished from those intended for output to the external table by specifying a read/write status column by column (rather than for the table as a whole).

As an example, an external table for diet.mod might consist of columns cost, f _min and f _max containing input for the model, and a column Buy containing the results. If this is maintained as a Microsoft Access table named Diet within a file diet. mdb, the table declaration for reading data into AMPL could be

```
table FoodInput IN "ODBC" "diet1.mdb" "Diet":
    FOOD <- [FoodName], cost, f_min, f_max;
```

The corresponding declaration for writing the results would have a different AMPL tablename but would refer to the same Access table and file:

```
table FoodOutput "ODBC" "diet1.mdb" "Diet":
    [FoodName], cost IN, f_min IN, Buy OUT, f_max IN;
```

When read table FoodInput is executed, only the three columns listed in the table FoodInput declaration are read; if there is an existing column named Buy, it is ignored. Later, when the problem has been solved and write table FoodOutput is executed, only the one column that has read/write status OUT in the table FoodOutput declaration is written to the Access table, while the table's other columns are left unmodified.

Although details may vary with the database software used, the general convention is that overwriting of an entire existing table or file is intended only when all data columns in the table declaration have read/write status OUT. Selective rewriting or addition of columns is intended otherwise. Thus if our AMPL table for output had been declared

```
table FoodOutput "ODBC" "diet1.mdb" "Diet":
    [FoodName], Buy OUT;
```

then all of the data columns in Access table Diet would have been deleted by write table FoodOutput, but the alternative

```
table FoodOutput "ODBC" "diet1.mdb" "Diet":
    [FoodName], Buy;
```

would have only overwritten the column Buy, as in the example we originally gave, since there is a data column (namely Buy itself) that does not have read/write status OUT. (The default, when no status is given, is INOUT.)

Reading and writing using the same table declaration

In many cases, all of the information for both reading and writing an external table can be specified in the same table declaration. The key-spec may use the arrow <- to read contents of the key columns into an AMPL set, -> to write members of an AMPL set into the key columns, or <-> to do both. A data-spec may specify read/write status IN for a column that will only be read into AMPL, OUT for a column that will only be written out from AMPL, or INOUT for a column that will be both read and written.

A read table table-name command reads only the key or data columns that are specified in the declaration of table-name as being IN or INOUT. A write table table-name command analogously writes to only the columns that are specified as OUT or INOUT.

As an example, the declarations defining FoodInput and FoodOutput above could be replaced by

```
table Foods "ODBC" "diet1.mdb" "Diet":
    FOOD <- [FOodName], cost IN, f_min IN, Buy OUT, f_max IN;
```

A read table Foods would then read only from key column FoodName and data columns cost, f_min and f_max. A later write table Foods would write only to the column Buy.

10.6 Indexed collections of tables and columns

In some circumstances, it is convenient to declare an indexed collection of tables, or to define an indexed collection of data columns within a table. This section explains how indexing of these kinds can be specified within the table declaration.

To illustrate indexed collections of tables, we present a script (Chapter 13) that automatically solves a series of scenarios stored separately. To illustrate indexed collections of columns, we show how a two-dimensional spreadsheet table can be read.

All of our examples of these features make use of AMPL's character-string expressions to generate names for series of files, tables, or columns. For more on string expressions, see Sections 13.7 and A.4.2.

Indexed collections of tables

AMPL table declarations can be indexed in much the same way as sets, parameters, and other model components. An optional \{indexing-expr\} follows the table-name:

Figure 10-5: Access database with tables of sensitivity analysis.

One table is defined for each member of the set specified by the indexing-expr. Individual tables in this collection are denoted in the usual way, by appending a bracketed subscript or subscripts to the table-name.

As an example, the following declaration defines a collection of AMPL tables indexed over the set of foods in diet. mod, each table corresponding to a different database table in the Access file DietSens.mdb:

```
table DietSens {j in FOOD}
    OUT "ODBC" "DietSens.mdb" ("Sens" & j):
        [Food], f_min, Buy, f_max;
```

Following the rules for the standard ODBC table handler, the Access table names are given by the third item in the string-list, the string expression ("Sens" \& j). Thus the AMPL table DietSens ["BEEF"] is associated with the Access table SensBEEF, the AMPL table DietSens ["CHK"] is associated with the Access table SensCHK, and so forth. The following AMPL script uses these tables to record the optimal diet when there is a two-for-the-price-of-one sale on each of the foods:

```
for {j in FOOD} {
    let cost[j] := cost[j] / 2;
    solve;
    write table DietSens[j];
    let cost[j] := cost[j] * 2;
}
```

䒼 DietSens: Table							- - -	
	Food	BuyBEEF	BuyCHK	BuyFISH	BuyHAM	BuyMCH	BuyMTL	Buy ${ }^{\text {S }}$
	BEEF	10	8.5681492	6.5677749	5.3606138	5.3606138	5.3606138	5.77ε
	CHK	2	5.0738881	2	2	2	2	
	FISH	2	2	10	2	2	2	
	HAM	7.0164474	10	10	10	10	10	
	MCH	10	10	10	10	10	10	8.887
\checkmark	MTL	10	10	10	10	10	10	
	SPG	6.6557018	2	2.7655584	9.3060529	9.3060529	9.3060529	
	TUR	2	2	2	2	2	2	
*								
Record: 14\|1		6-\|1生 of 8			1			\pm

Figure 10-6: Alternate Access table for sensitivity analysis.

For the data in diet2a.dat, the set FOOD has eight members, so eight tables are written in the Access database, as seen in Figure 10-5. If instead the table declaration were to give a string expression for the second string in the string-list, which specifies the Access filename:

```
table DietSens {j in FOOD}
    OUT "ODBC" ("DietSens" & j & ".mdb"):
        [Food], f_min, Buy, f_max;
```

then AMPL would write eight different Access database files, named DietSensBEEF.mdb, DietSensCHK.mdb, and so forth, each containing a single table named (by default) DietSens. (These files must have been created before the write table commands are executed.)

A string expression can be used in a similar way to make every member of an indexed collection of AMPL tables correspond to the same Access table, but with a different data-col-name for the optimal amounts:

```
table DietSens {j in FOOD} "ODBC" "DietSens.mdb":
    [Food], Buy ~ ("Buy" & j);
```

Then running the script shown above will result in the Access table of Figure 10-6. The AMPL tables in this case were deliberately left with the default read/write status, INOUT. Had the read/write status been specified as OUT, then each write table would have overwritten the columns created by the previous one.

マ Microsoft Excel - Diet2D.xls										$\frac{-a x}{-a \operatorname{lan}}$	
\$7 File Edit Yiew Insert Format Iools Data Window We! Help											
	G	H	1	J	K	L	M	N	0	P	$\bar{\square}$
1											
2		NUTR	BEEF	CHK	FISH	HAM	MCH	MTL	SPG	TUR	
3		A	60	8	8	40	15	70	25	60	
4		B1	10	20	15	35	15	15	25	15	-
5		B2	15	20	10	10	15	15	15	10	
6		C	20	0	10	40	35	30	50	20	
7		NA	938	2180	945	278	1182	896	1329	1397	
8		CAL	295	770	440	430	315	400	370	450	
9										$\|\cdot\|$	
11^{10}		Diet/				111					

Figure 10-7: Two-dimensional AMPL table in Excel.

Indexed collections of data columns

Because there is a natural correspondence between data columns of a relational table and indexed collections of entities in an AMPL model, each data-spec in a table declaration normally refers to a different AMPL parameter, variable, or expression. Occasionally the values for one AMPL entity are split among multiple data columns, however. Such a case can be handled by defining a collection of data columns, one for each member of a specified indexing set.

The most common use of this feature is to read or write two-dimensional tables. For example, the data for the parameter

```
param amt {NUTR,FOOD} >= 0;
```

from diet.mod might be represented in an Excel spreadsheet as a table with nutrients labeling the rows and foods the columns (Figure 10-7). To read this table using AMPL's external database features, we must regard it as having one key column, under the heading NUTR, and data columns headed by the names of individual foods. Thus we require a table declaration whose key-spec is one-dimensional and whose data-specs are indexed over the AMPL set FOOD:

```
table dietAmts IN "ODBC" "Diet2D.xls":
    [i ~ NUTR], {j in FOOD} <amt[i,j] ~ (j)>;
```

The key-spec [i ~ NUTR] associates the first table column with the set NUTR. The data-spec $\{j$ in FOOD $\}$ <...> causes AMPL to generate an individual data-spec for each member of set FOOD. Specifically, for each j in FOOD, AMPL generates the data-spec amt $[i, j] \sim(j)$, where (j) is the AMPL string expression for the heading of the external table column for food j, and amt $[i, j]$ denotes the parameter to which the val-
ues in that column are to be written. (According to the convention used here and in other AMPL declarations and commands, the parentheses around (j) cause it to be interpreted as an expression for a string; without the parentheses it would denote a column name consisting of the single character j.)

A similar approach works for writing two-dimensional tables to spreadsheets. As an example, after steelt.mod is solved, the results could be written to a spreadsheet using the following table declaration:

```
table Results1 OUT "ODBC" "steellout.xls":
    {p in PROD} -> [Product],
        Inv[p,0] ~ Inv0,
        {t in 1..T} < Make[p,t] ~ ('Make' & t),
                                Sell[p,t] ~ ('Sell' & t),
                        Inv[p,t] ~ ('Inv' & t) >;
```

or, equivalently, using display-style indexing:

```
table Results2 OUT "ODBC" "steel2out.xls":
    [Product],
        {p in PROD} Inv[p,0] ~ Inv0,
        {t in 1..T} < {p in PROD} (Make[p,t] ~ ('Make' & t),
        Sell[p,t] ~ ('Sell' & t),
        Inv[p,t] ~ ('Inv' & t) ) >;
```

The key column labels the rows with product names. The data columns include one for the initial inventories, and then three representing production, sales, and inventories, respectively, for each period, as in Figure 10-8. Conceptually, there is a symmetry between the row and column indexing of a two-dimensional table. But because the tables in these examples are being treated as relational tables, the table declaration must treat the row indexing and the column indexing in different ways. As a result, the expressions describing row indexing are substantially different from those describing column indexing.

As these examples suggest, the general form for specifying an indexed collection of table columns is
\{indexing-expr $\}<$ data-spec, data-spec, data-spec, ... >
where each data-spec has any of the forms previously given. For each member of the set specified by the indexing-expr, AMPL generates one copy of each data-spec within the angle brackets <...>. The indexing-expr also defines one or more dummy indices that run over the index set; these indices are used in expressions within the data-specs, and also appear in string expressions that give the names of columns in the external database.

10.7 Standard and built-in table handlers

To work with external database files, AMPL relies on table handlers. These are addons, usually in the form of shared or dynamic link libraries, that can be loaded as needed.

ح Microsoft Excel-steel2out.xls										$\frac{-a x}{-a \mid x}$
通 File Edit View Insert Format Iools Data window WE! Help										
	A	B	C	D	E	F	G	H	1	$\sqrt{\square}$
1	Product	Im0	Make1	Sell1	Inv1	Make2	Sell2	Im/2	Make3	St
2	bands	10	5990	6000	0	6000	6000	0	1400	12
3	coils	0	1407	307	1100	1400	2500	0	3500	3!-
4										
5										
6										
7										\checkmark
141	- MRe	Its 1	sults2.			$1 / 1$				11

Figure 10-8: Another two-dimensional Excel table.

AMPL is distributed with a 'standard' ' table handler that runs under Microsoft Windows and communicates via the Open Database Connectivity (ODBC) application programming interface; it recognizes relational tables in the formats used by Access, Excel, and any other application for which an ODBC driver exists on your computer. Additional handlers may be supplied by vendors of AMPL or of database software.

In addition to any supplied handlers, minimal ASCII and binary relational table file handlers are built into AMPL for testing. Vendors may include other built-in handlers. If you are not sure which handlers are currently seen by your copy of AMPL, the features described in A. 13 can get you a list of active handlers and brief instructions for using them.

As the introductory examples of this chapter have shown, AMPL communicates with handlers through the string-list in the table declaration. The form and interpretation of the string-list are specific to each handler. The remainder of this section describes the string-lists that are recognized by AMPL's standard ODBC handler. Following a general introduction, specific instructions are provided for the two applications, Access and Excel, that are used in many of the examples in preceding sections. A final subsection describes the string-lists recognized by the built-in binary and ASCII table handlers.

Using the standard ODBC table handler

In the context of a declaration that begins table table-name ..., the general form of the string-list for the standard ODBC table handler is

[^0]The first string tells AMPL that data transfers using this table declaration should employ the standard ODBC handler. Subsequent strings then provide directions to that handler.

The second string identifies the external database file that is to be read or written upon execution of read table table-name or write table table-name commands. There are several possibilities, depending on the form of the connection-spec and the configuration of ODBC on your computer.

If the connection-spec is a filename of the form name.ext, where ext is a 3-letter extension associated with an installed ODBC driver, then the named file is the database file. This form can be seen in a number of our examples, where filenames of the forms name. mdb and name. xls refer to Access and Excel files, respectively.

Other forms of connection-spec are more specific to ODBC, and are explained in online documentation. Information about your computer's configuration of ODBC drivers, data source names, file data sources, and related entities can be examined and changed through the Windows ODBC control panel.

The third string normally gives the name of the relational table, within the specified file, that is to be read or written upon execution of read table or write table commands. If the third string is omitted, the name of the relational table is taken to be the same as the table-name of the containing table declaration. For writing, if the indicated table does not exist, it is created; if the table exists but all of the table declaration's data-specs have read/write status OUT, then it is overwritten. Otherwise, writing causes the existing table to be modified; each column written either overwrites an existing column of the same name, or becomes a new column appended to the table.

Alternatively, if the third string has the special form

```
"SQL=sql-query"
```

the table declaration applies to the relational table that is (temporarily) created by a statement in the Structured Query Language, commonly abbreviated SQL. Specifically, a relational table is first constructed by executing the SQL statement given by sql-query, with respect to the database file given by the second string in the table declaration's stringlist. Then the usual interpretations of the table declaration are applied to the constructed table. All columns specified in the declaration should have read/write status IN, since it would make no sense to write to a temporary table. Normally the sql-query is a SELECT statement, which is SQL's primary device for operating on tables to create new ones.

As an example, if you wanted to read as data for diet. mod only those foods having a cost of $\$ 2.49$ or less, you could use an SQL query to extract the relevant records from the Foods table of your database:

```
table cheapFoods IN "ODBC" "diet.mdb"
    "SQL=SELECT * FROM Foods WHERE cost <= 2.49":
    FOOD <- [FOOD], cost, f_min, f_max;
```

Then to read the relevant data for parameter amt, which is indexed over nutrients and foods, you would want to read only those records that pertained to a food having a cost of
$\$ 2.49$ or less. Here is one way that an SQL query could be used to extract the desired records:

```
option selectAmts "SELECT NUTR, Amts.FOOD, amt "
    "FROM Amts, Foods "
        "WHERE Amts.FOOD = Foods.FOOD and cost <= 2.49";
table cheapAmts IN "ODBC" "diet.mdb" ("SQL=" & $selectAmts):
    [NUTR, FOOD], amt;
```

Here we have used an AMPL option to store the string containing the SQL query. Then the table declaration's third string can be given by the relatively short string expression "SQL=" \& \$selectAmts.

The string verbose after the first three strings requests diagnostic messages - such as the DSN= string that ODBC reports using - whenever the containing table declaration is used by a read table or write table command.

Using the standard ODBC table handler with Access and Excel

To set up a relational table correspondence for reading or writing Microsoft Access files, specify the ext in the second string of the string-list as mdb:
"ODBC" "filename.mdb" "external-table-spec" opt
The file named by the second string must exist, though for writing it may be a database that does not yet contain any tables.

To set up a relational table correspondence for reading or writing Microsoft Excel spreadsheets, specify the ext in the second string of the string-list as xls:

```
"ODBC" "filename.xls" "external-table-spec" opt
```

In this case, the second string identifies the external Excel workbook file that is to be read or written. For writing, the file specified by the second string is created if it does not exist already.

The external-table-spec specified by the third string identifies a spreadsheet range, within the specified file, that is to be read or written; if this string is absent, it is taken to be the table-name given at the start of the table declaration. For reading, the specified range must exist in the Excel file. For writing, if the range does not exist, it is created, at the upper left of a new worksheet having the same name. If the range exists but all of the table declaration's data-specs have read/write status OUT, it is overwritten. Otherwise, writing causes the existing range to be modified. Each column written either overwrites an existing column of the same name, or becomes a new column appended to the table; each row written either overwrites entries in an existing row having the same key column entries, or becomes a new row appended to the table.

When writing causes an existing range to be extended, rows or columns are added at the bottom or right of the range, respectively. The cells of added rows or columns must be empty; otherwise, the attempt to write the table fails and the write table command
elicits an error message. After a table is successfully written, the corresponding range is created or adjusted to contain exactly the cells of that table.

Built-in table handlers for text and binary files

For debugging and demonstration purposes, AMPL has built-in handlers for two very simple relational table formats. These formats store one table per file and convey equivalent information. One produces ASCII files that can be examined in any text editor, while the other creates binary files that are much faster to read and write.

For these handlers, the table declaration's string-list contains at most one string, identifying the external file that contains the relational table. If the string has the form

```
"filename.tab"
```

the file is taken to be an ASCII text file; if it has the form

```
"filename. bit"
```

it is taken to be a binary file. If no string-list is given, a text file table-name.tab is assumed.

For reading, the indicated file must exist. For writing, if the file does not exist, it is created. If the file exists but all of the table declaration's data-specs have read/write status OUT, it is overwritten. Otherwise, writing causes the existing file to be modified; each column written either replaces an existing column of the same name, or becomes a new column added to the table.

The format for the text files can be examined by writing one and viewing the results in a text editor. For example, the following AMPL session,

```
ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032
ampl: table ResultList OUT "DietOpt.tab":
ampl? [FOOD], Buy, Buy.rc, {j in FOOD} Buy[j]/f_max[j];
ampl: write table ResultList;
```

produces a file DietOpt . tab with the following content:

```
ampl.tab 1 3
FOOD Buy Buy.rc 'Buy[j]/f_max[j]'
BEEF 5.360613810741701 8.881784197001252e-16 0.5360613810741701
CHK 2 1.1888405797101402 0.2
FISH 2 1.1444075021312856 0.2
HAM 10 -0.30265132139812223 1
MCH 10 -0.5511508951406658 1
MTL 10 -1.3289002557544745 1
SPG 9.306052855924973 -8.881784197001252e-16 0.9306052855924973
TUR 1.9999999999999998 2.7316197783461176 0.19999999999999998
```

In the first line, ampl. tab identifies this as an AMPL relational table text file, and is followed by the numbers of key and non-key columns, respectively. The second line gives the names of the table's columns, which may be any strings. (Use of the ~ operator to specify valid column-names is not necessary in this case.) Each subsequent line gives the values in one table row; numbers are written in full precision, with no special formatting or alignment.

11

Modeling Commands

AMPL provides a variety of commands like model, solve, and display that tell the AMPL modeling system what to do with models and data. Although these commands may use AMPL expressions, they are not part of the modeling language itself. They are intended to be used in an environment where you give a command, wait for the system to display a response, then decide what command to give next. Commands might be typed directly, or given implicitly by menus in a graphical user interface like the ones available on the AMPL web site. Commands also appear in scripts, the subject of Chapter 13.

This chapter begins by describing the general principles of the command environment. Section 11.2 then presents the commands that you are likely to use most for setting up and solving optimization problems

After solving a problem and looking at the results, the next step is often to make a change and solve again. The remainder of this chapter explains the variety of changes that can be made without restarting the AMPL session from the beginning. Section 11.3 describes commands for re-reading data and modifying specific data values. Section 11.4 describes facilities for completely deleting or redefining model components, and for temporarily dropping constraints, fixing variables, or relaxing integrality of variables. (Convenient commands for examining model information can be found in Chapter 12, especially in Section 12.6.)

11.1 General principles of commands and options

To begin an interactive AMPL session, you must start the AMPL program, for example by typing the command ampl in response to a prompt or by selecting it from a menu or clicking on an icon. The startup procedure necessarily varies somewhat from one operating system to another; for details, you should refer to the system-specific instructions that come with your AMPL software.

Commands

If you are using a text-based interface, after starting AMPL, the first thing you should see is AMPL's prompt:

```
ampl:
```

Whenever you see this prompt, AMPL is ready to read and interpret what you type. As with most command interpreters, AMPL waits until you press the "enter" or "return" key, then processes everything you typed on the line.

An AMPL command ends with a semicolon. If you enter one or more complete commands on a line, AMPL processes them, prints any appropriate messages in response, and issues the ampl: prompt again. If you end a line in the middle of a command, you are prompted to continue it on the next line; you can tell that AMPL is prompting you to continue a command, because the prompt ends with a question mark rather than a colon:

```
ampl: display {i in ORIG, j in DEST}
ampl? sum {p in PROD} Trans[i,j,p];
```

You can type any number of characters on a line (up to whatever limit your operating system might impose), and can continue a command on any number of lines.

Several commands use filenames for reading or writing information. A filename can be any sequence of printing characters (except for semicolon ; and quotes " or ') or any sequence of any characters enclosed in matching quotes. The rules for correct filenames are determined by the operating system, however, not by AMPL. For the examples in this book we have used filenames like diet.mod that are acceptable to almost any operating system.

To conclude an AMPL session, type end or quit.
If you are running AMPL from a graphical interface, the details of your interaction will be different, but the command interface is likely to be accessible, and in fact is being used behind the scenes as well, so it's well worth understanding how to use it effectively.

Options

The behavior of AMPL commands depends not only on what you type directly, but on a variety of options for choosing alternative solvers, controlling the display of results, and the like.

Each option has a name, and a value that may be a number or a character string. For example, the options prompt1 and prompt2 are strings that specify the prompts. The option display_width has a numeric value, which says how many characters wide the output produced by the display command may be.

The option command displays and sets option values. If option is followed by a list of option names, AMPL replies with the current values:

```
ampl: option prompt1, display_width;
option prompt1 'ampl: ';
option display_width 79;
ampl:
```

A * in an option name is a "wild card" that matches any sequence of characters:

```
ampl: option prom*;
option prompt1 'ampl: ';
option prompt2 'ampl? ';
ampl:
```

The command option *, or just option alone, lists all current options and values.
When option is followed by a name and a value, it resets the named option to the specified value. In the following example we change the prompt and the display width, and then verify that the latter has been changed:

```
ampl: option prompt1 "A> ", display_width 60;
A> option display_width;
option display_width 60;
A>
```

You can specify any string value by surrounding the string in matching quotes '...' or "..." as above; the quotes may be omitted if the string looks like a name or number. Two consecutive quotes (${ }^{\prime}$ ' or " ") denote an empty string, which is a meaningful value for some options. At the other extreme, if you want to spread a long string over several lines, place the backslash character \backslash at the end of each intermediate line.

When AMPL starts, it sets many options to initial, or default, values. The prompt1 option is initialized to 'ampl: ', for instance, so prompts appear in the standard way. The display_width option has a default value of 79. Other options, especially ones that pertain to particular solvers, are initially unset:

```
ampl: option cplex_options;
option cplex_options ''; #not defined
```

To return all options to their default values, use the command reset options.
AMPL maintains no master list of valid options, but rather accepts any new option that you define. Thus if you mis-type an option name, you will most likely define a new option by mistake, as the following example demonstrates:

```
ampl: option display_wdith 60;
ampl: option display_w*;
option display_wdith 60;
option display_width 79;
```

The option statement also doesn't check to see if you have assigned a meaningful value to an option. You will be informed of a value error only when an option is used by some subsequent command. In these respects, AMPL options are much like operating system or shell 'environment variables." In fact you can use the settings of environment variables to override AMPL's option defaults; see your system-specific documentation for details.

11.2 Setting up and solving models and data

To apply a solver to an instance of a model, the examples in this book use model, data, and solve commands:

```
ampl: model diet.mod; data diet.dat; solve;
MINOS 5.5: optimal solution found.
iterations, objective 88.2
```

The model command names a file that contains model declarations (Chapters 5 through 8), and the data command names a file that contains data values for model components (Chapter 9). The solve command causes a description of the optimization problem to be sent to a solver, and the results to be retrieved for examination. This section takes a closer look at the main AMPL features for setting up and solving models. Features for subsequently changing and re-solving models are covered in Section 11.4.

Entering models and data

AMPL maintains a "current'" model, which is the one that will be sent to the solver if you type solve. At the beginning of an interactive session, the current model is empty. A model command reads declarations from a file and adds them to the current model; a data command reads data statements from a file to supply values for components already in the current model. Thus you may use several model or data commands to build up the description of an optimization problem, reading different parts of the model and data from different files.

You can also type parts of a model and its data directly at an AMPL prompt. Model declarations such as param, var and subject to act as commands that add components to the current model. The data statements of Chapter 9 also act as commands, which supply data values for already defined components such as sets and parameters. Because model and data statements look much alike, however, you need to tell AMPL which you will be typing. AMPL always starts out in "model mode"'; the statement data (without a filename) switches the interpreter to "data mode", and the statement model (without a filename) switches it back. Any command (like option, solve or subject to) that does not begin like a data statement also has the effect of switching data mode back to model mode.

If a model declares more than one objective function, AMPL by default passes all of them to the solver. Most solvers deal only with one objective function and usually select the first by default. The objective command lets you select a single objective function to pass to the solver; it consists of the keyword objective followed by a name from a minimize or maximize declaration:
objective Total_Number;
If a model has an indexed collection of objectives, you must supply a subscript to indicate which one is to be chosen:

```
objective Total_Cost["A&P"];
```

The uses of multiple objectives are illustrated by two examples in Section 8.3.

Solving a model

The solve command sets in motion a series of activities. First, it causes AMPL to generate a specific optimization problem from the model and data that you have supplied. If you have neglected to provide some needed data, an error message is printed; you will also get error messages if your data values violate any restrictions imposed by qualification phrases in var or param declarations or by check statements. AMPL waits to verify data restrictions until you type solve, because a restriction may depend in a complicated way on many different data values. Arithmetic errors like dividing by zero are also caught at this stage.

After the optimization problem is generated, AMPL enters a "presolve" phase that tries to make the problem easier for the solver. Sometimes presolve so greatly reduces the size of a problem that it become substantially easier to solve. Normally the work of presolve goes on behind the scenes, however, and you need not be concerned about it. In rare cases, presolve can substantially affect the optimal values of the variables - when there is more than one optimal solution - or can interfere with other preprocessing routines that are built into your solver software. Also presolve sometimes detects that no feasible solution is possible, and so does not bother sending your program to the solver. For example, if you drastically reduce the availability of one resource in steel4.mod, then AMPL produces an error message:

```
ampl: model steel4.mod;
ampl: data steel4.dat;
ampl: let avail['reheat'] := 10;
ampl: solve;
presolve: constraint Time['reheat'] cannot hold:
    body <= 10 cannot be >= 11.25; difference = -1.25
```

For these cases you should consult the detailed description of presolve in Section 14.1.
The generated optimization problem, as possibly modified by presolve, is finally sent by AMPL to the solver of your choice. Every version of AMPL is distributed with some default solver that will be used automatically if you give no other instructions; type option solver to see its name:

```
ampl: option solver;
option solver minos;
```

If you have more than one solver, you can switch among them by changing the solver option:

```
ampl: model steelt.mod; data steelT.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
```

```
ampl: reset;
ampl: model steelt.mod;
ampl: data steelt.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 515033
1 6 \text { dual simplex iterations (0 in phase I)}
ampl: reset;
ampl: model steelt.mod;
ampl: data steelt.dat;
ampl: option solver snopt;
ampl: solve;
SNOPT 6.1-1: Optimal solution found.
15 iterations, objective 515033
```

In this example we reset the problem between solves, so that the solvers are invoked with the same initial conditions and their performance can be compared. Without reset, information about the solution found by one solver would be passed along to the next one, possibly giving the latter a substantial advantage. Passing information from one solve to the next is most useful when a series of similar LPs are to be sent to the same solver; we discuss this case in more detail in Section 14.2.

Almost any solver can handle a linear program, although those specifically designed for linear programming generally give the best performance. Other kinds of optimization problems, such as nonlinear (Chapter 18) and integer (Chapter 20), can be handled only by solvers designed for them. A message such as "ignoring integrality" or "can't handle nonlinearities" is an indication that you have not chosen a solver appropriate for your model.

If your optimization problems are not too difficult, you should be able to use AMPL without referring to instructions for a specific solver: set the solver option appropriately, type solve, and wait for the results.

If your solver takes a very long time to return with a solution, or returns to AMPL without any 'optimal solution'" message, then it's time to read further. Each solver is a sophisticated collection of algorithms and algorithmic strategies, from which many combinations of choices can be made. For most problems the solver makes good choices automatically, but you can also pass along your own choices through AMPL options. The details may vary with each solver, so for more information you must look to the solverspecific instructions that accompany your AMPL software.

If your problem takes a long time to optimize, you will want some evidence of the solver's progress to appear on your screen. Directives for this purpose are also described in the solver-specific instructions.

11.3 Modifying data

Many modeling projects involve solving a series of problem instances, each defined by somewhat different data. We describe here AMPL's facilities for resetting parameter values while leaving the model as is. They include commands for resetting data mode input and for resampling random parameters, as well as the let command for directly assigning new values.

Resetting

To delete the current data for several model components, without changing the current model itself, use the reset data command, as in:

```
reset data MINREQ, MAXREQ, amt, n_min, n_max;
```

You may then use data commands to read in new values for these sets and parameters. To delete all data, type reset data.

The update data command works similarly, but does not actually delete any data until new values are assigned. Thus if you type

```
update data MINREQ, MAXREQ, amt, n_min, n_max;
```

but you only read in new values for MINREQ, amt and n_min, the previous values for MAXREQ and n_max will remain. If instead you used reset data, MAXREQ and n_max would be without values, and you would get an error message when you next tried to solve.

Resampling

The reset data command also acts to resample the randomly computed parameters described in Section 7.6. Continuing with the variant of steel4.mod introduced in that section, if the definition of parameter avail is changed so that its value is given by a random function:

```
param avail_mean {STAGE} >= 0;
param avail_variance {STAGE} >= 0;
param avail {s in STAGE} =
    Normal(avail_mean[s], avail_variance[s]);
```

with corresponding data:

```
param avail_mean := reheat 35 roll 40 ;
param avail_variance := reheat 5 roll 2 ;
```

then AMPL will take new samples from the Normal distribution after each reset data. Different samples result in different solutions, and hence in different optimal objective values:

```
ampl: model steel4r.mod;
ampl: data steel4r.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
3 iterations, objective 187632.2489
ampl: display avail;
reheat 32.3504
    roll 43.038;
ampl: reset data avail;
ampl: solve;
MINOS 5.5: optimal solution found.
4 iterations, objective 158882.901
ampl: display avail;
reheat 32.0306
    roll 32.6855 ;
```

Only reset data has this effect; if you issue a reset command then AMPL's random number generator is reset, and the values of avail repeat from the beginning. (Section 7.6 explains how to reset the generator's 'seed' to get a different sequence of random numbers.)

The let command

The let command also permits you to change particular data values while leaving the model the same, but it is more convenient for small or easy-to-describe changes than reset data or update data. You can use it, for example, to solve the diet model of Figure 5-1, trying out a series of upper bounds f_max["CHK"] on the purchases of food CHK:

```
ampl: model dietu.mod;
ampl: data dietu.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
5 iterations, objective 74.27382022
ampl: let f_max["CHK"] := 11;
ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 73.43818182
ampl: let f_max["CHK"] := 12;
ampl: solve;
MINOS 5.5: optimal solution found.
O iterations, objective 73.43818182
```

Relaxing the bound to 11 reduces the cost somewhat, but further relaxation apparently has no benefit.

An indexing expression may be given after the keyword let, in which case a change is made for each member of the specified indexing set. You could use this feature to change all upper bounds to 8 :

$$
\text { let }\{j \text { in FOOD\} f_max[j] }:=8 \text {; }
$$

or to increase all upper bounds by 10 percent:

```
let {j in FOOD} f_max[j] := 1.1 * f_max[j];
```

In general this command consists of the keyword let, an indexing expression if needed, and an assignment. Any set or parameter whose declaration does not define it using an = phrase may be specified to the left of the assignment's := operator, while to the right may appear any appropriate expression that can currently be evaluated.

Although AMPL does not impose any restrictions on what you can change using let, you should take care in changing any set or parameter that affects the indexing of other data.

For example, after solving the multiperiod production problem of Figures 4-4 and 4-5, it might be tempting to change the number of weeks T from 4 (as given in the original data) to 3:

```
ampl: let T := 3;
ampl: solve;
Error executing "solve" command:
error processing param avail:
    invalid subscript avail[4] discarded.
error processing param market:
        2 invalid subscripts discarded:
        market['bands',4]
        market['coils',4]
error processing param revenue:
        2 invalid subscripts discarded:
        revenue ['bands',4]
        revenue['coils',4]
error processing var Sell['coils',1]:
        invalid subscript market['bands',4]
```

The problem here is that AMPL still has current data for 4th-week parameters such as avail [4], which has become invalid with the change of T to 3 . If you want to properly reduce the number of weeks in the linear program while using the same data, you must declare two parameters:

```
param Tdata integer > 0;
param T integer <= Tdata;
```

Use 1..Tdata for indexing in the param declarations, while retaining 1..T for the variables, objective and constraints; then you can use let to change T as you like.

You can also use the let command to change the current values of variables. This is sometimes a convenient feature for exploring an alternative solution. For example, here

```
ceil(x)
floor (x)
precision(x,n)
round ( }x,n\mathrm{ )
round (x)
```

trunc $(x, n) \quad x$ truncated to n digits past the decimal point
trunc $(x) \quad x$ truncated to an integer (fractional part dropped)

Table 11-1: Rounding functions.
is what happens when we solve for the optimal diet as above, then round the optimal solution down to the next lowest integer number of packages:

```
ampl: model dietu.mod; data dietu.dat; solve;
MINOS 5.5: optimal solution found.
5 \text { iterations, objective 74.27382022}
ampl: let {j in FOOD} Buy[j] := floor(Buy[j]);
ampl: display Total_Cost, n_min, Diet_Min.slack;;
Total_Cost = 70.8
: n_min Diet_Min.slack :=
A 700 231
B1 0 580
B2 0 475
C 700 -40
CAL 16000 -640
```

Because we have used let to change the values of the variables, the objective and the slacks are automatically computed from the new, rounded values. The cost has dropped by about $\$ 3.50$, but the solution is now short of the requirements for C by nearly 6 percent and for CAL by 4 percent.

AMPL provides a variety of rounding functions that can be used in this way. They are summarized in Table 11-1.

11.4 Modifying models

Several commands are provided to help you make limited changes to the current model, without modifying the model file or issuing a full reset. This section describes commands that completely remove or redefine model components, and that temporarily drop constraints, fix variables, or relax integrality restrictions on variables.

Removing or redefining model components

The delete command removes a previously declared model component, provided that no other components use it in their declarations. The form of the command is simply delete followed by a comma-separated list of names of model components:

```
ampl: model dietobj.mod;
ampl: data dietobj.dat;
ampl: delete Total_Number, Diet_Min;
```

Normally you cannot delete a set, parameter, or variable, because it is declared for use later in the model; but you can delete any objective or constraint. You can also specify a component "name" of the form check n to delete the nth check statement in the current model.

The purge command has the same form, but with the keyword purge in place of delete. It removes not only the listed components, but also all components that depend on them either directly (by referring to them) or indirectly (by referring to their dependents). Thus for example in diet. mod we have

```
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];
```

The command purge f _min deletes parameter $\mathrm{f} _\mathrm{min}$ and the components whose declarations refer to f _min, including parameter f _max and variable Buy. It also deletes objective Total_Cost, which depends indirectly on f _min through its reference to Buy.

If you're not sure which components depend on some given component, you can use the xref command to find out:

```
ampl: xref f_min;
# 4 entities depend on f_min:
f_max
Buy
Total_Cost
Diet
```

Like delete and purge, the xref command can be applied to any list of model components.

Once a component has been removed by delete or purge, any previously hidden meaning of the component's name becomes visible again. After a constraint named prod is deleted, for instance, AMPL again recognizes prod as an iterated multiplication operator (Table 7-1).

If there is no previously hidden meaning, the name of a component removed by delete or purge becomes again unused, and may subsequently be declared as the name of any new component of any type. If you only want to make some relatively limited modifications to a declaration, however, then you will probably find redeclare to be more convenient. You can change any component's declaration by writing the key-
word redeclare followed by the complete revised declaration that you would like to substitute. Looking again at diet.mod, for example,
ampl: redeclare param f_min $\{F O O D\}>0$ integer;
changes only the validity conditions on f _min. The declarations of all components that depend on f _min are left unchanged, as are any values previously read for f _min.

A list of all component types to which delete, purge, xref, and redeclare may be applied is given in A.18.5.

Changing the model: fix, unfix; drop, restore

The simplest (but most drastic) way to change the model is by issuing the command reset, which expunges all of the current model and data. Following reset, you can issue new model and data commands to set up a different optimization problem; the effect is like typing quit and then restarting AMPL, except that options are not reset to their default values. If your operating system or your graphical environment for AMPL allows you to edit files while keeping AMPL active, reset is valuable for debugging and experimentation; you may make changes to the model or data files, type reset, then read in the modified files. (If you need to escape from AMPL to run a text editor, you can use the shell command described in Section A.21.1.)

The drop command instructs AMPL to ignore certain constraints or objectives of the current model. As an example, the constraints of Figure 5-1 initially include

```
subject to Diet_Max {i in MAXREQ}:
    sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];
```

A drop command can specify a particular one of these constraints to ignore:

```
drop Diet_Max["CAL"];
```

or it may specify all constraints or objectives indexed by some set:

```
drop {i in MAXNOT} Diet_Max[i];
```

where MAXNOT has previously been defined as some subset of MAXREQ. The entire collection of constraints can be ignored by

```
drop {i in MAXREQ} Diet_Max[i];
```

or more simply:

```
drop Diet_Max;
```

In general, this command consists of the keyword drop, an optional indexing expression, and a constraint name that may be subscripted. Successive drop commands have a cumulative effect.

The restore command reverses the effect of drop. It has the same syntax, except for the keyword restore.

The fix command fixes specified variables at their current values, as if there were a constraint that the variables must equal these values; the unfix command reverses the effect. These commands have the same syntax as drop and restore, except that they name variables rather than constraints. For example, here we initialize all variables of our diet problem to their lower bounds, fix all variables representing foods that have more than 1200 mg of sodium per package, and optimize over the remaining variables:

```
ampl: let {j in FOOD} Buy[j] := f_min[j];
ampl: fix {j in FOOD: amt["NA",j] > 1200} Buy[j];
ampl: solve;
MINOS 5.5: optimal solution found.
7terations, objective 86.92
Objective = Total_Cost['A&P']
ampl: display {j in FOOD} (Buy[j].lb,Buy[j],amt["NA",j]);
: Buy[j].lb Buy[j] amt['NA',j] :=
BEEF 2 2 938
CHK 2 2 2180
FISH 2 10 945
HAM 2 2 278
MCH 2 9.42857 1182
MTL 2 10 896
SPG 2 2 1329
TUR 2 2 1397
;
```

Rather than setting and fixing the variables in separate statements, you can add an assignment phrase to the fix command:

```
ampl: fix {j in FOOD: amt["NA",j] > 1200} Buy[j] := f_min[j];
```

The unfix command works in the same way, to reverse the effect of fix and optionally also reset the value of a variable.

Relaxing integrality

Changing option relax_integrality from its default of 0 to any nonzero value:

```
option relax_integrality 1;
```

tells AMPL to ignore all restrictions of variables to integer values. Variables declared integer get whatever bounds you specified for them, while variables declared binary are given a lower bound of zero and an upper bound of one. To restore the integrality restrictions, set the relax_integrality option back to 0 .

A variable's name followed by the suffix .relax indicates its current integrality relaxation status: 0 if integrality is enforced, nonzero otherwise. You can make use of this suffix to relax integrality on selected variables only. For example,

```
let Buy['CHK'].relax = 1
```

relaxes integrality only on the variable Buy [' CHK '], while

```
let {j in FOOD: f_min[j] > allow_frac} Buy[j].relax := 1;
```

relaxes integrality on all Buy variables for foods that have a minimum purchase of at least some cutoff parameter allow_frac.

Some of the solvers that work with AMPL provide their own directives for relaxing integrality, but these do not necessarily have the same effect as AMPL's relax_integrality option or .relax suffix. The distinction is due to the effects of AMPL's problem simplification, or presolve, stage (Section 14.1). AMPL drops integrality restrictions before the presolve phase, so that the solver receives a true continuous relaxation of the original integer problem. If the relaxation is performed by the solver, however, then the integrality restrictions are still in effect during AMPL's presolve phase, and AMPL may perform some additional tightening and simplification as a result.

As a simple example, suppose that diet model variable declarations are written to allow the food limits f _max to be adjusted by setting an additional parameter, scale:

```
var Buy {j in FOOD} integer >= f_min[j], <= scale * f_max[j];
```

In our example of Figure 2-3, all of the f_max values are 10; suppose that also we set scale to 0.95 . First, here are the results of solving the unrelaxed problem:

```
ampl: option relax_integrality;
option relax_integrality 0;
ampl: let scale := 0.95;
ampl: solve;
CPLEX 8.0.0: optimal integer solution; objective 122.89
6 ~ M I P ~ s i m p l e x ~ i t e r a t i o n s
O branch-and-bound nodes
```

When no relaxation is specified in AMPL, presolve sees that all the variables have upper limits of 9.5 , and since it knows that the variables must take integer values, it rounds these limits down to 9 . Then these limits are sent to the solver, where they remain even if we specify a solver directive for integrality relaxation:

```
ampl: option cplex_options 'relax';
ampl: solve;
CPLEX 8.0.0: relax
Ignoring integrality of 8 variables.
CPLEX 8.0.0: optimal solution; objective 120.2421057
2 dual simplex iterations (0 in phase I)
ampl: display Buy;
Buy [*] :=
BEEF 8.39898
    CHK 2
FISH 2
    HAM 9
    MCH 9
    MTL 9
    SPG 8.93436
    TUR 2
;
```

If instead option relax_integrality is set to 1, presolve leaves the upper limits at 9.5 and sends those to the solver, with the result being a less constrained problem and hence a lower objective value:

```
ampl: option relax_integrality 1;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 119.1507545
3 dual simplex iterations (0 in phase I)
ampl: display Buy;
Buy [*] :=
BEEF 6.8798
    CHK 2
FISH 2
    HAM 9.5
    MCH 9.5
    MTL 9.5
    SPG 9.1202
    TUR 2
;
```

Variables that were at upper bound 9 in the previous solution are now at upper bound 9.5.
The same situation can arise in much less obvious circumstances, and can lead to unexpected results. In general, the optimal value of an integer program under AMPL's relax_integrality option may be lower (for minimization) or higher (for maximization) than the optimal value reported by the solver's relaxation directive.

12

Display Commands

AMPL offers a rich variety of commands and options to help you examine and report the results of optimization. Section 12.1 introduces display, the most convenient command for arranging set members and numerical values into lists and tables; Sections 12.2 and 12.3 provide a detailed account of display options that give you more control over how the lists and tables are arranged and how numbers appear in them. Section 12.4 describes print and printf, two related commands that are useful for preparing data to be sent to other programs, and for formatting simple reports.

Although our examples are based on the display of sets, parameters and variables and expressions involving them - you can use the same commands to inspect dual values, slacks, reduced costs, and other quantities associated with an optimal solution; the rules for doing so are explained in Section 12.5.

AMPL also provides ways to access modeling and solving information. Section 12.6 describes features that can be useful when, for example, you want to view a parameter's declaration at the command-line, display a particular constraint from a problem instance, list the values and bounds of all variables regardless of their names, or record timings of AMPL and solver activities.

Finally, Section 12.7 addresses general facilities for manipulating output of AMPL commands. These include features for redirection of command output, logging of output, and suppression of error messages.

12.1 Browsing through results: the display command

The easiest way to examine data and result values is to type display and a description of what you want to look at. The display command automatically formats the values in an intuitive and familiar arrangement; as much as possible, it uses the same list and table formats as the data statements described in Chapter 9. Our examples use parameters and variables from models defined in other chapters.

As we will describe in more detail in Section 12.7, it is possible to capture the output of display commands in a file, by adding >filename to the end of a display command; this redirection mechanism applies as well to most other commands that produce output.

Displaying sets

The contents of sets are shown by typing display and a list of set names. This example is taken from the model of Figure 6-2a:

```
ampl: display ORIG, DEST, LINKS;
set ORIG := GARY CLEV PITT;
set DEST := FRA DET LAN WIN STL FRE LAF;
set LINKS :=
(GARY,DET) 
(GARY,STL) (CLEV,DET) (CLEV,STL) (PITT,WIN);
```

If you specify the name of an indexed collection of sets, each set in the collection is shown (from Figure 6-3):

```
ampl: display PROD, AREA;
set PROD := bands coils;
set AREA[bands] := east north;
set AREA[coils] := east west export;
```

Particular members of an indexed collection can be viewed by subscripting, as in display AREA["bands"].

The argument of display need not be a declared set; it can be any of the expressions described in Chapter 5 or 6 that evaluate to sets. For example, you can show the union of all the sets AREA [p]:

```
ampl: display union {p in PROD} AREA[p];
set union {p in PROD} AREA[p] := east north west export;
```

or the set of all transportation links on which the shipping cost is greater than 500:

```
ampl: display {(i,j) in LINKS: cost[i,j] * Trans[i,j] > 500};
set {(i,j) in LINKS: cost[i,j]*Trans[i,j] > 500} :=
(GARY,STL) (CLEV,DET) (CLEV,WIN) (PITT,FRA) (PITT,FRE)
(GARY,LAF) (CLEV,LAN) (CLEV,LAF) (PITT,STL);
```

Because the membership of this set depends upon the current values of the variables Trans [i,j], you could not refer to it in a model, but it is legal in a display command, where variables are treated the same as parameters.

Displaying parameters and variables

The display command can show the value of a scalar model component:

```
ampl: display T;
T = 4
```

or the values of individual components from an indexed collection (Figure 1-6b):

```
ampl: display avail["reheat"], avail["roll"];
avail['reheat'] = 35
avail['roll'] = 40
```

or an arbitrary expression:

```
ampl: display sin(1)^2 + cos(1)^2;
sin(1)^2 + \operatorname{cos(1)^^2 = 1}
```

The major use of display, however, is to show whole indexed collections of data. For "one-dimensional" data - parameters or variables indexed over a simple set - AMPL uses a column format (Figure 4-6b):

```
ampl: display avail;
avail [*] :=
reheat 35
    roll 40
;
```

For "two-dimensional" parameters or variables - indexed over a set of pairs or two simple sets - AMPL forms a list for small amounts of data (Figure 4-1):

```
ampl: display supply;
supply :=
CLEV bands 700
CLEV coils 1600
CLEV plate 300
GARY bands 400
GARY coils 800
GARY plate 200
PITT bands 800
PITT coils }180
PITT plate 300
;
```

or a table for larger amounts:

ampl: display demand;				
demand $[*, *]$				
: bands coils				
DET	300	750	100	
FRA	300	500	100	
FRE	225	850	100	
LAF	250	500	250	
LAN	100	400	0	
STL	650	950	200	
WIN	75	250	50	
;				

You can control the choice between formats by setting option display_1col, which is described in the next section.

A parameter or variable (or any other model entity) indexed over a set of ordered pairs is also considered to be a two-dimensional object and is displayed in a similar manner. Here is the display for a parameter indexed over the set LINKS that was displayed earlier in this section (from Figure 6-2a):

```
ampl: display cost;
cost :=
CLEV DET 9
CLEV FRA 27
CLEV LAF 17
CLEV LAN 12
CLEV STL 26
CLEV WIN 9
GARY DET 14
GARY LAF 8
GARY LAN 11
GARY STL 16
PITT FRA 24
PITT FRE 99
PITT STL 28
PITT WIN 13
;
```

This, too, can be made to appear in a table format, as the next section will show.
To display values indexed in three or more dimensions, AMPL again forms lists for small amounts of data. Multi-dimensional entities more often involve data in large quantities, however, in which case AMPL "slices" the values into two-dimensional tables, as in the case of this variable from Figure 4-6:

[PITT, *,*]			
:	bands	coils	plate
DET	300	0	100
FRA	300	500	100
FRE	0	0	0
LAF	0	0	250
LAN	100	0	0
STL	0	0	0
WIN	75	0	50

At the head of the first table, the template [CLEV,*,*] indicates that the slice is through CLEV in the first component, so the entry in row LAF and column coils says that Trans ["CLEV","LAF","coils"] is 500. Since the first index of Trans is always CLEV, GARY or PITT in this case, there are three slice tables in all. But AMPL does not always slice through the first component; it picks the slices so that the display will contain the fewest possible tables.

A display of two or more components of the same dimensionality is always presented in a list format, whether the components are one-dimensional (Figure 4-4):

```
ampl: display inv0, prodcost, invcost;
: inv0 prodcost invcost :=
bands 10 10 2.5
coils 0 11 3
;
```

or two-dimensional (Figure 4-6):

ampl: display rate, make_cost, Make;			
:	rate make_cost	Make	:
CLEV bands	190	190	0
CLEV coils	130	170	1950
CLEV plate	160	185	0
GARY bands	200	180	1125
GARY coils	140	170	1750
GARY plate	160	180	300
PITT bands	230	190	775
PITT coils	160	180	500
PITT plate	170	185	500
;			

or any higher dimension. The indices appear in a list to the left, with the last one changing most rapidly.

As you can see from these examples, display normally arranges row and column labels in alphabetical or numerical order, regardless of the order in which they might have been given in your data file. When the labels come from an ordered set, however, the original ordering is honored (Figure 5-3):

```
ampl: display avail;
avail [*] :=
27sep 40
04oct 40
11oct 32
18oct 40
;
```

For this reason, it can be worthwhile to declare certain sets of your model to be ordered, even if their ordering plays no explicit role in your formulation.

Displaying indexed expressions

The display command can show the value of any arithmetic expression that is valid in an AMPL model. Single-valued expressions pose no difficulty, as in the case of these three profit components from Figure 4-4:

```
ampl: display sum {p in PROD,t in 1..T} revenue[p,t]*Sell [p,t],
ampl? sum {p in PROD,t in 1..T} prodcost[p]*Make[p,t],
ampl? sum {p in PROD,t in 1..T} invcost[p]*Inv[p,t];
sum{p in PROD, t in 1 .. T} revenue[p,t]*Sell[p,t] = 787810
sum{p in PROD, t in 1 .. T} prodcost[p]*Make[p,t] = 269477
sum{p in PROD, t in 1 .. T} invcost[p]*Inv[p,t] = 3300
```

Suppose, however, that you want to see all the individual values of revenue [p,t] * Sell [p,t]. Since you can type display revenue, Sell to display the separate values of revenue [p, t] and $\operatorname{Sell}[p, t]$, you might want to ask for the products of these values by typing:

```
ampl: display revenue * Sell;
syntax error
context: display revenue >>> * <<< Sell;
```

AMPL does not recognize this kind of array arithmetic. To display an indexed collection of expressions, you must specify the indexing explicitly:

```
ampl: display {p in PROD, t in 1..T} revenue[p,t]*Sell[p,t];
revenue[p,t]*Sell[p,t] [*,*] (tr)
: bands coils :=
1 150000 9210
2 156000 87500
3 37800 129500
4 54000 163800
```

To apply the same indexing to two or more expressions, enclose a list of them in parentheses after the indexing expression:

```
ampl: display {p in PROD, t in 1..T}
ampl? (revenue[p,t]*Sell [p,t], prodcost[p]*Make[p,t]);
: revenue[p,t]*Sell[p,t] prodcost[p]*Make[p,t] :=
bands 1 150000 59900
bands 2 156000 60000
bands 3 37800 14000
bands 4 54000 20000
coils 1 9210 15477
coils 2 87500 15400
coils 3 129500 38500
coils 4 163800 46200
;
```

An indexing expression followed by an expression or parenthesized list of expressions is treated as a single display item, which specifies some indexed collection of values. A display command may contain one of these items as above, or a comma-separated list of them.

The presentation of the values for indexed expressions follows the same rules as for individual parameters and variables. In fact, you can regard a command like

```
display revenue, Sell
```

as shorthand for

If you rearrange the indexing expression so that t in $1 \ldots T$ comes first, however, the rows of the list are instead sorted first on the members of $1 . \mathrm{T}$:

This change in the default presentation can only be achieved by placing an explicit indexing expression after display.

In addition to indexing individual display items, you can specify a set over which the whole display command is indexed - that is, you can ask that the command be executed once for each member of an indexing set. This feature is particularly useful for rearranging slices of multidimensional tables. When, earlier in this section, we displayed the three-dimensional variable Trans indexed over \{ORIG,DEST, PROD\}, AMPL chose to slice the values through members of ORIG to produce a series of twodimensional tables.

What if you want to display slices through PROD? Rearranging the indexing expression, as in our previous example, will not reliably have the desired effect; the display command always picks the smallest indexing set, and where there is more than one that is smallest, it does not necessarily choose the first. Instead, you can say explicitly that you want a separate display for each p in PROD:

```
ampl: display {p in PROD}:
ampl? {i in ORIG, j in DEST} Trans[i,j,p];
Trans[i,j,'bands'] [*,*] (tr)
: CLEV GARY PITT :=
DET 0 0 300
FRA 0 0 300
FRE 0 225 0
LAF 0 250 0
LAN 0 0 100
STL 0 650 0
WIN 0 0 75
;
Trans[i,j,'coils'] [*,*] (tr)
: CLEV GARY PITT :=
DET 750 0 0
FRA 0 0 500
FRE 0 850 0
LAF 500 0 0
LAN 400 0 0
STL 50 900 0
WIN 250 0 0
;
Trans[i,j,'plate'] [*,*] (tr)
: CLEV GARY PITT :=
DET 0 0 100
FRA 0 0 100
FRE 0 100 0
LAF 0 0 250
LAN 0 0 0
STL 0 200 0
WIN 0 0 50
;
```

As this example shows, if a display command specifies an indexing expression right at the beginning, followed by a colon, the indexing set applies to the whole command. For
display_1col
display_transpose
display_width
gutter_width
omit_zero_cols
omit_zero_rows
maximum elements for a table to be displayed in list format (20) transpose tables if rows - columns < display_transpose (0) maximum line width (79)
separation between table columns (3)
if not 0 , omit all-zero columns from displays (0)
if not 0 , omit all-zero rows from displays (0)

Table 12-1: Formatting options for display (with default values).
each member of the set, the expressions following the colon are evaluated and displayed separately.

12.2 Formatting options for display

The display command uses a few simple rules for choosing a good arrangement of data. By changing several options, you can control overall arrangement, handling of zero values, and line width. These options are summarized in Table 12-1, with default values shown in parentheses.

Arrangement of lists and tables

The display of a one-dimensional parameter or variable can produce a very long list, as in this example from the scheduling model of Figure 16-5:

```
ampl: display required;
required [*] :=
Fril }10
Fri2 78
Fri3 52
Mon1 100
Mon2 78
Mon3 52
Sat1 }10
Sat2 78
Thu1 }10
Thu2 78
Thu3 52
Tue1 }10
Tue2 }7
Tue3 52
Wed1 }10
Wed2 }7
Wed3 52
;
```

The option display_1col can be used to request a more compact format:

```
ampl: option display_1col 0;
ampl: display required;
required [*] :=
Fri1 100 Mon1 100 Sat1 100 Thu2 78 Tue2 78 Wed2 78
Fri2 78 Mon2 78 Sat2 78 Thu3 52 Tue3 52 Wed3 52
Fri3 52 Mon3 52 Thu1 100 Tue1 100 Wed1 100
```

The one-column list format is used when the number of values to be displayed is less than or equal to display_1col, and the compact format is used otherwise. The default for display_1col is 20 ; set it to zero to force the compact format, or to a very large number to force the list format.

Multi-dimensional displays are affected by option display_1col in an analogous way. The one-column list format is used when the number of values is less than or equal to display_1col, while the appropriate compact format - in this case, a table - is used otherwise. We showed an example of the difference in the previous section, where the display for supply appeared as a list because it had only 9 values, while the display for demand appeared as a table because its 21 values exceed the default setting of 20 for option display_1col.

Since a parameter or variable indexed over a set of ordered pairs is also considered to be two-dimensional, the value of display_1col affects its display as well. Here is the table format for the parameter cost indexed over the set LINKS (from Figure 6-2a) that was displayed in the preceding section:

```
ampl: option display_1col 0;
ampl: display cost;
\begin{tabular}{lrrrr} 
cost & [*,*] (tr) & & \\
\(:\) & CLEV & GARY & PITT & \(:=\) \\
DET & 9 & 14 &. & \\
FRA & 27 & \(\cdot\) & 24 & \\
FRE & \(\cdot\) &. & 99 & \\
LAF & 17 & 8 & \(\cdot\) & \\
LAN & 12 & 11 &. & \\
STL & 26 & 16 & 28 & \\
WIN & 9 & \(\cdot\) & 13 & \\
\(;\) & & & &
\end{tabular}
```

A dot (.) entry indicates a nonexistent combination in the index set. Thus in the GARY column of the table, there is a dot in the FRA row because the pair (GARY, FRA) is not a member of LINKS; no cost["GARY", "FRA"] is defined for this problem. On the other hand, LINKS does contain the pair (GARY, LAF), and cost["GARY", "LAF"] is shown as 8 in the table.

In choosing an orientation for tables, the display command by default favors rows over columns; that is, if the number of columns would exceed the number of rows, the table is transposed. Thus the table for demand in the previous section has rows labeled by the first coordinate and columns by the second, because it is indexed over DEST with

7 members and then PROD with 3 members. By contrast, the table for cost has columns labeled by the first coordinate and rows by the second, because it is indexed over ORIG with 3 members and then DEST with 7 members. A transposed table is indicated by a (tr) in its first line.

The transposition status of a table can be reversed by changing the display_transpose option. Positive values tend to force transposition:

:	DET	FRA	FRE	LAF	LAN	STL	WIN
bands	300	300	225	250	100	650	75
coils	750	500	850	500	400	950	250
plate	100	100	100	250	0	200	50

while negative values tend to suppress it:

The rule is as follows: a table is transposed only when the number of rows minus the number of columns would be less than display_transpose. At its default value of zero, display_transpose gives the previously described default behavior.

Control of line width

The option display_width gives the maximum number of characters on a line generated by display (as seen in the model of Figure 16-4):

```
ampl: option display_width 50, display_1col 0;
ampl: display required;
required [*] :=
Fri1 100 Mon3 52 Thu3 52 Wed2 }7
Fri2 78 Sat1 100 Tue1 100 Wed3 52
Fri3 52 Sat2 78 Tue2 78
Mon1 100 Thu1 100 Tue3 52
Mon2 78 Thu2 78 Wed1 100
;
```

When a table would be wider than display_width, it is cut vertically into two or more tables. The row names in each table are the same, but the columns are different:

.	C118	C138	C140	C246	C250	C251	D237	D239
Coullard	6	9	8	7	11	10	4	5
Daskin	11	8	7	6	9	10	1	5
Hazen	9	10	11	1	5	6	2	7
Hopp	11	9	8	10	6	5	1	7
Iravani	3	2	8	9	10	11	1	5
Linetsky	11	9	10	5	3	4	6	7
Mehrotra	6	11	10	9	8	7	1	2
Nelson	11	5	4	6	7	8	1	9
Smilowitz	11	9	10	8	6	5	7	3
Tamhane	5	6	9	8	4	3	7	10
White	11	9	8	4	6	5	3	10
:	D241	M233	M239	:				
Coullard	3	2	1					
Daskin	4	2	3					
Hazen	8	3	4					
Hopp	4	2	3					
Iravani	4	6	7					
Linetsky	8	1	2					
Mehrotra	5	4	3					
Nelson	10	2	3					
Smilowitz	4	1	2					
Tamhane	11	2	1					
White	7	2	1					
;								

If a table's column headings are much wider than the values, display introduces abbreviations to keep all columns together (Figure 4-4):

```
ampl: option display_width 40;
ampl: display {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t],
ampl? prodcost[p]*Make[p,t], invcost[p]*Inv[p,t]);
# $1 = revenue[p,t]*Sell[p,t]
# $2 = prodcost[p]*Make[p,t]
# $3 = invcost[p]*Inv[p,t]
: $1 $2 $3 :=
bands 1 150000 59900
bands 2 156000 60000 0
bands 3 37800 14000 0
bands 4 54000 20000 0
coils 1 9210 15477 3300
coils 2 87500 15400 0
coils 3 129500 38500 0
coils 4 163800 46200 0
```

On the other hand, where the headings are narrower than the values, you may be able to squeeze more on a line by reducing the option gutter_width - the number of spaces between columns - from its default value of 3 to 2 or 1 .

Suppression of zeros

In some kinds of linear programs that have many more variables than constraints, most of the variables have an optimal value of zero. For instance in the assignment problem of Figure 3-2, the optimal values of all the variables form this table, in which there is a single 1 in each row and each column:

Trans [*,*]											
.	C118	C138	C140	C246	C250	C251	D237	D239	D241	M233	M239 : =
Coullard	1	0	0	0	0	0	0	0	0	0	0
Daskin	0	0	0	0	0	0	0	0	1	0	0
Hazen	0	0	0	1	0	0	0	0	0	0	0
Hopp	0	0	0	0	0	0	1	0	0	0	0
Iravani	0	1	0	0	0	0	0	0	0	0	0
Linetsky	0	0	0	0	1	0	0	0	0	0	0
Mehrotra	0	0	0	0	0	0	0	1	0	0	0
Nelson	0	0	1	0	0	0	0	0	0	0	0
Smilowitz	0	0	0	0	0	0	0	0	0	1	0
Tamhane	0	0	0	0	0	1	0	0	0	0	0
White	0	0	0	0	0	0	0	0	0	0	1

By setting omit_zero_rows to 1, all the zero values are suppressed, and the list comes down to the entries of interest:

```
ampl: option omit_zero_rows 1;
ampl: display Trans;
Trans :=
Coullard C118 1
Daskin D241 1
Hazen C246 1
Hopp D237 1
Iravani C138 1
Linetsky C250 1
Mehrotra D239 1
Nelson C140 1
Smilowitz M233 1
Tamhane C251 1
White M239 1
;
```

If the number of nonzero entries is less than the value of display_1col, the data is printed as a list, as it is here. If the number of nonzeros is greater than display_1col, a table format would be used, and the omit_zero_rows option would only suppress table rows that contain all zero entries.

For example, the display of the three-dimensional variable Trans from earlier in this chapter would be condensed to the following:

ampl: display Trans;				
Trans [CLEV,*,*]				
:	bands	coils	plate	: $=$
DET	0	750	0	
LAF	0	500	0	
LAN	0	400	0	
STL	0	50	0	
WIN	0	250	0	
[GARY, *, *]				
	bands	coils	plate	: $=$
FRE	225	850	100	
LAF	250	0	0	
STL	650	900	200	
[PITT, *, *]				
	bands	coils	plate	: $=$
DET	300	0	100	
FRA	300	500	100	
LAF	0	0	250	
LAN	100	0	0	
WIN	75	0	50	
;				

A corresponding option omit_zero_cols suppresses all-zero columns when set to 1 , and would eliminate two columns from Trans [CLEV , *, *].

12.3 Numeric options for display

The numbers in a table or list produced by display are the result of a transformation from the computer's internal numeric representation to a string of digits and symbols. AMPL's options for adjusting this transformation are shown in Table 12-2. In this section we first consider options that affect only the appearance of numbers, and then options that affect underlying solution values as well.

display_eps	smallest magnitude displayed differently from zero (0)
display_precision	digits of precision to which displayed numbers are rounded; full pre- cision if $0(6)$
display_round	digits left or (if negative) right of decimal place to which displayed numbers are rounded, overriding display_precision (" ") solution_precision digits of precision to which solution values are rounded; full preci- sion if $0(0)$
solution_round	digits left or (if negative) right of decimal place to which solution values are rounded, overriding solution_precision (" ")

Table 12-2: Numeric options for display (with default values).

Appearance of numeric values

In all of our examples so far, the display command shows each numerical value to the same number of significant digits:

```
ampl: display {p in PROD, t in 1..T} Make[p,t]/rate[p];
Make[p,t]/rate[p] [*,*] (tr)
: bands coils :=
1 29.95 10.05
2 30 10
3 20 12
4 32.1429 7.85714
;
ampl: display {p in PROD, t in 1..T} prodcost[p]*Make[p,t];
prodcost[p]*Make[p,t] [*,*] (tr)
: bands coils :=
1 59900 15477
2 60000 15400
3 40000 18480
4 64285.7 12100
```

(see Figures 6-3 and 6-4). The default is to use six significant digits, whether the result comes out as 7.85714 or 64285.7 . Some numbers seem to have fewer digits, but only because trailing zeros have been dropped; 29.95 represents the number that is exactly 29.9500 to six digits, for example, and 59900 represents 59900.0.

By changing the option display_precision to a value other than six, you can vary the number of significant digits reported:

```
ampl: option display_precision 3;
ampl: display Make['bands',4] / rate['bands'],
ampl? prodcost['bands'] * Make['bands',4];
Make['bands',4]/rate['bands'] = 32.1
prodcost['bands']*Make['bands',4] = 64300
ampl: option display_precision 9;
ampl: display Make['bands',4] / rate['bands'],
ampl? prodcost['bands'] * Make['bands',4];
Make['bands',4]/rate['bands'] = 32.1428571
prodcost['bands']*Make['bands',4] = 64285.7143
ampl: option display_precision 0;
ampl: display Make['bands',4] / rate['bands'],
ampl? prodcost['bands'] * Make['bands',4];
Make['bands',4]/rate['bands'] = 32.14285714285713
prodcost['bands']*Make['bands',4] = 64285.71428571427
```

In the last example, a display_precision of 0 is interpreted specially; it tells display to represent numbers as exactly as possible, using however many digits are necessary. (To be precise, the displayed number is the shortest decimal representation that, when correctly rounded to the computer's representation, gives the value exactly as stored in the computer.)

Displays to a given precision provide the same degree of useful information about each number, but they can look ragged due to the varying numbers of digits after the decimal point. To specify rounding to a fixed number of decimal places, regardless of the resulting precision, you may set the option display_round. A nonnegative value specifies the number of digits to appear after the decimal point:

```
ampl: option display_round 2;
ampl: display {p in PROD, t in 1..T} Make[p,t]/rate[p];
Make[p,t]/rate[p] [*,*] (tr)
: bands coils :=
1 29.95 10.05
2 30.00 10.00
20.00 12.00
4 32.14 7.86
```

A negative value indicates rounding before the decimal point. For example, when display_round is -2 , all numbers are rounded to hundreds:

```
ampl: option display_round -2;
ampl: display {p in PROD, t in 1..T} prodcost[p]*Make[p,t];
prodcost[p]*Make[p,t] [*,*] (tr)
: bands coils :=
1 59900 15500
2 60000 15400
3 40000 18500
4 64300 12100
```

Any integer value of display_round overrides the effect of display_precision. To turn off display_round, set it to some non-integer such as the empty string ' '.

Depending on the solver you employ, you may find that some of the solution values that ought to be zero do not always quite come out that way. For example, here is one solver's report of the objective function terms cost[i,j] * Trans [i,j] for the assignment problem of Section 3.3:

```
ampl: option omit_zero_rows 1;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Coullard D241 2.05994e-17
Daskin D237 1
Hazen C246 1
Hopp D237 6.86647e-18
Hopp D241 4
. . . }9\mathrm{ lines omitted
White 
```

Minuscule values like $6.86647 \mathrm{e}-18$ and $-3.43323 \mathrm{e}-17$ have no significance in the context of this problem; they would be zeros in an exact solution, but come out slightly nonzero as an artifact of the way that the solver's algorithm interacts with the computer's representation of numbers.

To avoid viewing these numbers in meaningless precision, you can pick a reasonable setting for display_round - in this case 0 , since there are no digits of interest after the decimal point:

```
ampl: option display_round 0;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Coullard D241 0
Daskin D237 1
Hazen C246 1
Hopp D237 0
Hopp D241 4
Iravani C118 0
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C138 0
Nelson C140 4
Smilowitz M233 1
Tamhane C118 -0
Tamhane C251 3
White C246 0
White C251 -0
White M239 1
```

The small numbers are now represented only as 0 if positive or -0 if negative. If you want to suppress their appearance entirely, however, you must set a separate option, display_eps:

```
ampl: option display_eps 1e-10;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Daskin D237 1
Hazen C246 1
Hopp D241 4
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C251 3
White M239 1
;
```

Any value whose magnitude is less than the value of display_eps is treated as an exact zero in all output of display.

Rounding of solution values

The options display_precision, display_round and display_eps affect only the appearance of numbers, not their actual values. You can see this if you try to display the set of all pairs of i in ORIG and j in DEST that have a positive value in the preceding table, by comparing cost $[i, j] * T r a n s[i, j]$ to 0 :

```
ampl: display {i in ORIG, j in DEST: cost[i,j]*Trans[i,j] > 0};
set {i in ORIG, j in DEST: cost[i,j]*Trans[i,j] > 0} :=
(Coullard,C118) (Iravani,C118) (Smilowitz,M233)
(Coullard,D241) (Iravani,C138) (Tamhane,C251)
(Daskin,D237) (Linetsky,C250) (White,C246)
(Hazen,C246) (Mehrotra,D239) (White,M239)
(Hopp,D237) (Nelson,C138)
(Hopp,D241) (Nelson,C140);
```

Even though a value like $2.05994 \mathrm{e}-17$ is treated as a zero for purposes of display, it tests greater than zero. You could fix this problem by changing >0 above to, say, >0.1. As an alternative, you can set the option solution_round so that AMPL rounds the solution values to a reasonable precision when they are received from the solver:

```
ampl: option solution_round 10;
ampl: solve;
MINOS 5.5: optimal solution found.
4 0 ~ i t e r a t i o n s , ~ o b j e c t i v e ~ 2 8 ~
ampl: display {i in ORIG, j in DEST: cost[i,j]*Trans[i,j] > 0};
set {i in ORIG, j in DEST: cost[i,j]*Trans[i,j] > 0} :=
(Coullard,C118) (Iravani,C138) (Smilowitz,M233)
(Daskin,D237) (Linetsky,C250) (Tamhane,C251)
(Hazen,C246) (Mehrotra,D239) (White,M239)
(Hopp,D241)
    (Nelson, C140);
```

The options solution_precision and solution_round work in the same way as display_precision and display_round, except that they are applied only to solution values upon return from a solver, and they permanently change the returned values rather than only their appearance.

Rounded values can make a difference even when they are not near zero. As an example, we first use several display options to get a compact listing of the fractional solution to the scheduling model of Figure 16-4:

```
ampl: model sched.mod;
ampl: data sched.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
19 iterations, objective 265.6
```

```
ampl: option display_width 60;
ampl: option display_1col 5;
ampl: option display_eps 1e-10;
ampl: option omit_zero_rows 1;
ampl: display Work;
Work [*] :=
    10 28.8 30 14.4 71 35.6 106 23.2 123 35.6
    18
    24 6.8 66 35.6 87 14.4 113 14.4
;
```

Each value Work [j] represents the number of workers assigned to schedule j. We can get a quick practical schedule by rounding the fractional values up to the next highest integer; using the ceil function to perform the rounding, we see that the total number of workers needed should be:

```
ampl: display sum {j in sCHEDS} ceil(Work[j]);
sum{j in SCHEDS} ceil(Work[j]) = 273
```

If we copy the numbers from the preceding table and round them up by hand, however, we find that they only sum to 271 . The source of the difficulty can be seen by displaying the numbers to full precision:

```
ampl: option display_eps 0;
ampl: option display precision 0;
ampl: display Work;
Work [*] :=
    1028.799999999999997 73 28.000000000000018
    18 7.599999999999998 87 14.399999999999995
    24 6.79999999999999 95 -5.876671973951407e-15
    3014.40000000000001 106 23.200000000000006
    35 6.799999999999995 108 4.685288280240683e-16
    55-4.939614313857677e-15 109 14.4
    66 35.6 113 14.4
    71 35.599999999999994 123 35.59999999999999
```

Half the problem is due to the minuscule positive value of Work [108], which was rounded up to 1 . The other half is due to Work [73] ; although it is 28 in an exact solution, it comes back from the solver with a slightly larger value of 28.000000000000018 , so it gets rounded up to 29 .

The easiest way to ensure that our arithmetic works correctly in this case is again to set solution_round before solve:

```
ampl: option solution_round 10;
ampl: solve;
MINOS 5.5: optimal solution found.
19 iterations, objective 265.6
ampl: display sum {j in SCHEDS} ceil(Work[j]);
sum{j in SCHEDS} ceil(Work[j]) = 271
```

We picked a value of 10 for solution_round because we observed that the slight inaccuracies in the solver's values occurred well past the 10th decimal place.

The effect of solution_round or solution_precision applies to all values returned by the solver. To modify only certain values, use the assignment (let) command described in Section 11.3 together with the rounding functions in Table 11-1.

12.4 Other output commands: print and printf

Two additional AMPL commands have much the same syntax as display, but do not automatically format their output. The print command does no formatting at all, while the printf command requires an explicit description of the desired formatting.

The print command

A print command produces a single line of output:

```
ampl: print sum {p in PROD, t in 1..T} revenue[p,t]*Sell[p,t],
ampl? sum {p in PROD, t in 1..T} prodcost[p]*Make[p,t],
ampl? sum {p in PROD, t in 1..T} invcost[p]*Inv[p,t];
787810 269477 3300
ampl: print {t in 1..T, p in PROD} Make[p,t];
5990 1407 6000 1400 1400 3500 2000 4200
```

or, if followed by an indexing expression and a colon, a line of output for each member of the index set:

```
ampl: print {t in 1..T}: {p in PROD} Make[p,t];
5990 1407
6000 1400
1400 3500
20004200
```

Printed entries are normally separated by a space, but option print_separator can be used to change this. For instance, you might set print_separator to a tab for data to be imported by a spreadsheet; to do this, type option print_separator $" \rightarrow$ ", where \rightarrow stands for the result of pressing the tab key.

The keyword print (with optional indexing expression and colon) is followed by a print item or comma-separated list of print items. A print item can be a value, or an indexing expression followed by a value or parenthesized list of values. Thus a print item is much like a display item, except that only individual values may appear; although you can say display rate, you must explicitly specify print \{p in PROD\} rate [p]. Also a set may not be an argument to print, although its members may be:

```
ampl: print PROD;
syntax error
context: print >>> PROD; <<<
ampl: print {p in PROD} (p, rate[p]);
bands 200 coils 140
```

Unlike display, however, print allows indexing to be nested within an indexed item:

```
ampl: print {p in PROD} (p, rate[p], {t in 1..T} Make[p,t]);
bands 200 5990 6000 1400 2000 coils 140 1407 1400 3500 4200
```

The representation of numbers in the output of print is governed by the print_precision and print_round options, which work exactly like the display_precision and display_round options for the display command. Initially print_precision is 0 and print_round is an empty string, so that by default print uses as many digits as necessary to represent each value as precisely as possible. For the above examples, print_round has been set to 0 , so that the numbers are rounded to integers.

Working interactively, you may find print useful for viewing a few values on your screen in a more compact format than display produces. With output redirected to a file, print is useful for writing unformatted results in a form convenient for spreadsheets and other data analysis tools. As with display, just add >filename to the end of the print command.

The printf command

The syntax of printf is exactly the same as that of print, except that the first print item is a character string that provides formatting instructions for the remaining items:

```
ampl: printf "Total revenue is $%6.2f.\n",
ampl? sum {p in PROD, t in 1..T} revenue[p,t]*Sell[p,t];
Total revenue is $787810.00.
```

The format string contains two types of objects: ordinary characters, which are copied to the output, and conversion specifications, which govern the appearance of successive remaining print items. Each conversion specification begins with the character \% and ends with a conversion character. For example, \% 6.2 f specifies conversion to a decimal representation at least six characters wide with two digits after the decimal point. The complete rules are much the same as for the printf function in the C programming language; a summary appears in Section A. 16 of the Appendix.

The output from print f is not automatically broken into lines. A line break must be indicated explicitly by the combination $\backslash n$, representing a "newline" character, in the format string. To produce a series of lines, use the indexed version of printf:

ampl: printf \{t in 1..T\}: "\%3i\%12.2f\%12.2f\n", t,		
ampl?	sum \{p in PROD\} revenue[p,t]*Sell $[p, t]$,	
ampl?	sum \{p in PROD\} prodcost $[p] * M a k e[p, t] ;$	
1	159210.00	75377.00
2	243500.00	75400.00
3	167300.00	52500.00
4	217800.00	66200.00

This printf is executed once for each member of the indexing set preceding the colon; for each t in $1 . . T$ the format is applied again, and the $\backslash \mathrm{n}$ character generates another line break.

The printf command is mainly useful, in conjunction with redirection of output to a file, for printing short summary reports in a readable format. Because the number of conversion specifications in the format string must match the number of values being printed, printf cannot conveniently produce tables in which the number of items on a line may vary from run to run, such as a table of all Make $[p, t]$ values.

12.5 Related solution values

Sets, parameters and variables are the most obvious things to look at in interpreting the solution of a linear program, but AMPL also provides ways of examining objectives, bounds, slacks, dual prices and reduced costs associated with the optimal solution.

As we have shown in numerous examples already, AMPL distinguishes the various values associated with a model component by use of 'qualified' names that consist of a variable or constraint identifier, a dot (.), and a predefined 'suffix"' string. For instance, the upper bounds for the variable Make are called Make.ub, and the upper bound for Make["coils", 2] is written Make["coils", 2].ub. (Note that the suffix comes after the subscript.) A qualified name can be used like an unqualified one, so that display Make.ub prints a table of upper bounds on the Make variables, while display Make, Make.ub prints a list of the optimal values and upper bounds.

Objective functions

The name of the objective function (from a minimize or maximize declaration) refers to the objective's value computed from the current values of the variables. This name can be used to represent the optimal objective value in display, print, or printf:

```
ampl: print 100 * Total_Profit /
ampl? sum {p in PROD, t in 1..T} revenue[p,t] * Sell[p,t];
65.37528084182735
```

If the current model declares several objective functions, you can refer to any of them, even though only one has been optimized.

Bounds and slacks

The suffixes . 1b and . ub on a variable denote its lower and upper bounds, while . slack denotes the difference of a variable's value from its nearer bound. Here's an example from Figure 5-1:

ampl: display	Buy.lb,Buy, Buy. ub, Buy.slack; $:$	Buy.lb	Buy	Buy.ub Buy.slack
BEEF	2	2	10	0
CHK	2	10	10	0
FISH	2	2	10	0
HAM	2	2	10	0
MCH	2	2	10	0
MTL	2	6.23596	10	3.76404
SPG	2	5.25843	10	3.25843
TUR	2	2	10	0

The reported bounds are those that were sent to the solver. Thus they include not only the bounds specified in >= and <= phrases of var declarations, but also certain bounds that were deduced from the constraints by AMPL's presolve phase. Other suffixes let you look at the original bounds and at additional bounds deduced by presolve; see the discussion of presolve in Section 14.1 for details.

Two equal bounds denote a fixed variable, which is normally eliminated by presolve. Thus in the planning model of Figure 4-4, the constraint $\operatorname{Inv}[p, 0]=$ inv0 [p] fixes the initial inventories:

```
ampl: display {p in PROD} (Inv[p,0].lb,inv0[p],Inv[p,0].ub);
: Inv[p,0].lb inv0[p] Inv[p,0].ub :=
bands 10 10 10
coils 0 0
;
```

In the production-and-transportation model of Figure 4-6, the constraint

```
sum {i in ORIG} Trans[i,j,p] = demand[j,p]
```

leads presolve to fix three variables at zero, because demand["LAN", "plate"] is zero:

```
ampl: display {i in ORIG}
ampl? (Trans[i, "LAN", "plate"].lb,Trans[i, "LAN","plate"].ub);
: Trans[i,'LAN','plate'].lb Trans[i,'LAN','plate'].ub :=
CLEV 0 0
GARY 0 0
PITT 0 0
```

As this example suggests, presolve's adjustments to the bounds may depend on the data as well as the structure of the constraints.

The concepts of bounds and slacks have an analogous interpretation for the constraints of a model. Any AMPL constraint can be put into the standard form

$$
\text { lower bound } \leq \text { body } \leq \text { upper bound }
$$

where the body is a sum of all terms involving variables, while the lower bound and upper bound depend only on the data. The suffixes . 1b, .body and . ub give the current values of these three parts of the constraint. For example, in the diet model of Figure 5-1 we have the declarations

```
subject to Diet_Min {i in MINREQ}:
    sum {j in FOOD} amt[i,j] * Buy[j] >= n_Min[i];
subject to Diet_Max {i in MAXREQ}:
    sum {j in FOOD} amt[i,j] * Buy[j] <= n_Max[i];
```

and the following constraint bounds:

Naturally, <= constraints have no lower bounds, and >= constraints have no upper bounds; AMPL uses -Infinity and Infinity in place of a number to denote these cases. Both the lower and the upper bound can be finite, if the constraint is specified with two <= or >= operators; see Section 8.4. For an = constraint the two bounds are the same.

The suffix . slack refers to the difference between the body and the nearer bound:

```
ampl: display Diet_Min.slack;
Diet_Min.slack [*] :=
    A 313.978
    B1 605
    B2 492.416
    C 0
CAL 0
;
```

For constraints that have a single $<=$ or $>=$ operator, the slack is always the difference between the expressions to the left and right of the operator, even if there are variables on both sides. The constraints that have a slack of zero are the ones that are truly constraining at the optimal solution.

Dual values and reduced costs

Associated with each constraint in a linear program is a quantity variously known as the dual variable, marginal value or shadow price. In the AMPL command environment, these dual values are denoted by the names of the constraints, without any qualifying suffix. Thus for example in Figure 4-6 there is a collection of constraints named Demand:

```
subject to Demand {j in DEST, p in PROD}:
    sum {i in ORIG} Trans[i,j,p] = demand[j,p];
```

and a table of the dual values associated with these constraints can be viewed by

ampl: display	Demand;			
Demand $[*, *]$				
$:$	bands	coils	plate	$:=$
DET	201	190.714	199	
FRA	209	204	211	
FRE	266.2	273.714	285	
LAF	201.2	198.714	205	
LAN	202	193.714	0	
STL	206.2	207.714	216	
WIN	200	190.714	198	
;				

Solvers return optimal dual values to AMPL along with the optimal values of the "primal'" variables. We have space here only to summarize the most common interpretation of dual values; the extensive theory of duality and applications of dual variables can be found in any textbook on linear programming.

To start with an example, consider the constraint Demand ["DET", "bands"] above. If we change the value of the parameter demand ["DET", "bands"] in this constraint, the optimal value of the objective function Total_Cost changes accordingly. If we were to plot the optimal value of Total_Cost versus all possible values of demand ["DET", "bands"], the result would be a cost 'curve" that shows how overall cost varies with demand for bands at Detroit.

Additional computation would be necessary to determine the entire cost curve, but you can learn something about it from the optimal dual values. After you solve the linear program using a particular value of demand ["DET", "bands"], the dual price for the constraint tells you the slope of the cost curve, at the demand's current value. In our example, reading from the table above, we find that the slope of the curve at the current demand is 201 . This means that total production and shipping cost is increasing at the rate of $\$ 201$ for each extra ton of bands demanded at DET, or is decreasing by $\$ 201$ for each reduction of one ton in the demand.

As an example of an inequality, consider the following constraint from the same model:

```
subject to Time {i in ORIG}:
    sum {p in PROD} (1/rate[i,p]) * Make[i,p] <= avail[i];
```


Figure 12-1: Piecewise-linear plot of objective function.

Here it is revealing to look at the dual values together with the slacks:

ampl:	display	Time, Time.slack;
:	Time	Time.slack
CLEV	-1522.86	0
GARY	-3040	0
PITT	0	10.5643
;		

Where the slack is positive, the dual value is zero. Indeed, the positive slack implies that the optimal solution does not use all of the time available at PITT; hence changing avail["PITT"] somewhat does not affect the optimum. On the other hand, where the slack is zero the dual value may be significant. In the case of GARY the value is -3040 , implying that the total cost is decreasing at a rate of $\$ 3040$ for each extra hour available at GARY, or is increasing at a rate of $\$ 3040$ for each hour lost.

In general, if we plot the optimal objective versus a constraint's constant term, the curve will be convex piecewise-linear (Figure 12-1) for a minimization, or concave piecewise-linear (the same, but upside-down) for a maximization.

In terms of the standard form lower bound \leq body \leq upper bound introduced previously, the optimal dual values can be viewed as follows. If the slack of the constraint is positive, the dual value is zero. If the slack is zero, the body of the constraint must equal one (or both) of the bounds, and the dual value pertains to the equaled bound or bounds. Specifically, the dual value is the slope of the plot of the objective versus the bound, evaluated at the current value of the bound; equivalently it is the rate of change of the optimal objective with respect to the bound value.

A nearly identical analysis applies to the bounds on a variable. The role of the dual value is played by the variable's so-called reduced cost, which can be viewed from the AMPL command environment by use of the suffix .rc. As an example, here are the bounds and reduced costs for the variables in Figure 5-1:

ampl: display	Buy.lb, Buy, Buy.ub, Buy.rc;			
:	Buy.lb	Buy	Buy.ub	Buy.rc
BEEF	2	2	10	1.73663
CHK	2	10	10	-0.853371
FISH	2	2	10	0.255281
HAM	2	2	10	0.698764
MCH	2	2	10	0.246573
MTL	2	6.23596	10	0
SPG	2	5.25843	10	0
TUR	2	2	10	0.343483

Since Buy["MTL"] has slack with both its bounds, its reduced cost is zero. Buy ["HAM"] is at its lower bound, so its reduced cost indicates that total cost is increasing at about 70 cents per unit increase in the lower bound, or is decreasing at about 70 cents per unit decrease in the lower bound. On the other hand, Buy ["CHK"] is at its upper bound, and its negative reduced cost indicates that total cost is decreasing at about 85 cents per unit increase in the upper bound, or is increasing at about 85 cents per unit decrease in the upper bound.

If the current value of a bound happens to lie right at a breakpoint in the relevant curve - one of the places where the slope changes abruptly in Figure 12-1 - the objective will change at one rate as the bound increases, but at a different rate as the bound decreases. In the extreme case either of these rates may be infinite, indicating that the linear program becomes infeasible if the bound is increased or decreased by any further amount. A solver reports only one optimal dual price or reduced cost to AMPL, however, which may be the rate in either direction, or some value between them.

In any case, moreover, a dual price or reduced cost can give you only one slope on the piecewise-linear curve of objective values. Hence these quantities should only be used as an initial guide to the objective's sensitivity to certain variable or constraint bounds. If the sensitivity is very important to your application, you can make a series of runs with different bound settings; see Section 11.3 for ways to quickly change a small part of the data. (There do exist algorithms for finding part or all of the piecewise-linear curve, given a linear change in one or more bounds, but they are not directly supported by the current version of AMPL.)

12.6 Other display features for models and instances

We gather in this section various utility commands and other features for displaying information about models or about problem instances generated from models.

Two commands let you review an AMPL model from the command-line: show lists the names of model components and displays the definitions of individual components, while xref lists all components that depend on a given component. The expand command displays selected objectives and constraints that AMPL has generated from a model and data, or analogous information for variables. AMPL's 'generic'" names for variables,
constraints, or objectives permit listings or tests that apply to all variables, constraints, or objectives.

Displaying model components: the show command:

By itself, the show command lists the names of all components of the current model:

```
ampl: model multmip3.mod;
ampl: show;
parameters: demand fcost limit maxserve minload supply vcost
sets: DEST ORIG PROD
variables: Trans Use
constraints: Demand Max_Serve Min_Ship Multi Supply
objective: Total_Cost
checks: one, called check 1.
```

This display may be restricted to components of one or more types:

```
ampl: show vars;
variables: Trans Use
ampl: show obj, constr;
objective: Total_Cost
constraints: Demand Max_Serve Min_Ship Multi Supply
```

The show command can also display the declarations of individual components, saving you the trouble of looking them up in the model file:

```
ampl: show Total_Cost;
minimize Total_Cost: sum{i in ORIG, j in DEST, p in PROD}
vcost[i,j,p]*Trans[i,j,p] + sum{i in ORIG, j in DEST}
fcost[i,j]*Use[i,j];
ampl: show vcost, fcost, Trans;
param vcost{ORIG, DEST, PROD} >= 0;
param fcost{ORIG, DEST} >= 0;
var Trans{ORIG, DEST, PROD} >= 0;
```

If an item following show is the name of a component in the current model, the declaration of that component is displayed. Otherwise, the item is interpreted as a component type according to its first letter or two; see Section A.19.1. (Displayed declarations may differ in inessential ways from their appearance in your model file, due to transformations that AMPL performs when the model is parsed and translated.)

Since the check statements in a model do not have names, AMPL numbers them in the order that they appear. Thus to see the third check statement you would type

```
ampl: show check 3;
check{p in PROD} :
    sum{i in ORIG} supply[i,p] == sum{j in DEST} demand[j,p];
```

By itself, show checks indicates the number of check statements in the model.

Displaying model dependencies: the xref command

The xref command lists all model components that depend on a specified component, either directly (by referring to it) or indirectly (by referring to its dependents). If more than one component is given, the dependents are listed separately for each. Here is an example from multmip3.mod:

```
ampl: xref demand, Trans;
# 2 entities depend on demand:
check 1
Demand
# 5 entities depend on Trans:
Total_Cost
Supply
Demand
Multi
Min_Ship
```

In general, the command is simply the keyword xref followed by a comma-separated list of any combination of set, parameter, variable, objective and constraint names.

Displaying model instances: the expand command

In checking a model and its data for correctness, you may want to look at some of the specific constraints that AMPL is generating. The expand command displays all constraints in a given indexed collection or specific constraints that you identify:

```
ampl: model nltrans.mod;
ampl: data nltrans.dat;
ampl: expand Supply;
subject to Supply['GARY']:
    Trans['GARY','FRA'] + Trans['GARY','DET'] +
    Trans['GARY','LAN'] + Trans['GARY','WIN'] +
    Trans['GARY','STL'] + Trans['GARY','FRE'] +
    Trans['GARY','LAF'] = 1400;
subject to Supply['CLEV']:
    Trans['CLEV','FRA'] + Trans['CLEV','DET'] +
    Trans['CLEV','LAN'] + Trans['CLEV','WIN'] +
    Trans['CLEV','STL'] + Trans['CLEV','FRE'] +
    Trans['CLEV','LAF'] = 2600;
subject to Supply['PITT']:
    Trans['PITT','FRA'] + Trans['PITT','DET'] +
    Trans['PITT','LAN'] + Trans['PITT','WIN'] +
    Trans['PITT','STL'] + Trans['PITT','FRE'] +
    Trans['PITT','LAF'] = 2900;
```

(See Figures 18-4 and 18-5.) The ordering of terms in an expanded constraint does not necessarily correspond to the order of the symbolic terms in the constraint's declaration.

Objectives may be expanded in the same way:

```
ampl: expand Total_Cost;
minimize Total_Cost:
    39*Trans['GARY','FRA']/(1 - Trans['GARY','FRA']/500) + 14*
    Trans['GARY','DET']/(1 - Trans['GARY','DET']/1000) + 11*
    Trans['GARY','LAN']/(1 - Trans['GARY','LAN']/1000) + 14*
    Trans['GARY','WIN']/(1 - Trans['GARY','WIN']/1000) + 16*
    . . . }15\mathrm{ lines omitted
    Trans['PITT','FRE']/(1 - Trans['PITT','FRE']/500) + 20*
    Trans['PITT','LAF']/(1 - Trans['PITT','LAF']/900);
```

When expand is applied to a variable, it lists all of the nonzero coefficients of that variable in the linear terms of objectives and constraints:

```
ampl: expand Trans;
Coefficients of Trans['GARY','FRA']:
    Supply['GARY'] 1
    Demand['FRA'] 1
    Total_Cost 0 + nonlinear
Coefficients of Trans['GARY','DET']:
    Supply['GARY'] 1
    Demand['DET'] 1
    Total_Cost 0 + nonlinear
Coefficients of Trans['GARY','LAN']:
    Supply['GARY'] 1
    Demand['LAN'] 1
    Total_Cost 0 + nonlinear
Coefficients of Trans['GARY','WIN']:
    Supply['GARY'] 1
    Demand['WIN'] 1
    Total_Cost 0 + nonlinear
. . . 17 terms omitted
```

When a variable also appears in nonlinear expressions within an objective or a constraint, the term + nonlinear is appended to represent those expressions.

The command expand alone produces an expansion of all variables, objectives and constraints in a model. Since a single expand command can produce a very long listing, you may want to redirect its output to a file by placing $>$ filename at the end as explained in Section 12.7 below.

The formatting of numbers in the expanded output is governed by the options expand_precision and expand_round, which work like the display command's display_precision and display_round described in Section 12.3.

The output of expand reflects the "modeler's view" of the problem; it is based on the model and data as they were initially read and translated. But AMPL's presolve phase (Section 14.1) may make significant simplifications to the problem before it is sent to the solver. To see the expansion of the "solver's view" of the problem following presolve, use the keyword solexpand in place of expand.

Generic synonyms for variables, constraints and objectives

Occasionally it is useful to make a listing or a test that applies to all variables, constraints, or objectives. For this purpose, AMPL provides automatically updated parameters that hold the numbers of variables, constraints, and objectives in the currently generated problem instance:

$$
\begin{array}{ll}
\text { _nvars } & \text { number of variables in the current problem } \\
\text { _ncons } & \text { number of constraints in the current problem } \\
\text { _nobjs } & \text { number of objectives in the current problem }
\end{array}
$$

Correspondingly indexed parameters contain the AMPL names of all the components:

```
_varname{1.._nvars} names of variables in the current problem
_conname{1.._ncons} names of constraints in the current problem
_objname{1.._nobjs} names of objectives in the current problem
```

Finally, the following synonyms for the components are made available:

$$
\begin{array}{ll}
\text { _var }\{1 \cdots \text { nvars }\} & \begin{array}{l}
\text { synonyms for variables in the current problem } \\
\text {-con }\{1 \ldots \text { ncons }\}
\end{array} \\
\text { sobj } \begin{array}{l}
\text { synonyms for constraints in the current problem }
\end{array} \\
\text { _onobjs } & \text { synonyms for objectives in the current problem }
\end{array}
$$

These synonyms let you refer to components by number, rather than by the usual indexed names. Using the variables as an example, _var [5] refers to the fifth variable in the problem, _var [5].ub to its upper bound, _var [5].rc to its reduced cost, and so forth, while _varname [5] is a string giving the variable's true AMPL name. Table A13 lists all of the generic synonyms for sets, variables, and the like.

Generic names are useful for tabulating properties of all variables, where the variables have been defined in several different var declarations:

```
ampl: model net3.mod
ampl: data net3.dat
ampl: solve;
MINOS 5.5: optimal solution found.
3 iterations, objective 1819
ampl: display {j in 1.._nvars}
ampl? (_varname[j],_var[j],_var[j].ub,_var[j].rc);
\begin{tabular}{|c|c|c|c|}
\hline _varname[j] & _var[j] & _var[j].ub & _var[j].rc \\
\hline "PD_Ship['NE']" & 250 & 250 & -0. 5 \\
\hline "PD_Ship['SE']" & 200 & 250 & -1.11022e-16 \\
\hline "DW_Ship ['NE', 'BOS'] " & 90 & 90 & 0 \\
\hline "DW_Ship ['NE', 'EWR'] " & 100 & 100 & -1.1 \\
\hline "DW_Ship ['NE', 'BWI']" & 60 & 100 & 0 \\
\hline "DW_Ship ['SE', 'EWR']" & 20 & 100 & \(2.22045 \mathrm{e}-16\) \\
\hline "DW_Ship ['SE', 'BWI']" & 60 & 100 & 2.22045e-16 \\
\hline "DW_Ship ['SE', 'ATL'] " & 70 & 70 & 0 \\
\hline "DW_Ship ['SE', 'MCO'] " & 50 & 50 & 0 \\
\hline
\end{tabular}
```

Another use is to list all variables having some property, such as being away from the upper bound in the optimal solution:

```
ampl: display {j in 1.._nvars:
ampl? _var[j] < _var[j].ub - 0.00001} _varname[j];
_varname[j] [*] :=
2 "PD_Ship['SE']"
5 "DW_Ship['NE','BWI']"
6 "DW_Ship['SE','EWR']"
7 "DW_Ship['SE','BWI']"
```

The same comments apply to constraints and objectives. More precise formatting of this information can be obtained with print $f(12.4$, A.16) instead of display.

As in the case of the expand command, these parameters and generic synonyms reflect the modeler's view of the problem; their values are determined from the model and data as they were initially read and translated. AMPL's presolve phase may make significant simplifications to the problem before it is sent to the solver. To work with parameters and generic synonyms that reflect the solver's view of the problem following presolve, replace _ by _s in the names given above; for example in the case of variables, use _snvars, _svarname and _svar.

Additional predefined sets and parameters represent the names and dimensions (arities) of the model components. They are summarized in A.19.4.

Resource listings

Changing option show_stats from its default of 0 to a nonzero value requests summary statistics on the size of the optimization problem that AMPL generates:

```
ampl: model steelT.mod;
ampl: data steelT.dat;
ampl: option show_stats 1;
ampl: solve;
Presolve eliminates 2 constraints and 2 variables.
Adjusted problem:
24 variables, all linear
12 constraints, all linear; }38\mathrm{ nonzeros
1 linear objective; 24 nonzeros.
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
```

Additional lines report the numbers of integer and variables and nonlinear components where appropriate.

Changing option times from its default of 0 to a nonzero value requests a summary of the AMPL translator's time and memory requirements. Similarly, by changing option gentimes to a nonzero value, you can get a detailed summary of the resources that AMPL's genmod phase consumes in generating a model instance.

When AMPL appears to hang or takes much more time than expected, the display produced by gentimes can help associate the difficulty with a particular model component. Typically, some parameter, variable or constraint has been indexed over a set far larger than intended or anticipated, with the result that excessive amounts of time and memory are required.

The timings given by these commands apply only to the AMPL translator, not to the solver. A variety of predefined parameters (Table A-14) let you work with both AMPL and solver times. For example, _solve_time always equals total CPU seconds required for the most recent solve command, and _ampl_time equals total CPU seconds for AMPL excluding time spent in solvers and other external programs.

Many solvers also have directives for requesting breakdowns of the solve time. The specifics vary considerably, however, so information on requesting and interpreting these timings is provided in the documentation of AMPL's links to individual solvers, rather than in this book.

12.7 General facilities for manipulating output

We describe here how some or all of AMPL's output can be directed to a file, and how the volume of warning and error messages can be regulated.

Redirection of output

The examples in this book all show the outputs of commands as they would appear in an interactive session, with typed commands and printed responses alternating. You may direct all such output to a file instead, however, by adding a > and the name of the file:

```
ampl: display ORIG, DEST, PROD >multi.out;
ampl: display supply >multi.out;
```

The first command that specifies >multi. out creates a new file by that name (or overwrites any existing file of the same name). Subsequent commands add to the end of the file, until the end of the session or a matching close command:

```
ampl: close multi.out;
```

To open a file and append output to whatever is already there (rather than overwriting), use >> instead of >. Once a file is open, subsequent uses of > and >> have the same effect.

Output logs

The log_file option instructs AMPL to save subsequent commands and responses to a file. The option's value is a string that is interpreted as a filename:

```
ampl: option log_file 'multi.tmp';
```

The \log file collects all AMPL statements and the output that they produce, with a few exceptions described below. Setting log_file to the empty string:

```
ampl: option log_file "';
```

turns off writing to the file; the empty string is the default value for this option.
When AMPL reads from an input file by means of a model or data command (or an include command as defined in Chapter 13), the statements from that file are not normally copied to the \log file. To request that AMPL echo the contents of input files, change option log_model (for input in model mode) or log_data (for input in data mode) from the default value of 0 to a nonzero value.

When you invoke a solver, AMPL logs at least a few lines summarizing the objective value, solution status and work required. Through solver-specific directives, you can typically request additional solver output such as logs of iterations or branch-and-bound nodes. Many solvers automatically send all of their output to AMPL's log file, but this compatibility is not universal. If a solver's output does not appear in your log file, you should consult the supplementary documentation for that solver's AMPL interface; possibly that solver accepts nonstandard directives for diverting its output to files.

Limits on messages

By specifying option eexit n, where n is some integer, you determine how AMPL handles error messages. If n is not zero, any AMPL statement is terminated after it has produced abs (n) error messages; a negative value causes only the one statement to be terminated, while a positive value results in termination of the entire AMPL session. The effect of this option is most often seen in the use of model and data statements where something has gone badly awry, like using the wrong file:

```
ampl: option eexit -3;
ampl: model diet.mod;
ampl: data diet.mod;
diet.mod, line 4 (offset 32):
    expected ; ( [ : or symbol
context: param cost >>> { <<< FOOD} > 0;
diet.mod, line 5 (offset 56):
    expected ; ( [ : or symbol
context: param f_min >>> { <<< FOOD} >= 0;
diet.mod, line 6 (offset 81):
    expected ; ( [ : or symbol
context: param f_max >>> { <<< j in FOOD} >= f_min[j];
Bailing out after 3 warnings.
```

The default value for eexit is -10 . Setting it to 0 causes all error messages to be displayed.

The eexit setting also applies to infeasibility warnings produced by AMPL's presolve phase after you type solve. The number of these warnings is simultaneously lim-
ited by the value of option presolve_warnings, which is typically set to a smaller value; the default is 5 .

An AMPL data statement may specify values that correspond to illegal combinations of indices, due to any number of mistakes such as incorrect index sets in the model, indices in the wrong order, misuse of (tr), and typing errors. Similar errors may be caused by let statements that change the membership of index sets. AMPL catches these errors after solve is typed. The number of invalid combinations displayed is limited to the value of the option bad_subscripts, whose default value is 3 .

13

Command Scripts

You will probably find that your most intensive use of AMPL's command environment occurs during the initial development of a model, when the results are unfamiliar and changes are frequent. When the formulation eventually settles down, you may find yourself typing the same series of commands over and over to solve for different collections of data. To accelerate this process, you can arrange to have AMPL read often-used sequences of commands from files or to repeat command sequences automatically, determining how to proceed and when to stop on the basis of intermediate results.

A script is a sequence of commands, captured in a file, to be used and re-used. Scripts can contain any AMPL commands, and may include programming language constructs like for, repeat, and if to repeat statements and perform them conditionally. In effect, these and related commands let you write small programs in the AMPL command language. Another collection of commands permit stepping through a script for observation or debugging. This chapter introduces AMPL command scripts, using formatted printing and sensitivity analysis as examples.

AMPL command scripts are able to work directly with the sets of character strings that are central to the definition of models. A for statement can specify commands to be executed once for each member of some set, for example. To support scripts that work with strings, AMPL provides a variety of string functions and operators, whose use is described in the last section of this chapter.

13.1 Running scripts: include and commands

AMPL provides several commands that cause input to be taken from a file. The command

```
include filename
```

is replaced by the contents of the named file. An include can even appear in the middle of some other statement, and does not require a terminating semicolon.

The model and data commands that appear in most of our examples are special cases of include that put the command interpreter into model or data mode before reading the specified file. By contrast, include leaves the mode unchanged. To keep things simple, the examples in this book always assume that model reads a file of model declarations, and that data reads a file of data values. You may use any of model, data and include to read any file, however; the only difference is the mode that is set when reading starts. Working with a small model, for example, you might find it convenient to store in one file all the model declarations, a data command, and all the data statements; either a model or an include command could read this file to set up both model and data in one operation.

As an illustration, if the file dietu.run contains

```
model dietu.mod;
data dietu.dat;
solve;
option display_1col 5;
option display_round 1;
display Buy;
```

then including it will load the model and data, run the problem, and display the optimal values of the variables:

```
ampl: include dietu.run;
MINOS 5.5: optimal solution found.
6 iterations, objective 74.27382022
Buy [*] :=
BEEF 2.0 FISH 2.0 MCH 2.0 SPG 5.3
    CHK 10.0 HAM 2.0 MTL 6.2 TUR 2.0
```

When an included file itself contains an include, model or data command, reading of the first file is suspended while the contents of the contained file are included. In this example, the command include dietu.run causes the subsequent inclusion of the files dietu.mod and dietu. dat.

One particularly useful kind of include file contains a list of option commands that you want to run before any other commands, to modify the default options. You can arrange to include such a file automatically at startup; you can even have AMPL write such a file automatically at the end of a session, so that your option settings will be restored the next time around. Details of this arrangement depend on your operating system; see Sections A.14.1 and A.23.

The statement
commands filename ;
is very similar to include, but is a true statement that needs a terminating semicolon and can only appear in a context where a statement is legal.

To illustrate commands, consider how we might perform a simple sensitivity analysis on the multi-period production problem of Section 4.2. Only 32 hours of production
time are available in week 3, compared to 40 hours in the other weeks. Suppose that we want to see how much extra profit could be gained for each extra hour in week 3 . We can accomplish this by repeatedly solving, displaying the solution values, and increasing avail[3]:

```
ampl: model steelt.mod;
ampl: data steelt.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
ampl: display Total_Profit >steelT.sens;
ampl: option display_1col 0;
ampl: option omit_zero_rows 0;
ampl: display Make >steelT.sens;
ampl: display Sell >steelt.sens;
ampl: option display_1col 20;
ampl: option omit_zero_rows 1;
ampl: display Inv >steelT.sens;
ampl: let avail[3] := avail[3] + 5;
ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 532033
ampl: display Total_Profit >steelT.sens;
ampl: option display_1col 0;
ampl: option omit_zero_rows 0;
ampl: display Make >steelt.sens;
ampl: display Sell >steelT.sens;
ampl: option display_1col 20;
ampl: option omit_zero_rows 1;
ampl: display Inv >steelt.sens;
ampl: let avail[3] := avail[3] + 5;
ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 549033
ampl:
```

To continue trying values of avail [3] in steps of 5 up to say 62 , we must complete another four solve cycles in the same way. We can avoid having to type the same commands over and over by creating a new file containing the commands to be repeated:

```
solve;
display Total_Profit >steelT.sens;
option display_1col 0;
option omit_zero_rows 0;
display Make >steelT.sens;
display Sell >steelT.sens;
option display_1col 20;
option omit_zero_rows 1;
display Inv >steelT.sens;
let avail[3] := avail[3] + 5;
```

If we call this file steelT.sa1, we can execute all the commands in it by typing the single line commands steelT.sa1:

```
ampl: model steelt.mod;
ampl: data steelt.dat;
ampl: commands steelT.sa1;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
ampl: commands steelT.sa1;
MINOS 5.5: optimal solution found.
1 iterations, objective 532033
ampl: commands steelT.sa1;
MINOS 5.5: optimal solution found.
1 iterations, objective 549033
ampl: commands steelT.sa1;
MINOS 5.5: optimal solution found.
2 iterations, objective 565193
ampl:
```

(All output from the display command is redirected to the file steelt.sens, although we could just as well have made it appear on the screen.)

In this and many other cases, you can substitute include for commands. In general it is best to use commands within command scripts, however, to avoid unexpected interactions with repeat, for and if statements.

13.2 Iterating over a set: the for statement

The examples above still require that some command be typed repeatedly. AMPL provides looping commands that can do this work automatically, with various options to determine how long the looping should continue.

We begin with the for statement, which executes a statement or collection of statements once for each member of some set. To execute our multi-period production problem sensitivity analysis script four times, for example, we can use a single for statement followed by the command that we want to repeat:

```
ampl: model steelT.mod;
ampl: data steelt.dat;
ampl: for {1..4} commands steelt.sa1;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
MINOS 5.5: optimal solution found.
1 iterations, objective 532033
MINOS 5.5: optimal solution found.
1 iterations, objective 549033
MINOS 5.5: optimal solution found.
2 iterations, objective 565193
ampl:
```

The expression between for and the command can be any AMPL indexing expression.
As an alternative to taking the commands from a separate file, we can write them as the body of a for statement, enclosed in braces:

```
model steelT.mod;
data steelT.dat;
for {1..4} {
    solve;
    display Total_Profit >steelT.sens;
    option display_1col 0;
    option omit_zero_rows 0;
    display Make >steelT.sens;
    display Sell >steelT.sens;
    option display_1col 20;
    option omit_zero_rows 1;
    display Inv >steelT.sens;
    let avail[3] := avail[3] + 5;
}
```

If this script is stored in steelT.sa2, then the whole iterated sensitivity analysis is carried out by typing

```
ampl: commands steelT.sa2
```

This approach tends to be clearer and easier to work with, particularly as we make the loop more sophisticated. As a first example, consider how we would go about compiling a table of the objective and the dual value on constraint Time [3], for successive values of avail[3]. A script for this purpose is shown in Figure 13-1. After the model and data are read, the script provides additional declarations for the table of values:

```
set AVAIL3;
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};
```

The set AVAIL3 will contain all the different values for avail [3] that we want to try; for each such value a, avail3_obj[a] and avail3_dual[a] will be the associated objective and dual values. Once these are set up, we assign the set value to AVAIL3:

```
let AVAIL3 := avail[3] .. avail[3] + 15 by 5;
```

and then use a for loop to iterate over this set:

```
for {a in AVAIL3} {
    let avail[3] := a;
    solve;
    let avail3_obj[a] := Total_Profit;
    let avail3_dual[a] := Time[3].dual;
}
```

We see here that a for loop can be over an arbitrary set, and that the index running over the set (a in this case) can be used in statements within the loop. After the loop is com-

```
model steelT.mod;
data steelT.dat;
option solver_msg 0;
set AVAIL3;
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};
let AVAIL3 := avail[3] .. avail[3] + 15 by 5;
for {a in AVAIL3} {
    let avail[3] := a;
    solve;
    let avail3_obj[a] := Total_Profit;
    let avail3_dual[a] := Time[3].dual;
}
display avail3_obj, avail3_dual;
```

Figure 13-1: Parameter sensitivity script (steelt.sa3).
plete, the desired table is produced by displaying avail3_obj and avail3_dual, as shown at the end of the script in Figure 13-1. If this script is stored in steelt.sa3, then the desired results are produced with a single command:

In this example we have suppressed the messages from the solver, by including the command option solver_msg 0 in the script.

AMPL's for loops are also convenient for generating formatted tables. Suppose that after solving the multi-period production problem, we want to display sales both in tons and as a percentage of the market limit. We could use a display command to produce a table like this:

By writing a script that uses the printf command (A.16), we can create a much more effective table:

SALES	bands		coils	
week 1	6000	100.0\%	307	7.7\%
week 2	6000	100.0\%	2500	100.0\%
week 3	1399	35.0%	3500	100.0\%
week 4	1999	30.8\%	4200	100.0\%

The script to write this table can be as short as two printf commands:

```
printf "\n%s%14s%17s\n", "SALES", "bands", "coils";
printf {t in 1..T}: "week %d%9d%7.1f%%%9d%7.1f%%\n", t,
    Sell["bands",t], 100*Sell["bands",t]/market["bands",t],
    Sell["coils",t], 100*Sell["coils",t]/market["coils",t];
```

This approach is undesirably restrictive, however, because it assumes that there will always be two products and that they will always be named coils and bands. In fact the printf statement cannot write a table in which both the number of rows and the number of columns depend on the data, because the number of entries in its format string is always fixed.

A more general script for generating the table is shown in Figure 13-2. Each pass through the "outer" loop over $\{1 . . \mathrm{T}\}$ generates one row of the table. Within each pass, an "inner'" loop over PROD generates the row's product entries. There are more printf statements than in the previous example, but they are shorter and simpler. We use several statements to write the contents of each line; printf does not begin a new line except where a newline ($\backslash \mathrm{n}$) appears in its format string.

Loops can be nested to any depth, and may be iterated over any set that can be represented by an AMPL set expression. There is one pass through the loop for every member of the set, and if the set is ordered - any set of numbers like 1. T, or a set declared ordered or circular - the order of the passes is determined by the ordering of the set. If the set is unordered (like PROD) then AMPL chooses the order of the passes, but

```
printf "\nSALES";
printf {p in PROD}: "%14s ", p;
printf "\n";
for {t in 1..T} {
    printf "week %d", t;
    for {p in PROD} {
        printf "%9d", Sell[p,t];
        printf "%7.1f%%", 100 * Sell[p,t]/market[p,t];
    }
    printf "\n";
}
```

Figure 13-2: Generating a formatted sales table with nested loops (steelt.tab1).
the choice is the same every time; the Figure 13-2 script relies on this consistency to ensure that all of the entries in one column of the table refer to the same product.

13.3 Iterating subject to a condition: the repeat statement

A second kind of looping construct, the repeat statement, continues iterating as long as some logical condition is satisfied.

Returning to the sensitivity analysis example, we wish to take advantage of a property of the dual value on the constraint Time [3]: the additional profit that can be realized from each extra hour added to avail[3] is at most Time[3].dual. When avail [3] is made sufficiently large, so that there is more third-week capacity than can be used, the associated dual value falls to zero and further increases in avail [3] have no effect on the optimal solution.

We can specify that looping should stop once the dual value falls to zero, by writing a repeat statement that has one of the following forms:

```
repeat while Time[3].dual > 0 {...};
repeat until Time[3].dual = 0 {...};
repeat {...} while Time[3].dual > 0;
repeat {...} until Time[3].dual = 0;
```

The loop body, here indicated by \{ . . . \}, must be enclosed in braces. Passes through the loop continue as long as the while condition is true, or as long as the until condition is false. A condition that appears before the loop body is tested before every pass; if a while condition is false or an until condition is true before the first pass, then the loop body is never executed. A condition that appears after the loop body is tested after every pass, so that the loop body is executed at least once in this case. If there is no while or until condition, the loop repeats indefinitely and must be terminated by other means, like the break statement described below.

A complete script using repeat is shown in Figure 13-3. For this particular application we choose the until phrase that is placed after the loop body, as we do not want Time [3]. dual to be tested until after a solve has been executed in the first pass. Two other features of this script are worth noting, as they are relevant to many scripts of this kind.

At the beginning of the script, we don't know how many passes the repeat statement will make through the loop. Thus we cannot determine AVAIL3 in advance as we did in Figure 13-1. Instead, we declare it initially to be the empty set:

```
set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};
```

and add each new value of avail [3] to it after solving:

```
model steelT.mod;
data steelT.dat;
option solution_precision 10;
option solver_msg 0;
set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};
param avail3_step := 5;
repeat {
        solve;
        let AVAIL3 := AVAIL3 union {avail[3]};
        let avail3_obj[avail[3]] := Total_Profit;
        let avail3_dual[avail[3]] := Time[3].dual;
        let avail[3] := avail[3] + avail3_step;
} until Time[3].dual = 0;
display avail3_obj, avail3_dual;
```

Figure 13-3: Script for recording sensitivity (steelt. sa4).

```
let AVAIL3 := AVAIL3 union {avail[3]};
let avail3_obj[avail[3]] := Total_Profit;
let avail3_dual[avail[3]] := Time[3].dual;
```

By adding a new member to AVAIL3, we also create new components of the parameters avail3_obj and avail3_dual that are indexed over AVAIL3, and so we can proceed to assign the appropriate values to these components. Any change to a set is propagated to all declarations that use the set, in the same way that any change to a parameter is propagated.

Because numbers in the computer are represented with a limited number of bits of precision, a solver may return values that differ very slightly from the solution that would be computed using exact arithmetic. Ordinarily you don't see this, because the display command rounds values to six significant digits by default. For example:

```
ampl: model steelt.mod; data steelT.dat; solve;
ampl: display Make;
Make [*,*] (tr)
: bands coils :=
        5990 1407
        6000 1400
        1400 3500
        2000 4200
;
```

Compare what is shown when rounding is dropped, by setting display_precision to 0 :

```
ampl: option display_precision 0;
ampl: display Make;
Make [*,*] (tr)
    \mathrm{ bands coils}
    6000 1399.9999999999998
    1399.9999999999995 3500
    1999.9999999999993 4200
;
```

These seemingly tiny differences can have undesirable effects whenever a script makes a comparison that uses values returned by the solver. The rounded table would lead you to believe that Make["coils", 2] >= 1400 is true, for example, whereas from the second table you can see that really it is false.

You can avoid this kind of surprise by writing arithmetic tests more carefully; instead of until Time[3]. dual = 0, for instance, you might say until Time[3]. dual $<=0.0000001$. Alternatively, you can round all solution values that are returned by the solver, so that numbers that are supposed to be equal really do come out equal. The statement

```
option solution_precision 10;
```

toward the beginning of Figure 13-3 has this effect; it states that solution values are to be rounded to 10 significant digits. This and related rounding options are discussed and illustrated in Section 12.3.

Note finally that the script declares set AVAIL3 as default $\}$ rather than $=\{ \}$. The former allows AVAIL3 to be changed by let commands as the script proceeds, whereas the latter permanently defines AVAIL3 to be the empty set.

13.4 Testing a condition: the if-then-el se statement

In Section 7.3 we described the conditional (if-then-else) expression, which produces an arithmetic or set value that can be used in any expression context. The if-then-else statement uses the same syntactic form to conditionally control the execution of statements or groups of statements.

In the simplest case, the if statement evaluates a condition and takes a specified action if the condition is true:

```
if Make["coils",2] < 1500 then printf "under 1500\n";
```

The action may also be a series of commands grouped by braces as in the for and repeat commands:

```
if Make["coils",2] < 1500 then {
    printf "Fewer than 1500 coils in week 2.\n";
    let market["coils",2] := market["coils",2] * 1.1;
}
```

An optional else specifies an alternative action that also may be a single command:

```
if Make["coils",2] < }1500\mathrm{ then {
    printf "Fewer than 1500 coils in week 2.\n";
    let market["coils",2] := market["coils",2] * 1.1;
}
else
    printf "At least 1500 coils in week 2.\n";
```

or a group of commands:

```
if Make["coils",2] < 1500 then
    printf "under 1500\n";
else {
    printf "at least 1500\n";
    let market["coils",2] := market["coils",2] * 0.9;
}
```

AMPL executes these commands by first evaluating the logical expression following if. If the expression is true, the command or commands following then are executed. If the expression is false, the command or commands following else, if any, are executed.

The if command is most useful for regulating the flow of control in scripts. In Figure 13-2, we could suppress any occurrences of 100% by placing the statement that prints Sell [p, t]/market [p,t] inside an if:

```
if Sell[p,t] < market[p,t] then
    printf "%7.1f%%", 100 * Sell[p,t]/market[p,t];
else
    printf " --- ";
```

In the script of Figure 13-3, we can use an if command inside the repeat loop to test whether the dual value has changed since the previous pass through the loop, as shown in the script of Figure 13-4. This loop creates a table that has exactly one entry for each different dual value discovered.

The statement following then or else can itself be an if statement. In the formatting example (Figure 13-2), we could handle both 0% and 100% specially by writing

```
if Sell[p,t] < market[p,t] then
    if Sell[p,t] = 0 then
        printf " ";
    else
        printf "%7.1f%%", 100 * Sell[p,t]/market[p,t];
else
    printf " --- ";
```

or equivalently, but perhaps more clearly,

```
if Sell[p,t] = 0 then
    printf " ";
else if Sell[p,t] < market[p,t] then
    printf "%7.1f%%", 100 * Sell[p,t]/market[p,t];
else
    printf " --- ";
```

```
model steelT.mod; data steelT.dat;
option solution_precision 10; option solver_msg 0;
set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};
let avail[3] := 1;
param avail3_step := 1;
param previous_dual default Infinity;
repeat while previous_dual > 0 {
    solve;
    if Time[3].dual < previous_dual then {
        let AVAIL3 := AVAIL3 union {avail[3]};
        let avail3_obj[avail[3]] := Total_Profit;
        let avail3_dual[avail[3]] := Time[3].dual;
        let previous_dual := Time[3].dual;
    }
    let avail[3] := avail[3] + avail3_step;
}
display avail3_obj, avail3_dual;
```

Figure 13-4: Testing conditions within a loop (steelt.sa5).

In all cases, an else is paired with the closest preceding available if.

13.5 Terminating a loop: break and continue

Two other statements work with looping statements to make some scripts easier to write. The continue statement terminates the current pass through a for or repeat loop; all further statements in the current pass are skipped, and execution continues with the test that controls the start of the next pass (if any). The break statement completely terminates a for or repeat loop, sending control immediately to the statement following the end of the loop.

As an example of both these commands, Figure 13-5 exhibits another way of writing the loop from Figure 13-4, so that a table entry is made only when there is a change in the dual value associated with avail[3]. After solving, we test to see if the new dual value is equal to the previous one:

```
if Time[3].dual = previous_dual then continue;
```

If it is, there is nothing to be done for this value of avail[3], and the continue statement jumps to the end of the current pass; execution resumes with the next pass, starting at the beginning of the loop.

After adding an entry to the table, we test to see if the dual value has fallen to zero:

```
model steelT.mod;
data steelT.dat;
option solution_precision 10;
option solver_msg 0;
set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};
let avail[3] := 0;
param previous_dual default Infinity;
repeat {
    let avail[3] := avail[3] + 1;
    solve;
    if Time[3].dual = previous_dual then continue;
    let AVAIL3 := AVAIL3 union {avail[3]};
    let avail3_obj[avail[3]] := Total_Profit;
    let avail3_dual[avail[3]] := Time[3].dual;
    if Time[3].dual = 0 then break;
    let previous_dual := Time[3].dual;
}
display avail3_obj, avail3_dual;
```

Figure 13-5: Using break and continue in a loop (steelt.sa7).

```
if Time[3].dual = 0 then break;
```

If it has, the loop is done and the break statement jumps out; execution passes to the display command that follows the loop in the script. Since the repeat statement in this example has no while or until condition, it relies on the break statement for termination.

When a break or continue lies within a nested loop, it applies only to the innermost loop. This convention generally has the desired effect. As an example, consider how we could expand Figure 13-5 to perform a separate sensitivity analysis on each avail[t]. The repeat loop would be nested in a for $\{t$ in $1 . . T\}$ loop, but the continue and break statements would apply to the inner repeat as before.

There do exist situations in which the logic of a script requires breaking out of multiple loops. In the script of Figure 13-5, for instance, we can imagine that instead of stopping when Time[3]. dual is zero,

```
if Time[3].dual = 0 then break;
```

we want to stop when Time [t]. dual falls below 2700 for any t. It might seem that one way to implement this criterion is:

```
for {t in 1..T}
    if Time[t].dual < 2700 then break;
```

This statement does not have the desired effect, however, because break applies only to the inner for loop that contains it, rather than to the outer repeat loop as we desire. In such situations, we can give a name to a loop, and break or continue can specify by name the loop to which it should apply. Using this feature, the outer loop in our example could be named sens_loop:

```
repeat sens_loop {
```

and the test for termination inside it could refer to its name:

```
for {t in 1..T}
    if Time[t].dual < 2700 then break sens_loop;
```

The loop name appears right after repeat or for, and after break or continue.

13.6 Stepping through a script

If you think that a script might not be doing what you want it to, you can tell AMPL to step through it one command at a time. This facility can be used to provide an elementary form of 'symbolic debugger'" for scripts.

To step through a script that does not execute any other scripts, reset the option single_step to 1 from its default value of 0 . For example, here is how you might begin stepping through the script in Figure 13-5:

```
ampl: option single_step 1;
ampl: commands steelT.sa7;
steelT.sa7:2(18) data ...
<2>ampl:
```

The expression steelt.sa7:2(18) gives the filename, line number and character number where AMPL has stopped in its processing of the script. It is followed by the beginning of the next command (data) to be executed. On the next line you are returned to the ampl: prompt. The <2> in front indicates the level of input nesting; ' 2 '" means that execution is within the scope of a commands statement that was in turn issued in the original input stream.

At this point you may use the step command to execute individual commands of the script. Type step by itself to execute one command,

```
<2>ampl: step
steelT.sa7:4(36) option ...
<2>ampl: step
steelT.sa7:5(66) option ...
<2>ampl: step
steelT.sa7:11(167) let ...
<2>ampl:
```

If step is followed by a number, that number of commands will be executed. Every command is counted except those having to do with model declarations, such as model and param in this example.

Each step returns you to an AMPL prompt. You may continue stepping until the script ends, but at some point you will want to display some values to see if the script is working. This sequence captures one place where the dual value changes:

```
<2>ampl: display avail[3], Time[3].dual, previous_dual;
avail[3] = 22
Time[3].dual = 3620
previous_dual = 3620
<2>ampl: step
steelT.sa7:17(317) continue ...
<2>ampl: step
steelT.sa7:15(237) let ...
<2>ampl: step
steelT.sa7:16(270) solve ...
<2>ampl: step
steelT.sa7:17(280) if ...
<2>ampl: step
steelT.sa7:19(331) let...
<2>ampl: display avail[3], Time[3].dual, previous_dual;
avail[3] = 23
Time[3].dual = 3500
previous_dual = 3620
<2>ampl:
```

Any series of AMPL commands may be typed while single-stepping. After each command, the $<2>$ ampl prompt returns to remind you that you are still in this mode and may use step to continue executing the script.

To help you step through lengthy compound commands (for, repeat, or if) AMPL provides several alternatives to step. The next command steps past a compound command rather than into it. If we had started at the beginning, each next would cause the next statement to be executed; in the case of the repeat, the entire command would be executed, stopping again only at the display command on line 28 :

```
ampl: option single_step 1;
ampl: commands steelT.sa7;
steelT.sa7:2(18) data ...
<2>ampl: next
steelT.sa7:4(36) option ...
<2>ampl: next
steelT.sa7:5(66) option ...
<2>ampl: next
steelT.sa7:11(167) let ...
<2>ampl: next
steelT.sa7:14(225) repeat ...
<2>ampl: next
steelT.sa7:28(539) display...
<2>ampl:
```

Type next n to step past n commands in this way.
The commands skip and skip n work like step and step n, except that they skip the next 1 or n commands in the script rather than executing them.

13.7 Manipulating character strings

The ability to work with arbitrary sets of character strings is one of the key advantages of AMPL scripting. We describe here the string concatenation operator and several functions for building up string-valued expressions that can be used anywhere that set members can appear in AMPL statements. Further details are provided in Section A.4.2, and Table A-4 summarizes all of the string functions.

We also show how string expressions may be used to specify character strings that serve purposes other than being set members. This feature allows an AMPL script to, for example, write a different file or set different option values in each pass through a loop, according to information derived from the contents of the loop indexing sets.

String functions and operators

The concatenation operator \& takes two strings as operands, and returns a string consisting of the left operand followed by the right operand. For example, given the sets NUTR and FOOD defined by diet.mod and diet2. dat (Figures 2-1 and 2-3), you could use concatenation to define a set NUTR_FOOD whose members represent nutrientfood pairs:

```
ampl: model diet.mod;
ampl: data diet2.dat;
ampl: display NUTR, FOOD;
set NUTR := A B1 B2 C NA CAL;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR;
ampl: set NUTR_FOOD := setOf {i in NUTR,j in FOOD} i & "_" & j;
ampl: display NUTR_FOOD;
set NUTR_FOOD :=
A_BEEF B1_BEEF B2_BEEF C_BEEF NA_BEEF CAL_BEEF
A_CHK B1_CHK B2_CHK C_CHK NA_CHK CAL_CHK
B1 FISH B2 FISH
A_HAM B1_HAM B2_HAM C_HAM NA_HAM CAL_HAM
A_MCH B1_MCH B2_MCH C_MCH NA_MCH CAL_MCH
A_MTL B1_MTL B2_MTL C_MTL NA_MTL CAL_MTL
A_SPG B1_SPG B2_SPG C_SPG NA_SPG CAL_SPG
A_TUR B1_TUR B2_TUR C_TUR NA_TUR CAL_TUR;
```

This is not a set that you would normally want to define, but it might be useful if you have to read data in which strings like "B2_BEEF" appear.

Numbers that appear as arguments to \& are automatically converted to strings. As an example, for a multi-week model you can create a set of generically-named periods WEEK1, WEEK2, and so forth, by declaring:

```
param T integer > 1;
set WEEKS ordered = setof {t in 1..T} "WEEK" & t;
```

Numeric operands to \& are always converted to full precision (or equivalently, to $\% .0 \mathrm{~g}$ format) as defined in Section A.16. The conversion thus produces the expected results for concatenation of numerical constants and of indices that run over sets of integers or constants, as in our examples. Full precision conversion of computed fractional values may sometimes yield surprising results, however. The following variation on the preceding example would seem to create a set of members WEEKO.1, WEEKO.2, and so forth:

```
param T integer > 1;
set WEEKS ordered = setof {t in 1..T} "WEEK" & 0.1*t;
```

But the actual set comes out differently:

```
ampl: let T := 4;
ampl: display WEEKS;
set WEEKS :=
```

WEEKO.1 WEEKO.30000000000000004
WEEKO.2 WEEKO.4;

Because 0.1 cannot be stored exactly in a binary representation, the value of $0.1 * 3$ is slightly different from 0.3 in 'full'' precision. There is no easy way to predict this behavior, but it can be prevented by specifying an explicit conversion using sprintf. The sprintf function does format conversions in the same way as printf (Section A.16), except that the resulting formatted string is not sent to an output stream, but instead becomes the function's return value. For our example, "WEEK" \& $0.1 *$ t could be replaced by sprintf("WEEK\%3.1f", 0.1*t).

The length string function takes a string as argument and returns the number of characters in it. The match function takes two string arguments, and returns the first position where the second appears as a substring in the first, or zero if the second never appears as a substring in the first. For example:

The substr function takes a string and one or two integers as arguments. It returns a substring of the first argument that begins at the position given by the second argument; it
has the length given by the third argument, or extends to the end of the string if no third argument is given. An empty string is returned if the second argument is greater than the length of the first argument, or if the third argument is less than 1.

As an example combining several of these functions, suppose that you want to use the model from diet.mod but to supply the nutrition amount data in a table like this:

```
param: NUTR_FOOD: amt_nutr :=
    A_BEEF 60
    B1_BEEF 10
    CAL_BEEF 295
    CAL_CHK 770
```

Then in addition to the declarations for the parameter amt used in the model,

```
set NUTR;
set FOOD;
param amt {NUTR,FOOD} >= 0;
```

you would declare a set and a parameter to hold the data from the "nonstandard" table:

```
set NUTR_FOOD;
param amt_nutr {NUTR_FOOD} >= 0;
```

To use the model, you need to write an assignment of some kind to get the data from set NUTR_FOOD and parameter amt_nutr into sets NUTR and FOOD and parameter amt. One solution is to extract the sets first, and then convert the parameters:

```
set NUTR = setof {ij in NUTR_FOOD}
    substr(ij,1,match(ij,"_")-1);
set FOOD = setof {ij in NUTR_FOOD}
    substr(ij,match(ij,"_")+1);
param amt {i in NUTR, j in FOOD} = amt_nutr[i & "_" & j];
```

As an alternative, you can extract the sets and parameters together with a script such as the following:

```
param iNUTR symbolic;
param jFOOD symbolic;
param upos > 0;
let NUTR := {};
let FOOD := {};
for {ij in NUTR_FOOD} {
    let upos := match(ij,"_");
    let iNUTR := substr(ij,1,upos-1);
    let jFOOD := substr(ij,upos+1);
    let NUTR := NUTR union {iNUTR};
    let FOOD := FOOD union {jFOOD};
    let amt[iNUTR,jFOOD] := amt_nutr[ij];
}
```

Under either alternative, errors such as a missing " _" in a member of NUTR_FOOD are eventually signaled by error messages.

AMPL provides two other functions, sub and gsub, that look for the second argument in the first, like match, but that then substitute a third argument for either the first occurrence (sub) or all occurrences (gsub) found. The second argument of all three of these functions is actually a regular expression; if it contains certain special characters, it is interpreted as a pattern that may match many sub-strings. The pattern " ${ }^{\wedge} B[0-9]+\ldots$ ", for example, matches any sub-string consisting of a B followed by one or more digits and then an underscore, and occurring at the beginning of a string. Details of these features are given in Section A.4.2.

String expressions in AMPL commands

String-valued expressions may appear in place of literal strings in several contexts: in filenames that are part of commands, including model, data, and commands, and in filenames following > or >> to specify redirection of output; in values assigned to AMPL options by an option command; and in the string-list and the database row and column names specified in a table statement. In all such cases, the string expression must be identified by enclosing it in parentheses.

Here is an example involving filenames. This script uses a string expression to specify files for a data statement and for the redirection of output from a display statement:

```
model diet.mod;
set CASES = 1 .. 3;
for {j in CASES} {
    reset data;
    data ("diet" & j & ".dat");
    solve;
    display Buy >("diet" & j & ".out");
}
```

The result is to solve diet.mod with a series of different data files diet1.dat, diet2.dat, and diet3.dat, and to save the solution to files diet1.out, diet2.out, and diet3.out. The value of the index j is converted automatically from a number to a string as previously explained.

The following script uses a string expression to specify the value of the option cplex_options, which contains directions for the CPLEX solver:

```
model sched.mod;
data sched.dat;
option solver cplex;
set DIR1 = {"primal","dual"};
set DIR2 = {"primalopt","dualopt"};
for {i in DIR1, j in DIR2} {
        option cplex_options (i & " " & j);
        solve;
}
```

The loop in this script solves the same problem four times, each using a different pairing of the directives primal and dual with the directives primalopt and dualopt.

Examples of the use of string expressions in the table statement, to work with multiple database files, tables, or columns, are presented in Section 10.6.

14

Interactions with Solvers

This chapter describes in more detail a variety of mechanisms used by AMPL to control and adjust the problems sent to solvers, and to extract and interpret information returned by them. One of the most important is the presolve phase, which performs simplifications and transformations that can often reduce the size of the problem actually seen by the solver; this is the topic of Section 14.1. Suffixes on model components permit a variety of useful information to be returned by or exchanged with advanced solvers, as described in Sections 14.2 and 14.3. Named problems enable AMPL scripts to manage multiple problem instances within a single model and carry out iterative procedures that alternate between very different models, as we show in Sections 14.4 and 14.5.

14.1 Presolve

AMPL's presolve phase attempts to simplify a problem instance after it has been generated but before it is sent to a solver. It runs automatically when a solve command is given or in response to other commands that generate an instance, as explained in Section A.18.1. Any simplifications that presolve makes are reversed after a solution is returned, so that you can view the solution in terms of the original problem. Thus presolve normally proceeds silently behind the scenes. Its effects are only reported when you change option show_stats from its default value of 0 to 1 :

```
ampl: model steelT.mod; data steelT.dat;
ampl: option show_stats 1;
ampl: solve;
Presolve eliminates 2 constraints and 2 variables.
Adjusted problem:
24 variables, all linear
12 constraints, all linear; }38\mathrm{ nonzeros
1 linear objective; 24 nonzeros.
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
```

You can determine which variables and constraints presolve eliminated by testing, as explained in Section 14.2, to see which have a status of pre:

```
ampl: print {j in 1.._nvars:
ampl? _var[j].status = "pre"}: _varname[j];
Inv['bands', 0]
Inv['coils',0]
ampl: print {i in 1.._ncons:
ampl? _con[i].status = "pre"}: _conname[i];
Init_Inv['bands']
Init_Inv['coils']
```

You can then use show and display to examine the eliminated components.
In this section we introduce the operations of the presolve phase and the options for controlling it from AMPL. We then explain what presolve does when it detects that no feasible solution is possible. We will not try to explain the whole presolve algorithm, however; one of the references at the end of this chapter contains a complete description.

Activities of the presolve phase

To generate a problem instance, AMPL first assigns each variable whatever bounds are specified in its var declaration, or the special bounds -Infinity and Infinity when no lower or upper bounds are given. The presolve phase then tries to use these bounds together with the linear constraints to deduce tighter bounds that are still satisfied by all of the problem's feasible solutions. Concurrently, presolve tries to use the tighter bounds to detect variables that can be fixed and constraints that can be dropped.

Presolve initially looks for constraints that have only one variable. Equalities of this kind fix a variable, which may then be dropped from the problem. Inequalities specify a bound for a variable, which may be folded into the existing bounds. In the example of steelT.mod (Figure 4-4) shown above, presolve eliminates the two constraints generated from the declaration

```
subject to Initial {p in PROD}: Inv[p,0] = inv0[p];
```

along with the two variables fixed by these constraints.
Presolve continues by seeking constraints that can be proved redundant by the current bounds. The constraints eliminated from dietu.mod (Figure 5-1) provide an example:

```
ampl: model dietu.mod; data dietu.dat;
ampl: option show_stats 1;
ampl: solve;
Presolve eliminates 3 constraints.
Adjusted problem:
8 variables, all linear
5 constraints, all linear; }39\mathrm{ nonzeros
1 linear objective; 8 nonzeros.
MINOS 5.5: optimal solution found.
5 iterations, objective 74.27382022
```

```
ampl: print {i in 1.._ncons:
ampl? _con[i].status = "pre"}: _conname[i];
Diet_Min['B1']
Diet_Min['B2']
Diet_Max['A']
```

On further investigation, the constraint Diet_Min['B1'] is seen to be redundant because it is generated from

```
subject to Diet_Min {i in MINREQ}:
    sum {j in FOOD} amt[i,j] * Buy[j] >= n_min[i];
```

with n_min['B1'] equal to zero in the data. Clearly this is satisfied by any combination of the variables, since they all have nonnegative lower bounds. A less trivial case is given by Diet_Max ['A'], which is generated from

```
subject to Diet_Max {i in MAXREQ}:
    sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];
```

By setting each variable to its upper bound on the left-hand side of this constraint, we get an upper bound on the total amount of the nutrient that any solution can possibly supply. In particular, for nutrient A :

```
ampl: display sum {j in FOOD} amt['A',j] * f_max[j];
sum{j in FOOD} amt['A',j]*f_max[j] = 2860
```

Since the data file gives $n _\max \left[{ }^{\prime} \mathrm{A}^{\prime}\right]$ as 20000, this is another constraint that cannot possibly be violated by the variables.

Following these tests, the first part of presolve is completed. The remainder consists of a series of passes through the problem, each attempting to deduce still tighter variable bounds from the current bounds and the linear constraints. We present here only one example of the outcome, for the problem instance generated from multi.mod and multi. dat (Figures 4-1 and 4-2):

```
ampl: model multi.mod;
ampl: data multi.dat;
ampl: option show_stats 1;
ampl: solve;
Presolve eliminates }7\mathrm{ constraints and 3 variables.
Adjusted problem:
6 0 ~ v a r i a b l e s , ~ a l l ~ l i n e a r ~
4 4 ~ c o n s t r a i n t s , ~ a l l ~ l i n e a r ; ~ 1 6 5 ~ n o n z e r o s
1 linear objective; }60\mathrm{ nonzeros.
MINOS 5.5: optimal solution found.
41 iterations, objective 199500
ampl: print {j in 1.._nvars:
ampl? _var.status[j] = "pre"}: _varname[j];
Trans['GARY','LAN','plate']
Trans['CLEV','LAN','plate']
Trans['PITT','LAN','plate']
```

```
ampl: print {i in 1.._ncons:
ampl? _con[i].status = "pre"}: _conname[i];
Demand['LAN','plate']
Multi['GARY','LAN']
Multi['GARY','WIN']
Multi['CLEV','LAN']
Multi['CLEV','WIN']
Multi['PITT','LAN']
Multi['PITT','WIN']
```

We can see where some of the simplifications come from by expanding the eliminated demand constraint:

```
ampl: expand Demand['LAN','plate'];
subject to Demand['LAN','plate']:
    Trans['GARY','LAN','plate'] + Trans['CLEV','LAN','plate'] +
    Trans['PITT','LAN','plate'] = 0;
```

Because demand ['LAN', 'plate'] is zero in the data, this constraint forces the sum of three nonnegative variables to be zero, as a result of which all three must have an upper limit of zero in any solution. Since they already have a lower limit of zero, they may be fixed and the constraint may be dropped. The other eliminated constraints all look like this:

```
ampl: expand Multi['GARY','LAN'];
subject to Multi['GARY','LAN']:
    Trans['GARY','LAN','bands'] + Trans['GARY','LAN','coils'] +
    Trans['GARY','LAN','plate'] <= 625;
```

They can be dropped because the sum of the upper bounds of the variables on the left is less than 625. These variables were not originally given upper bounds in the problem, however. Instead, the second part of presolve deduced their bounds. For this simple problem, it is not hard to see how the deduced bounds arise: the amount of any product shipped along any one link cannot exceed the demand for that product at the destination of the link. In the case of the destinations LAN and WIN, the total demand for the three products is less than the limit of 625 on total shipments from any origin, making the total-shipment constraints redundant.

Controlling the effects of presolve

For more complex problems, presolve's eliminations of variables and constraints may not be so easy to explain, but they can represent a substantial fraction of the problem. The time and memory needed to solve a problem instance may be reduced considerably as a result. In rare cases, presolve can also substantially affect the optimal values of the variables - when there is more than one optimal solution - or interfere with other preprocessing routines that are built into your solver software. To turn off presolve entirely, set option presolve to 0 ; to turn off the second part only, set it to 1 . A higher value for this option indicates the maximum number of passes made in part two of presolve; the default is 10 .

Following presolve, AMPL saves two sets of lower and upper bounds on the variables: ones that reflect the tightening of the bounds implied by constraints that presolve eliminated, and ones that reflect further tightening deduced from constraints that presolve could not eliminate. The problem has the same solution with either set of bounds, but the overall solution time may be lower with one or the other, depending on the optimization method in use and the specifics of the problem.

For continuous variables, normally AMPL passes to solvers the first set of bounds, but you can instruct it to pass the second set by changing option var_bounds to 2 from its default value of 1 . When active-set methods (like the simplex method) are applied, the second set tends to give rise to more degenerate variables, and hence more degenerate iterations that may impede progress toward a solution.

For integer variables, AMPL rounds any fractional lower bounds up to the next higher integer and any fractional upper bounds down to the next lower integer. Due to inaccuracies of finite-precision computation, however, a bound may be calculated to have a value that is just slightly different from an integer. A lower bound that should be 7, for example, might be calculated as 7.00000000001 , in which case you would not want the bound to be rounded up to 8 ! To deal with this possibility, AMPL subtracts the value of option presolve_inteps from each lower bound, and adds it to each upper bound, before rounding. If increasing this setting to the value of option presolve_intepsmax would make a difference to the rounded bounds of any of the variables, AMPL issues a warning. The default values of presolve_inteps and presolve_intepsmax are $1.0 \mathrm{e}-6$ and $1.0 \mathrm{e}-5$, respectively.

You can examine the first set of presolve bounds by using the suffixes .lb1 and .ub1, and the second set by .lb2 and .ub2. The original bounds, which are sent to the solver only if presolve is turned off, are given as . 1b0 and .ub0. The suffixes . 1b and . ub give the bound values currently to be passed to the solver, based on the current values of options presolve and var_bounds.

Detecting infeasibility in presolve

If presolve determines that any variable's lower bound is greater than its upper bound, then there can be no solution satisfying all the bounds and other constraints, and an error message is printed. For example, here's what would happen to steel3.mod (Figure $1-5 a$) if we changed market ["bands "] to 500 when we meant 5000:

```
ampl: model steel3.mod;
ampl: data steel3.dat;
ampl: let market["bands"] := 500;
ampl: solve;
inconsistent bounds for var Make['bands']:
    lower bound = 1000 > upper bound = 500;
    difference = 500
```

This is a simple case, because the upper bound on variable Make ["bands "] has clearly been reduced below the lower bound. Presolve's more sophisticated tests can also find
infeasibilities that are not due to any one variable. As an example, consider the constraint in this model:

```
subject to Time: sum {p in PROD} 1/rate[p]*Make[p] <= avail;
```

If we reduce the value of avail to 13 hours, presolve deduces that this constraint can't possibly be satisfied:

```
ampl: let market["bands"] := 5000;
ampl: let avail := 13;
ampl: solve;
presolve: constraint Time cannot hold:
    body <= 13 cannot be >= 13.2589; difference = -0.258929
```

The "body" of constraint Time is sum \{p in PROD\} 1/rate [p]*Make [p], the part that contains the variables (see Section 12.5). Thus, given the value of avail that we have set, the constraint places an upper bound of 13 on the value of the body expression. On the other hand, if we set each variable in the body expression equal to its lower bound, we get a lower bound on the value of the body in any feasible solution:

```
ampl: display sum {p in PROD} 1/rate[p]*Make[p].1b2;
sum{p in PROD} 1/rate[p]*(Make[p].lb2) = 13.2589
```

The statement from presolve that body $<=13$ cannot be $>=13.2589$ is thus reporting that the upper bound on the body is in conflict with the lower bound, implying that no solution can satisfy all of the problem's bounds and constraints.

Presolve reports the difference between its two bounds for constraint Time as -0.258929 (to six digits). Thus in this case we can guess that 13.258929 is, approximately, the smallest value of avail that allows for a feasible solution, which we can verify by experiment:

```
ampl: let avail := 13.258929;
ampl: solve;
MINOS 5.5: optimal solution found.
0 iterations, objective 61750.00214
```

If we make avail just slightly lower, however, we again get the infeasibility message:

```
ampl: let avail := 13.258928;
ampl: solve;
presolve: constraint Time cannot hold:
    body <= 13.2589 cannot be >= 13.2589;
    difference = -5.71429e-07
Setting $presolve_eps >= 6.86e-07 might help.
```

Although the lower bound here is the same as the upper bound to six digits, it is greater than the upper bound in full precision, as the negative value of the difference indicates.

Typing solve a second time in this situation tells AMPL to override presolve and send the seemingly inconsistent deduced bounds to the solver:

```
ampl: solve;
MINOS 5.5: optimal solution found.
O iterations, objective 61749.99714
ampl: option display_precision 10;
ampl: display commit, Make;
: commit Make :=
bands 1000 999.9998857
coils 500 500
plate 750 750
;
```

MINOS declares that it has found an optimal solution, though with Make ["bands"] being slightly less than its lower bound commit ["bands "]! Here MINOS is applying an internal tolerance that allows small infeasibilities to be ignored; the AMPL/MINOS documentation explains how this tolerance works and how it can be changed. Each solver applies feasibility tolerances in its own way, so it's not surprising that a different solver gives different results:

```
ampl: option solver cplex;
ampl: option send_statuses 0;
ampl: solve;
CPLEX 8.0.0: Bound infeasibility column 'x1'.
infeasible problem.
1 dual simplex iterations (0 in phase I)
```

Here CPLEX has applied its own presolve routine and has detected the same infeasibility that AMPL did. (You may see a few additional lines about a "suffix'" named dunbdd; this pertains to a direction of unboundedness that you can retrieve via AMPL's solverdefined suffix feature described in Section 14.3.)

Situations like this come about when the implied lower and upper bounds on some variable or constraint body are equal, at least for all practical purposes. Due to imprecision in the computations, the lower bound may come out slightly greater than the upper bound, causing AMPL's presolve to report an infeasible problem. To circumvent this difficulty, you can reset the option presolve_eps from its default value of 0 to some small positive value. Differences between the lower and upper bound are ignored when they are less than this value. If increasing the current presolve_eps value to a value no greater than presolve_epsmax would change presolve's handling of the problem, then presolve displays a message to this effect, such as

```
Setting $presolve_eps >= 6.86e-07 might help.
```

in the example above. The default value of option presolve_eps is zero and presolve_epsmax is $1.0 \mathrm{e}-5$.

A related situation occurs when imprecision in the computations causes the implied lower bound on some variable or constraint body to come out slightly lower than the implied upper bound. Here no infeasibility is detected, but the presence of bounds that are nearly equal may make the solver's work much harder than necessary. Thus when-
ever the upper bound minus the lower bound on a variable or constraint body is positive but less than the value of option presolve_fixeps, the variable or constraint body is fixed at the average of the two bounds. If increasing the value of presolve_fixeps to at most the value of presolve_fixepsmax would change the results of presolve, a message to this effect is displayed.

The number of separate messages displayed by presolve is limited to the value of presolve_warnings, which is 5 by default. Increasing option show_stats to 2 may elicit some additional information about the presolve run, including the number of passes that made a difference to the results and the values to which presolve_eps and presolve_inteps would have to be increased or decreased to make a difference.

14.2 Retrieving results from solvers

In addition to the solution and related numerical values, it can be useful to have certain symbolic information about the results of solve commands. For example, in a script of AMPL commands, you may want to test whether the most recent solve encountered an unbounded or infeasible problem. Or, after you have solved a linear program by the simplex method, you may want to use the optimal basis partition to provide a good start for solving a related problem. The AMPL-solver interface permits solvers to return these and related kinds of status information that you can examine and use.

Solve results

A solver finishes its work because it has identified an optimal solution or has encountered some other terminating condition. In addition to the values of the variables, the solver may set two built-in AMPL parameters and an AMPL option that provide information about the outcome of the optimization process:

```
ampl: model diet.mod;
ampl: data diet2.dat;
ampl: display solve_result_num, solve_result;
solve_result_num = -1
solve_result = '?'
ampl: solve;
MINOS 5.5: infeasible problem.
9 iterations
ampl: display solve_result_num, solve_result;
solve_result_num = 200
solve_result = infeasible
```

```
ampl: option solve_result_table;
option solve_result_table '\
0 solved\
100 solved?\
200 infeasible\
300 unbounded\
400 limit
500 failure\
';
```

At the beginning of an AMPL session, solve_result_num is -1 and solve_result is '?'. Each solve command resets these parameters, however, so that they describe the solver's status at the end of its run, solve_result_num by a number and solve_result by a character string. The solve_result_table option lists the possible combinations, which may be interpreted as follows:

solve_result values		
number	string	interpretation
$0-99$	solved	optimal solution found
$100-199$	solved?	optimal solution indicated, but error likely
$200-299$	infeasible	constraints cannot be satisfied
$300-399$	unbounded	objective can be improved without limit
$400-499$	limit	stopped by a limit that you set (such as on iterations)
$500-599$	failure	stopped by an error condition in the solver

Normally this status information is used in scripts, where it can be tested to distinguish among cases that must be handled in different ways. As an example, Figure 14-1 depicts an AMPL script for the diet model that reads the name of a nutrient (from the standard input, using the filename - as explained in Section 9.5), a starting upper limit for that nutrient in the diet, and a step size for reducing the limit. The loop continues running until the limit is reduced to a point where the problem is infeasible, at which point it prints an appropriate message and a table of solutions previously found. A representative run looks like this:

```
ampl: commands diet.run;
<1>ampl? NA
<1>ampl? 60000
<1>ampl? 3000
--- infeasible at 48000 ---
: N_obj N_dual :=
51000 115.625 -0.0021977
54000 109.42 -0.00178981
57000 104.05 -0.00178981
60000 101.013 7.03757e-19
```

Here the limit on sodium (NA in the data) is reduced from 60000 in steps of 3000, until the problem becomes infeasible at a limit of 48000 .

The key statement of diet. run that tests for infeasibility is

```
model diet.mod;
data diet2.dat;
param N symbolic in NUTR;
param nstart > 0;
param nstep > 0;
read N, nstart, nstep <- ; # read data interactively
set N_MAX default {};
param N_obj {N_MAX};
param N_dual {N_MAX};
option solver_msg 0;
for {i in nstart .. 0 by -nstep} {
    let n_max[N] := i;
    solve;
    if solve_result = "infeasible" then {
        printf "--- infeasible at %d ---\n\n", i;
        break;
    }
    let N_MAX := N_MAX union {i};
    let N_obj[i] := Total_Cost;
    let N_dual[i] := Diet[N].dual;
}
display N_obj, N_dual;
```

Figure 14-1: Sensitivity analysis with infeasibility test (diet.run).

```
if solve_result = "infeasible" then {
    printf "--- infeasible at %d ---\n\n", i;
    break;
}
```

The if condition could equivalently be written 200 <= solve_result_num < 300 . Normally you will want to avoid this latter alternative, since it makes the script more cryptic. It can occasionally be useful, however, in making fine distinctions among different solver termination conditions. For example, here are some of the values that the CPLEX solver sets for different optimality conditions:

solve_result_num	message at termination
0	optimal solution
1	primal has unbounded optimal face
2	optimal integer solution
3	optimal integer solution within mipgap or absmipgap

The value of solve_result is "solved" in all of these cases, but you can test solve_result_num if you need to distinguish among them. The interpretations of solve_result_num are entirely solver-specific; you'll have to look at a particular solver's documentation to see which values it returns and what they mean.

AMPL's solver interfaces are set up to display a few lines like

```
MINOS 5.5: infeasible problem.
9 \text { iterations}
```

to summarize a solver run that has finished. If you are running a script that executes solve frequently, these messages can add up to a lot of output; you can suppress their appearance by setting the option solver_msg to 0 . A built-in symbolic parameter, solve_message, still always contains the most recent solver return message, even when display of the message has been turned off. You can display this parameter to verify its value:

```
ampl: display solve_message;
solve_message = 'MINOS 5.5: infeasible problem.\
iterations'
```

Because solve_message is a symbolic parameter, its value is a character string. It is most useful in scripts, where you can use character-string functions (Section 13.7) to test the message for indications of optimality and other outcomes.

As an example, the test in diet. run could also have been written

```
if match(solve_message, "infeasible") > 0 then {
```

Since return messages vary from one solver to the next, however, for most situations a test of solve_result will be simpler and less solver-dependent.

Solve results can be returned as described above only if AMPL's invocation of the solver has been successful. Invocation can fail because the operating system is unable to find or execute the specified solver, or because some low-level error prevents the solver from attempting or completing the optimization. Typical causes include a misspelled solver name, improper installation or licensing of the solver, insufficient resources, and termination of the solver process by an execution fault ('core dump'') or a 'break'" from the keyboard. In these cases the error message that follows solve is generated by the operating system rather than by the solver, and you might have to consult a system guru to track down the problem. For example, a message like can't open at8871.nl usually indicates that AMPL is not able to write a temporary file; it might be trying to write to a disk that is full, or to a directory (folder) for which you do not have write permission. (The directory for temporary files is specified in option TMPDIR.)

The built-in parameter solve_exitcode records the success or failure of the most recent solver invocation. Initially -1 , it is reset to 0 whenever there has been a successful invocation, and to some system-dependent nonzero value otherwise:

```
ampl: reset;
ampl: display solve_exitcode;
solve_exitcode = -1
ampl: model diet.mod;
ampl: data diet2.dat;
ampl: option solver xplex;
ampl: solve;
Cannot invoke xplex: No such file or directory
```

```
ampl: display solve_exitcode;
solve_exitcode = 1024
ampl: display solve_result, solve_result_num;
solve_result = '?'
solve_result_num = -1
```

Here the failed invocation, due to the misspelled solver name xplex , is reflected in a positive solve_exitcode value. The status parameters solve_result and solve_result_num are also reset to their initial values '?' and -1 .

If solve_exitcode exceeds the value in option solve_exitcode_max, then AMPL aborts any currently executing compound statements (include, commands, repeat, for, if). The default value of solve_exitcode_max is 0, so that AMPL normally aborts compound statements whenever a solver invocation fails. A script that sets solve_exitcode_max to a higher value may test the value of solve_exitcode, but in general its interpretation is not consistent across operating systems or solvers.

Solver statuses of objectives and problems

Sometimes it is convenient to be able to refer to the solve result obtained when a particular objective was most recently optimized. For this purpose, AMPL associates with each built-in solve result parameter a 'status', suffix:

```
built-in parameter suffix
solve_result .result
solve_result_num .result_num
solve_message .message
solve_exitcode .exitcode
```

Appended to an objective name, this suffix indicates the value of the corresponding built-in parameter at the most recent solve in which the objective was current.

As an example, we consider again the multiple objectives defined for the assignment model in Section 8.3:

```
minimize Total_Cost:
    sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
minimize Pref_of {i in ORIG}:
    sum {j in DEST} cost[i,j] * Trans[i,j];
```

After minimizing three of these objectives, we can view the solve status values for all of them:

```
ampl: model transp4.mod; data assign.dat; solve;
CPLEX 8.0.0: optimal solution; objective 28
24 dual simplex iterations (0 in phase I)
Objective = Total_Cost
```

```
ampl: objective Pref_of['Coullard'];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 1
3 simplex iterations (0 in phase I)
ampl: objective Pref_of['Hazen'];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 1
5 \text { simplex iterations (0 in phase I)}
ampl: display Total_Cost.result, Pref_of.result;
Total_Cost.result = solved
Pref_of.result [*] :=
    Coullard solved
        Daskin '?'
            Hazen solved
                Hopp '?'
    Iravani '?'
Linetsky '?'
Mehrotra '?'
        Nelson '?'
Smilowitz '?'
    Tamhane '?'
        White '?'
;
```

For the objectives that have not yet been used, the .result suffix is unchanged (at its initial value of ' ?' in this case).

These same suffixes can be applied to the "problem" names whose use we describe later in this chapter. When appended to a problem name, they refer to the most recent optimization carried out when that problem was current.

Solver statuses of variables

In addition to providing for return of the overall status of the optimization process as described above, AMPL lets a solver return an individual status for each variable. This feature is intended mainly for reporting the basis status of variables after a linear program is solved either by the simplex method, or by an interior-point (barrier) method followed by a "crossover"' routine. The basis status is also relevant to solutions returned by certain nonlinear solvers, notably MINOS, that employ an extension of the concept of a basic solution.

In addition to the variables declared by var statements in an AMPL model, solvers also define "slack" or "artificial'" variables that are associated with constraints. Solver statuses for these latter variables are defined in a similar way, as explained later in this section. Both variables and constraints also have an "AMPL status" that distinguishes those in the current problem from those that have been removed from the problem by presolve or by commands such as drop. The interpretation of AMPL statuses and their relationship to solver statuses are discussed at the end of this section.

The major use of solver status values from an optimal basic solution is to provide a good starting point for the next optimization run. The option send_statuses, when left at its default value of 1 , instructs AMPL to include statuses with the information about variables sent to the solver at each solve. You can see the effect of this feature in almost any sensitivity analysis that re-solves after making some small change to the problem.

As an example, consider what happens when the multi-period production example from Figure 6-3 is solved repeatedly after increases of five percent in the availability of labor. With the send_statuses option set to 0 , the solver reports about 18 iterations of the dual simplex method each time it is run:

```
ampl: model steelm3.mod;
ampl: data steelT3.dat;
ampl: option send_statuses 0;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 514521.7143
18 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 537104
19 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 560800.4
19 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 585116.22
1 7 \text { dual simplex iterations (0 in phase I)}
```

With send_statuses left at its default value of 1, however, only the first solve takes 18 iterations. Subsequent runs take a few iterations at most:

```
ampl: model steelT3.mod;
ampl: data steelT3.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 514521.7143
18 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 537104
1 dual simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 560800.4
O simplex iterations (0 in phase I)
ampl: let {t in 1..T} avail[t] := 1.05 * avail[t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 585116.22
1 dual simplex iterations (0 in phase I)
```

Each solve after the first automatically uses the variables' basis statuses from the previous solve to construct a starting point that turns out to be only a few iterations from the optimum. In the case of the third solve, the previous basis remains optimal; the solver thus confirms optimality immediately and reports taking 0 iterations.

The following discussion explains how you can view, interpret, and change status values of variables in the AMPL environment. You don't need to know any of this to use optimal bases as starting points as shown above, but these features can be useful in certain advanced circumstances.

AMPL refers to a variable's solver status by appending . sstatus to its name. Thus you can print the statuses of variables with display. At the beginning of a session (or after a reset), when no problem has yet been solved, all variables have the status none:

```
ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: display Buy.sstatus;
Buy.sstatus [*] :=
BEEF none
    CHK none
FISH none
    HAM none
    MCH none
    MTL none
    SPG none
    TUR none
;
```

After an invocation of a simplex method solver, the same display lists the statuses of the variables at the optimal basic solution:

```
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032
ampl: display Buy.sstatus;
Buy.sstatus [*] :=
BEEF bas
    CHK low
FISH low
    HAM upp
    MCH upp
    MTL upp
    SPG bas
    TUR low
;
```

Two of the variables, Buy ['BEEF'] and Buy ['SPG'], have status bas, which means they are in the optimal basis. Three have status low and three upp, indicating that they are nonbasic at lower and upper bounds, respectively. A table of the recognized solver status values is stored in option sstatus_table:

```
ampl: option sstatus_table;
option sstatus_table '
0 none no status assigned\}
1 bas basic\}
2 sup superbasic
3 low nonbasic <= (normally =) lower bound \(\backslash\)
4 upp nonbasic >= (normally =) upper bound
5 equ nonbasic at equal lower and upper bounds \(\backslash\)
6 btw nonbasic between bounds \(\backslash\)
';
```

Numbers and short strings representing status values are given in the first two columns. (The numbers are mainly for communication between AMPL and solvers, though you can access them by using the suffix .sstatus_num in place of .sstatus.) The entries in the third column are comments. For nonbasic variables as defined in many textbook simplex methods, only the low status is applicable; other nonbasic statuses are required for the more general bounded-variable simplex methods in large-scale implementations. The sup status is used by solvers like MINOS to accommodate nonlinear problems. This is AMPL's standard sstatus_table; a solver may substitute its own table, in which case its documentation will indicate the interpretation of the table entries.

You can change a variable's status with the let command. This facility is sometimes useful when you want to re-solve a problem after a small, well-defined change. In a later section of this chapter, for example, we employ a pattern-cutting model (Figure 14-2a) that contains the declarations

```
param nPAT integer >= 0; # number of patterns
set PATTERNS = 1..nPAT; # set of patterns
var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern
```

In a related script (Figure 14-3), each pass through the main loop steps nPAT by one, causing a new variable Cut [nPAT] to be created. It has an initial solver status of "none", like all new variables, but it is guaranteed, by the way that the pattern generation procedure is constructed, to enter the basis as soon as the expanded cutting problem is re-solved. Thus we give it a status of "bas " instead:

```
let Cut[nPAT].sstatus := "bas";
```

It turns out that this change tends to reduce the number of iterations in each reoptimization of the cutting problem, at least with some simplex solvers. Setting a few statuses in this way is never guaranteed to reduce the number of iterations, however. Its success depends on the particular problem and solver, and on their interaction with a number of complicating factors:

- After the problem and statuses have been modified, the statuses conveyed to the solver at the next solve may not properly define a basic solution.
- After the problem has been modified, AMPL's presolve phase may send a different subset of variables and constraints to the solver (unless option presolve is set to zero). As a result, the statuses conveyed to the solver may
not correspond to a useful starting point for the next solve, and may not properly define a basic solution.
- Some solvers, notably MINOS, use the current values as well as the statuses of the variables in constructing the starting point at the next solve (unless option reset_initial_guesses is set to 1).

Each solver has its own way of adjusting the statuses that it receives from AMPL, when necessary, to produce an initial basic solution that it can use. Thus some experimentation is usually necessary to determine whether any particular strategy for modifying the statuses is useful.

For models that have several var declarations, AMPL's generic synonyms (Section 12.6) for variables provide a convenient way of getting overall summaries of statuses. For example, using expressions like _var, _varname and _var.sstatus in a display statement, you can easily specify a table of all basic variables in steelT3.mod along with their optimal values:

```
ampl: display {j in 1.._nvars: _var[j].sstatus = "bas"}
ampl? (_varname[j], _var[j]);
    _varname[j] _var[j] :=
    "Make['bands',1]" }599
    "Make['bands',2]" 6000
    "Make['bands',3]" 1400
    "Make['bands',4]" 2000
    "Make['coils',1]" }140
    "Make['coils',2]" 1400
    "Make['coils',3]" 3500
    "Make['coils',4]" 4200
    "Inv['coils',1]" 1100
    "Sell['bands',3]" 1400
    "Sell['bands',4]" 2000
    "Sell['coils',1]" 307
;
```

An analogous listing of all the variables would be produced by the command

```
display _varname, _var;
```


Solver statuses of constraints

Implementations of the simplex method typically add one variable for each constraint that they receive from AMPL. Each added variable has a coefficient of 1 or -1 in its associated constraint, and coefficients of 0 in all other constraints. If the associated constraint is an inequality, the addition is used as a "slack" or "surplus' variable; its bounds are chosen so that it has the effect of turning the inequality into an equivalent equation. If the associated constraint is an equality to begin with, the added variable is an 'artificial', one whose lower and upper bounds are both zero.

An efficient large-scale simplex solver gains two advantages from having these 'logical" variables added to the "structural", ones that it gets from AMPL: the linear program
is converted to a simpler form, in which the only inequalities are the bounds on the variables, and the solver's initialization (or "crash") routines can be designed so that they find a starting basis quickly. Given any starting basis, a first phase of the simplex method finds a basis for a feasible solution (if necessary) and a second phase finds a basis for an optimal solution; the two phases are distinguished in some solvers' messages:

```
ampl: model steelP.mod;
ampl: data steelP.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 1392175
2 7 \text { dual simplex iterations (0 in phase I)}
```

Solvers thus commonly treat all logical variables in much the same way as the structural ones, with only very minor adjustments to handle the case in which lower and upper bounds are both zero. A basic solution is defined by the collection of basis statuses of all variables, structural and logical.

To accommodate statuses of logical variables, AMPL permits a solver to return status values corresponding to the constraints as well as the variables. The solver status of a constraint, written as the constraint name suffixed by .sstatus, is interpreted as the status of the logical variable associated with that constraint. For example, in our diet model, where the constraints are all inequalities:

```
subject to Diet {i in NUTR}:
    n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];
```

the logical variables are slacks that have the same variety of statuses as the structural variables:

```
ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: option show_stats 1;
ampl: solve;
8 variables, all linear
6 constraints, all linear; 47 nonzeros
1 linear objective; 8 nonzeros.
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032
ampl: display Buy.sstatus;
Buy.sstatus [*] :=
BEEF bas
    CHK low
FISH low
    HAM upp
    MCH upp
    MTL upp
    SPG bas
    TUR low
;
```

```
ampl: display Diet.sstatus;
diet.sstatus [*] :=
    A bas
    B1 bas
    B2 low
    C bas
CAL bas
    NA upp
;
```

There are a total of six basic variables, equal in number to the six constraints (one for each member of set NUTR) as is always the case at a basic solution. In our transportation model, where the constraints are equalities:

```
subject to Supply {i in ORIG}:
    sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
    sum {i in ORIG} Trans[i,j] = demand[j];
```

the logical variables are artificials that receive the status "equ" when nonbasic. Here's how the statuses for all constraints might be displayed using AMPL's generic constraint synonyms (analogous to the variable synonyms previously shown):

```
ampl: model transp.mod;
ampl: data transp.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
1 3 \text { iterations, objective 196200}
ampl: display _conname, _con.slack, _con.sstatus;
: _conname _con.slack _con.sstatus :=
1 "Supply['GARY']" -4.54747e-13 equ
2 "Supply['CLEV']" 0 equ
3 "Supply['PITT']" -4.54747e-13 equ
4 "Demand['FRA']" -6.82121e-13 bas
5 "Demand['DET']" 0 equ
6 "Demand['LAN']" 0 equ
7 "Demand['WIN']" 0 equ
8 "Demand['STL']" 0 equ
9 "Demand['FRE']" 0 equ
10 "Demand['LAF']" 0 equ
```

One artificial variable, on the constraint Demand['FRA'], is in the optimal basis, though at a slack value of essentially zero like all artificial variables in any feasible solution. (In fact there must be some artificial variable in every basis for this problem, due to a linear dependency among the equations in the model.)

AMPL statuses

Only those variables, objectives and constraints that AMPL actually sends to a solver can receive solver statuses on return. So that you can distinguish these from components
that are removed prior to a solve, a separate "AMPL status"' is also maintained. You can work with AMPL statuses much like solver statuses, by using the suffix .astatus in place of .sstatus, and referring to option astatus_table for a summary of the recognized values:

```
ampl: option astatus_table;
option astatus_table '\
0 in normal state (in problem)\
1 drop removed by drop command\
2 pre eliminated by presolve\
3 fix fixed by fix command\
4 sub defined variable, substituted out\
5 unused not used in current problem\
';
```

Here's an example of the most common cases, using one of our diet models:

```
ampl: model dietu.mod;
ampl: data dietu.dat;
ampl: drop Diet_Min['CAL'];
ampl: fix Buy['SPG'] := 5;
ampl: fix Buy['CHK'] := 3;
ampl: solve;
MINOS 5.5: optimal solution found.
3 iterations, objective 54.76
ampl: display Buy.astatus;
Buy.astatus [*] :=
BEEF in
    CHK fix
FISH in
    HAM in
    MCH in
    MTL in
    SPG fix
    TUR in
;
ampl: display Diet_Min.astatus;
Diet_Min.astatus [*] :=
        A in
    B1 pre
    B2 pre
        C in
CAL drop
;
```

An AMPL status of in indicates components that are in the problem sent to the solver, such as variable Buy ['BEEF'] and constraint Diet_Min ['A']. Three other statuses indicate components left out of the problem:

- Variables Buy['CHK'] and Buy['SPG'] have AMPL status "fix" because the fix command was used to specify their values in the solution.
- Constraint Diet_Min['CAL'] has AMPL status "drop" because it was removed by the drop command.
- Constraints Diet_Min ['B1'] and Diet_Min ['B2'] have AMPL status "pre" because they were removed from the problem by simplifications performed in AMPL's presolve phase.

Not shown here are the AMPL status "unused" for a variable that does not appear in any objective or constraint, and "sub" for variables and constraints eliminated by substitution (as explained in Section 18.2). The objective command, and the problem commands to be defined later in this chapter, also have the effect of fixing or dropping model components that are not in use.

For a variable or constraint, you will normally be interested in only one of the statuses at a time: the solver status if the variable or constraint was included in the problem sent most recently to the solver, or the AMPL status otherwise. Thus AMPL provides the suffix . status to denote the one status of interest:

In general, name.status is equal to name.sstatus if name.astatus is "in", and is equal to name. astatus otherwise.

14.3 Exchanging information with solvers via suffixes

We have seen that to represent values associated with a model component, AMPL employs various qualifiers or suffixes appended to component names. A suffix consists of a period or "dot" (.) followed by a (usually short) identifier, so that for example the reduced cost associated with a variable Buy[j] is written Buy[j].rc, and the reduced
costs of all such variables can be viewed by giving the command display Buy.rc. There are numerous built-in suffixes of this kind, summarized in the tables in A.11.

AMPL cannot anticipate all of the values that a solver might associate with model components, however. The values recognized as input or computed as output depend on the design of each solver and its algorithms. To provide for open-ended representation of such values, new suffixes may be defined for the duration of an AMPL session, either by the user for sending values to a solver, or by a solver for returning values.

This section introduces both user-defined and solver-defined suffixes, illustrated by features of the CPLEX solver. We show how user-defined suffixes can pass preferences for variable selection and branch direction to an integer programming solver. Sensitivity analysis provides an example of solver-defined suffixes that have numeric values, while infeasibility diagnosis shows how a symbolic (string-valued) suffix works. Reporting a direction of unboundedness gives an example of a solver-defined suffix in an AMPL script, where it must be declared before it can be used.

User-defined suffixes: integer programming directives

Most solvers recognize a variety of algorithmic choices or settings, each governed by a single value that applies to the entire problem being solved. Thus you can alter selected settings by setting up a single string of directives, as in this example applying the CPLEX solver to an integer program:

```
ampl: model multmip3.mod;
ampl: data multmip3.dat;
ampl: option solver cplex;
ampl: option cplex_options 'nodesel 3 varsel 1 backtrack 0.1';
ampl: solve;
CPLEX 8.0.0: nodesel 3
varsel 1
backtrack 0.1
CPLEX 8.0.0: optimal integer solution; objective 235625
1052 MIP simplex iterations
75 branch-and-bound nodes
```

A few kinds of solver settings are more complex, however, in that they require separate values to be set for individual model components. These settings are far too numerous to be accommodated in a directive string. Instead the solver interface can be set up to recognize new suffixes that the user defines specially for the solver's purposes.

As an example, for each variable in an integer program, CPLEX recognizes a separate branching priority and a separate preferred branching direction, represented by an integer in $[0,9999]$ and in $[-1,1]$ respectively. AMPL's CPLEX driver recognizes the suffixes .priority and .direction as giving these settings. To use these suffixes, we begin by giving a suffix command to define each one for the current AMPL session:

```
ampl: suffix priority IN, integer, >= 0, <= 9999;
ampl: suffix direction IN, integer, >= -1, <= 1;
```

The effect of these statements is to define expressions of the form name.priority and name. direction, where name denotes any variable, objective or constraint of the current model. The argument IN specifies that values corresponding to these suffixes are to be read in by the solver, and the subsequent phrases place restrictions on the values that will be accepted (much as in a param declaration).

The newly defined suffixes may be assigned values by the let command (Section 11.3) or by later declarations as described in Sections A.8, A.9, A.10, and A.18.8. For our current example we want to use these suffixes to assign CPLEX priority and direction values corresponding to the binary variables Use $[i, j]$. Normally such values are chosen based on knowledge of the problem and past experience with similar problems. Here is one possibility:

```
ampl: let {i in ORIG, j in DEST}
ampl? Use[i,j].priority := sum {p in PROD} demand[j,p];
ampl: let Use["GARY","FRE"].direction := -1;
```

Variables not assigned a .priority or . direction value get a default value of zero (as do all constraints and objectives in this example), as you can check:

```
ampl: display Use.direction;
Use.direction [*,*] (tr)
: CLEV GARY PITT :=
DET 0 0 0
FRA 0 0 0
FRE 0 -1 0
LAF 0 0 0
LAN 0 0 0
STL 0 0 0
WIN 0 0 0
```

With the suffix values assigned as shown, CPLEX's search for a solution turns out to require fewer simplex iterations and fewer branch-and-bound nodes:

```
ampl: option reset_initial_guesses 1;
ampl: solve;
CPLEX 8.0.0: nodesel 3
varsel 1
backtrack 0.1
CPLEX 8.0.0: optimal integer solution; objective 235625
799 MIP simplex iterations
6 9 \text { branch-and-bound nodes}
```

(We have set option reset_initial_guesses to 1 so that the optimal solution from the first CPLEX run won't be sent back to the second.)

Further information about the suffixes recognized by CPLEX and how to determine the corresponding settings can be found in the CPLEX driver documentation. Other solver interfaces may recognize different suffixes for different purposes; you'll need to check separately for each solver you want to use.

Solver-defined suffixes: sensitivity analysis

When the keyword sensitivity is included in CPLEX's list of directives, classical sensitivity ranges are computed and are returned in three new suffixes, . up, . down, and .current:

```
ampl: model steelT.mod; data steelT.dat;
ampl: option solver cplex;
ampl: option cplex_options 'sensitivity';
ampl: solve;
CPLEX 8.0.0: sensitivity
CPLEX 8.0.0: optimal solution; objective 515033
16 dual simplex iterations (0 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
```

The three lines at the end of the output from the solve command show the suffix commands that are executed by AMPL in response to the results from the solver. These statements are executed automatically; you do not need to type them. The argument OUT in each command says that these are suffixes whose values will be written out by the solver (in contrast to the previous example, where the argument IN indicated suffix values that the solver was to read in).

The sensitivity suffixes are interpreted as follows. For variables, suffix . current indicates the objective function coefficient in the current problem, while . down and . up give the smallest and largest values of the objective coefficient for which the current LP basis remains optimal:

```
ampl: display Sell.down, Sell.current, Sell.up;
: Sell.down Sell.current Sell.up :=
bands 1 23.3 25 1e+20
bands 2 25.4 26 1e+20
bands 3 24.9 27 27.5
bands 4 10 27 29.1
coils 1 29.2857 30 30.8571
coils 2 33 35 1e+20
coils 3 35.2857 37 1e+20
coils 4 35.2857 39 1e+20
;
```

For constraints, the interpretation is similar except that it applies to a constraint's constant term (the so-called right-hand-side value):

ampl: display Time.down,	Time.current,	Time.up;	
: Time.down Time.current	Time.up	$:=$	
1	37.8071	40	66.3786
2	37.8071	40	47.8571
3	25	32	45
4	30	40	62.5
$;$			

You can use generic synonyms (Section 12.6) to display a table of ranges for all variables or constraints, similar to the tables produced by the standalone version of CPLEX. (Values of $-1 e+20$ in the . down column and $1 e+20$ in the . up column correspond to what CPLEX calls -infinity and +infinity in its tables.)

Solver-defined suffixes: infeasibility diagnosis

For a linear program that has no feasible solution, you can ask CPLEX to find an irreducible infeasible subset (or IIS): a collection of constraints and variable bounds that is infeasible but that becomes feasible when any one constraint or bound is removed. If a small IIS exists and can be found, it can provide valuable clues as to the source of the infeasibility. You turn on the IIS finder by changing the iisfind directive from its default value of 0 to either 1 (for a relatively fast version) or 2 (for a slower version that tends to find a smaller IIS).

The following example shows how IIS finding might be applied to the infeasible diet problem from Chapter 2. After solve detects that there is no feasible solution, it is repeated with the directive 'iisfind 1 ':

```
ampl: model diet.mod; data diet2.dat; option solver cplex;
ampl: solve;
CPLEX 8.0.0: infeasible problem.
4 dual simplex iterations (0 in phase I)
constraint.dunbdd returned
suffix dunbdd OUT;
```

```
ampl: option cplex_options 'iisfind 1';
```

ampl: option cplex_options 'iisfind 1';
ampl: solve;
CPLEX 8.0.0: iisfind 1
CPLEX 8.0.0: infeasible problem.
O simplex iterations (0 in phase I)
Returning iis of 7 variables and 2 constraints.
constraint.dunbdd returned
suffix iis symbolic OUT;
option iis_table '\
0 non not in the iis\
1 low at lower bound\
2 fix fixed\
3 upp at upper bound\
';

```

Again, AMPL shows any suffix statement that has been executed automatically. Our interest is in the new suffix named .iis, which is symbolic, or string-valued. An associated option iis_table, also set up by the solver driver and displayed automatically by solve, shows the strings that may be associated with .iis and gives brief descriptions of what they mean.

You can use display to look at the . iis values that have been returned:
```

ampl: display _varname, _var.iis, _conname, _con.iis;
: _varname _var.iis _conname _con.iis :=
"Buy['BEEF']" upp "Diet['A']" non
"Buy['CHK']" low "Diet['B1']" non
"Buy['FISH']" low "Diet['B2']" low
"Buy['HAM']" upp "Diet['C']" non
"Buy['MCH']" non "Diet['NA']" upp
"Buy['MTL']" upp "Diet['CAL']" non
"Buy['SPG']" low
"Buy['TUR']" low

```

This information indicates that the IIS consists of four lower and three upper bounds on the variables, plus the constraints providing the lower bound on B2 and the upper bound on NA in the diet. Together these restrictions have no feasible solution, but dropping any one of them will permit a solution to be found to the remaining ones.

If dropping the bounds is not of interest, then you may want to list only the constraints in the IIS. A print statement produces a concise listing:
```

ampl: print {i in 1.._ncons:
ampl? _con[i].iis <> "non"}: _conname[i];
Diet['B2']
Diet['NA']

```

You could conclude in this case that, to avoid violating the bounds on amounts purchased, you might need to accept either less vitamin B2 or more sodium, or both, in the diet. Further experimentation would be necessary to determine how much less or more, however, and what other changes you might need to accept in order to gain feasibility. (A linear program can have several irreducible infeasible subsets, but CPLEX's IISfinding algorithm detects only one IIS at a time.)

\section*{Solver-defined suffixes: direction of unboundedness}

For an unbounded linear program - one that has in effect a minimum of -Infinity or a maximum of +Infinity - a solver can return a ray of feasible solutions of the form \(X+\alpha d\), where \(\alpha \geq 0\). On return from CPLEX, the feasible solution \(X\) is given by the values of the variables, while the direction of unboundedness \(d\) is given by an additional value associated with each variable through the solver-defined suffix . unbdd.

An application of the direction of unboundedness can be found in a model trnloc1d.mod and script trnloc1d.run for Benders decomposition applied to a combination of a warehouse-location and transportation problem; the model, data and script are available from the AMPL web site. We won't try to describe the whole decomposition scheme here, but rather concentrate on the subproblem obtained by fixing the zero-one variables Build[i], which indicate the warehouses that are to be built, to trial values build[i]. In its dual form, this subproblem is:
```

var Supply_Price {ORIG} <= 0;
var Demand_Price {DEST};
maximize Dual_Ship_Cost:
sum {i in ORIG} Supply_Price[i] * supply[i] * build[i] +
sum {j in DEST} Demand_Price[j] * demand[j];
subject to Dual_Ship {i in ORIG, j in DEST}:
Supply_Price[i] + Demand_Price[j] <= var_cost[i,j];

```

When all values build[i] are set to zero, no warehouses are built, and the primal subproblem is infeasible. As a result, the dual formulation of the subproblem, which always has a feasible solution, must be unbounded.

As the remainder of this chapter will explain, we solve a subproblem by collecting its components into an AMPL 'problem'" and then directing AMPL to solve only that problem. When this approach is applied to the dual subproblem from the AMPL commandline, CPLEX returns the direction of unboundedness in the expected way:
```

ampl: model trnloc1d.mod;
ampl: data trnloc1.dat;
ampl: problem Sub: Supply_Price, Demand_Price,
ampl? Dual_Ship_Cost, Dual_Ship;
ampl: let {i in ORIG} build[i] := 0;
ampl: option solver cplex, cplex_options 'presolve 0';
ampl: solve;
CPLEX 8.0.0: presolve 0
CPLEX 8.0.0: unbounded problem.
2 5 dual simplex iterations (25 in phase I)
variable.unbdd returned
6 extra simplex iterations for ray (1 in phase I)
suffix unbdd OUT;

```

The suffix message indicates that .unbdd has been created automatically. You can use this suffix to display the direction of unboundedness, which is simple in this case:
```

ampl: display Supply_Price.unbdd;
Supply_Price.unbdd [*] :=
$\begin{array}{llllllllllllllllll}1 & -1 & 4 & -1 & 7 & -1 & 10 & -1 & 13 & -1 & 16 & -1 & 19 & -1 & 22 & -1 & 25 & -1\end{array}$
$\begin{array}{llllllllllllllll}2 & -1 & 5 & -1 & 8 & -1 & 11 & -1 & 14 & -1 & 17 & -1 & 20 & -1 & 23 & -1\end{array}$
$\begin{array}{llllllllllllllll}3 & -1 & 6 & -1 & 9 & -1 & 12 & -1 & 15 & -1 & 18 & -1 & 21 & -1 & 24 & -1\end{array}$
;
ampl: display Demand_Price.unbdd;
Demand_Price.unbdd [*] :=
A3 1
A6 1
A8 1
A9 1
B2 1
B4 1

```

Our script for Benders decomposition (trnloc1d.run) solves the subproblem repeatedly, with differing build[i] values generated from the master problem. After each
solve, the result is tested for unboundedness and an extension of the master problem is constructed accordingly. The essentials of the main loop are as follows:
```

repeat {
solve Sub;
if Dual_Ship_Cost <= Max_Ship_Cost + 0.00001 then break;
if Sub.result = "unbounded" then {
let nCUT := nCUT + 1;
let cut_type[nCUT] := "ray";
let {i in ORIG}
supply_price[i,nCUT] := Supply_Price[i].unbdd;
let {j in DEST}
demand_price[j,nCUT] := Demand_Price[j].unbdd;
} else {
let nCUT := nCUT + 1;
let cut_type[nCUT] := "point";
let {i in ORIG} supply_price[i,nCUT] := Supply_Price[i];
let {j in DEST} demand_price[j,nCUT] := Demand_Price[j];
}
solve Master;
let {i in ORIG} build[i] := Build[i];
}

```

An attempt to use . unbdd in this context fails, however:
```

ampl: commands trnloc1d.run;
trnloc1d.run, line 39 (offset 931):
Bad suffix .unbdd for Supply_Price
context: let {i in ORIG} supply_price[i,nCUT] :=
>>> Supply_Price[i].unbdd; <<<

```

The difficulty here is that AMPL scans all commands in the repeat loop before beginning to execute any of them. As a result it encounters the use of . unbdd before any infeasible subproblem has had a chance to cause this suffix to be defined. To make this script run as intended, it is necessary to place the statement
```

suffix unbdd OUT;

```
in the script before the repeat loop, so that . unbdd is already defined at the time the loop is scanned.

\section*{Defining and using suffixes}

A new AMPL suffix is defined by a statement consisting of the keyword suffix followed by a suffix-name and then one or more optional qualifiers that indicate what values may be associated with the suffix and how it may be used. For example, we have seen the definition
```

suffix priority IN, integer, >= 0, <= 9999;

```
for the suffix priority with in-out, type, and bound qualifiers.

The suffix statement causes AMPL to recognize suffixed expressions of the form component-name.suffix-name, where component-name refers to any currently declared variable, constraint, or objective (or problem, as defined in the next section). The definition of a suffix remains in effect until the next reset command or the end of the current AMPL session. The suffix-name is subject to the same rules as other names in AMPL. Suffixes have a separate name space, however, so a suffix may have the same name as a parameter, variable, or other model component. The optional qualifiers of the suffix statement may appear in any order; their forms and effects are described below.

The optional type qualifier in a suffix statement indicates what values may be associated with the suffixed expressions, with all numeric values being the default:
```

suffix type values allowed
none specified any numeric value
integer integer numeric values
binary 0 or 1
symbolic character strings listed in option suffix-name_table

```

All numeric-valued suffixed expressions have an initial value of 0 . Their permissible values may be further limited by one or two bound qualifiers of the form
```

>= arith-expr
<= arith-expr

```
where arith-expr is any arithmetic expression not involving variables.
For each symbolic suffix, AMPL automatically defines an associated numeric suffix, suffix-name_num. An AMPL option suffix-name_table must then be created to define a relation between the .suffix-name and .suffix-name_num values, as in the following example:
```

suffix iis symbolic OUT;
option iis_table '\
0 non not in the iis\
1 low at lower bound\
2 fix fixed\
3 upp at upper bound\
';

```

Each line of the table consists of an integer value, a string value, and an optional comment. Every string value is associated with its adjacent integer value, and with any higher integer values that are less than the integer on the next line. Assigning a string value to a .suffix-name expression is equivalent to assigning the associated numeric value to a . suffix-name_num expression. The latter expressions are initially assigned the value 0 , and are subject to any type and bound qualifiers as described above. (Normally the string values of symbolic suffixes are used in AMPL commands and scripts, while the numeric values are used in communication with solvers.)

The optional in-out qualifier determines how suffix values interact with the solver:
```

in-out handling of suffix values
IN written by AMPL before invoking the solver, then read in by solver
OUT written out by solver, then read by AMPL after the solver is finished
INOUT both read and written, as for IN and OUT above
LOCAL neither read nor written

```

INOUT is the default if no in-out keyword is specified.
We have seen that suffixed expressions can be assigned or reassigned values by a let statement:
```

let Use["GARY","FRE"].direction := -1;

```

Here just one variable is assigned a suffixed value, but often there are suffixed values for all variables in an indexed collection:
```

var Use {ORIG,DEST} binary;
let {i in ORIG, j in DEST}
Use[i,j].priority := sum {p in PROD} demand[j,p];

```

In this case the assignment of suffix values can be combined with the variable's declaration:
```

var Use {i in ORIG, j in DEST} binary,
suffix priority sum {p in PROD} demand[j,p];

```

In general, one or more of the phrases in a var declaration may consist of the keyword suffix followed by a previously-defined suffix-name and an expression for evaluating the associated suffix expressions.

\subsection*{14.4 Alternating between models}

Chapter 13 described how "scripts" of AMPL commands can be set up to run as programs that perform repetitive actions. In several examples, a script solves a series of related model instances, by including a solve statement inside a loop. The result is a simple kind of sensitivity analysis algorithm, programmed in AMPL's command language.

Much more powerful algorithmic procedures can be constructed by using two models. An optimal solution for one model yields new data for the other, and the two are solved in alternation in such a way that some termination condition must eventually be reached. Classic methods of column and cut generation, decomposition, and Lagrangian relaxation are based on schemes of this kind, which are described in detail in references cited at the end of this chapter.

To use two models in this manner, a script must have some way of switching between them. Switching can be done with previously defined AMPL features, or more clearly and efficiently by defining separately-named problems and environments.

We illustrate these possibilities through a script for a basic form of the 'roll trim"' or 'cutting stock" problem, using a well-known, elementary column-generation procedure. In the interest of brevity, we give only a sketchy description of the procedure here, while the references at the end of this chapter provide sources for thorough descriptions. There are several other examples of generation, decomposition, and relaxation schemes on the AMPL web site, and we will also use a few excerpts from them later, without showing the whole models.

In a roll trim problem, we wish to cut up long raw widths of some commodity such as rolls of paper into a combination of smaller widths that meet given orders with as little waste as possible. This problem can be viewed as deciding, for each raw-width roll, where the cuts should be made so as to produce one or more of the smaller widths that were ordered. Expressing such a problem in terms of decision variables is awkward, however, and leads to an integer program that is difficult to solve except for very small instances.

To derive a more manageable model, the so-called Gilmore-Gomory procedure defines a cutting pattern to be any one feasible way in which a raw roll can be cut up. A pattern thus consists of a certain number of rolls of each desired width, such that their total width does not exceed the raw width. If (as in Exercise 2-6) the raw width is 110", and there are demands for widths of \(20^{\prime \prime}, 45^{\prime \prime}, 50^{\prime \prime}, 55^{\prime \prime}\) and \(75^{\prime \prime}\), then two rolls of \(45^{\prime \prime}\) and one of \(20^{\prime \prime}\) make an acceptable pattern, as do one of \(50^{\prime \prime}\) and one of \(55^{\prime \prime}\) (with \(5^{\prime \prime}\) of waste). Given this view, the two simple linear programs in Figure 14-2 can be made to work together to find an efficient cutting plan.

The cutting optimization model (Figure 14-2a) finds the minimum number of raw rolls that need be cut, given a collection of known cutting patterns that may be used. This is actually a close cousin to the diet model, with the variables representing patterns cut rather than food items bought, and the constraints enforcing a lower limit on cut widths rather than nutrients provided.

The pattern generation model (Figure 14-2b) seeks to identify a new pattern that can be used in the cutting optimization, either to reduce the number of raw rolls needed, or to determine that no such new pattern exists. The variables of this model are the numbers of each desired width in the new pattern; the single constraint ensures that the total width of the pattern does not exceed the raw width. We won't try to explain the objective here, except to note that the coefficient of a variable is given by its corresponding "dual value" or "dual price" from the linear relaxation of the cutting optimization model.

We can search for a good cutting plan by solving these two problems repeatedly in alternation. First the continuous-variable relaxation of the cutting optimization problem generates some dual prices, then the pattern generation problem uses the prices to generate a new pattern, and then the procedure repeats with the collection of patterns extended by one. We stop repeating when the pattern generation problem indicates that no new pattern can lead to an improvement. We then have the best possible solution in terms of (possibly) fractional numbers of raw rolls cut. We may make one last run of the cutting optimization model with the integrality restriction restored, to get the best integral solu-
```

param roll_width > 0; \# width of raw rolls
set WIDTHS; \# set of widths to be cut
param orders {WIDTHS} > 0; \# number of each width to be cut
param nPAT integer >= 0; \# number of patterns
set PATTERNS = 1..nPAT; \# set of patterns
param nbr {WIDTHS,PATTERNS} integer >= 0;
check {j in PATTERNS}:
sum {i in WIDTHS} i * nbr[i,j] <= roll_width;
\# defn of patterns: nbr[i,j] = number
\# of rolls of width i in pattern j
var Cut {PATTERNS} integer >= 0; \# rolls cut using each pattern
minimize Number: \# minimize total raw rolls cut
sum {j in PATTERNS} Cut[j];
subject to Fill {i in WIDTHS}:
sum {j in PATTERNS} nbr[i,j] * Cut[j] >= orders[i];
\# for each width, total rolls cut meets total orders

```

Figure 14-2a: Pattern-based model for cutting optimization problem (cut.mod).
```

param price {WIDTHS} default 0.0; \# prices from cutting opt
var Use {WIDTHS} integer >= 0;
\# numbers of each width in pattern
minimize Reduced_Cost:
1 - sum {i in WIDTHS} price[i] * Use[i];
subject to Width_Limit:
sum {i in WIDTHS} i * Use[i] <= roll_width;

```

Figure 14-2b: Knapsack model for pattern generation problem (cut .mod, continued).
tion using the patterns generated, or we may simply round the fractional numbers of rolls up to the next largest integers if that gives an acceptable result.

This is the Gilmore-Gomory procedure. In terms of our two AMPL models, its steps may be described as follows:
pick initial patterns sufficient to meet demand repeat
solve the (fractional) cutting optimization problem
let price[i] equal Fill[i]. dual for each pattern i
solve the pattern generation problem
if the optimal value is \(<0\) then
add a new pattern that cuts Use [i] rolls of each width i
else
find a final integer solution and stop

An easy way to initialize is to generate one pattern for each width, containing as many copies of that width as will fit inside the raw roll. These patterns clearly can cover any demands, though not necessarily in an economical way.

An implementation of the Gilmore-Gomory procedure as an AMPL script is shown in Figure 14-3. The file cut.mod contains both the cutting optimization and pattern generation models in Figure 14-2. Since these models have no variables or constraints in common, it would be possible to write the script with simple solve statements using alternating objective functions:
```

repeat {
objective Number;
solve;
objective Reduced_Cost;
solve;
}

```

Under this approach, however, every solve would send the solver all of the variables and constraints generated by both models. Such an arrangement is inefficient and prone to error, especially for larger and more complex iterative procedures.

We could instead ensure that only the immediately relevant variables and constraints are sent to the solver, by using fix and drop commands to suppress the others. Then the outline of our loop would look like this:
```

repeat {
unfix Cut; restore Fill; objective Number;
fix Use; drop Width_Limit;
solve;
unfix Use; restore Width_Limit; objective Reduced_Cost;
fix Cut; drop Fill;
solve;
}

```

Before each solve, the previously fixed variables and dropped constraints must also be brought back, by use of unfix and restore. This approach is efficient, but it remains highly error-prone, and makes scripts difficult to read.

As an alternative, therefore, AMPL allows models to be distinguished by use of the problem statement seen in Figure 14-3:
```

problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;
problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

```

The first statement defines a problem named Cutting_Opt that consists of the Cut variables, the Fill constraints, and the objective Number. This statement also makes
```

model cut.mod;
data cut.dat;
option solver cplex, solution_round 6;
option display_1col 0, display_transpose -10;
problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;
problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;
let nPAT := 0;
for {i in WIDTHS} {
let nPAT := nPAT + 1;
let nbr[i,nPAT] := floor (roll_width/i);
let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;
}
repeat {
solve Cutting_Opt;
let {i in WIDTHS} price[i] := Fill[i].dual;
solve Pattern_Gen;
if Reduced_Cost < -0.00001 then {
let nPAT := nPAT + 1;
let {i in WIDTHS} nbr[i,nPAT] := Use[i];
}
else break;
}
display nbr, Cut;
option Cutting_Opt.relax_integrality 0;
solve Cutting_Opt;
display Cut;

```

Figure 14-3: Gilmore-Gomory procedure for cutting-stock problem (cut.run).

Cutting_Opt the current problem; uses of the var, minimize, maximize, subject to, and option statements now apply to this problem only. Thus by setting option relax_integrality to 1 above, for example, we assure that the integrality condition on the Cut variables will be relaxed whenever Cutting_Opt is current. In a similar way, we define a problem Pattern_Gen that consists of the Use variables, the Width_Limit constraint, and the objective Reduced_Cost; this in turn becomes the current problem, and this time we set relax_integrality to 0 because only integer solutions to this problem are meaningful.

The for loop in Figure 14-3 creates the initial cutting patterns, after which the main repeat loop carries out the Gilmore-Gomory procedure as described previously. The statement
```

solve Cutting_Opt;

```
```

param roll_width := 110 ;
param: WIDTHS: orders :=
20 48
45 35
50 24
55 10
75 8 ;

```

Figure 14-4: Data for cutting-stock model (cut. dat)
restores Cutting_Opt as the current problem, along with its environment, and solves the associated linear program. Then the assignment
```

let {i in WIDTHS} price[i] := Fill[i].dual;

```
transfers the optimal dual prices from Cutting_Opt to the parameters price[i] that will be used by Pattern_Gen. All sets and parameters are global in AMPL, so they can be referenced or changed whatever the current problem.

The second half of the main loop makes problem Pattern_Gen and its environment current, and sends the associated integer program to the solver. If the resulting objective is sufficiently negative, the pattern returned by the Use [i] variables is added to the data that will be used by Cutting_Opt in the next pass through the loop. Otherwise no further progress can be made, and the loop is terminated.

The script concludes with the following statements, to solve for the best integer solution using all patterns generated:
```

option Cutting_Opt.relax_integrality 0;
solve Cutting_Opt;

```

The expression Cutting_Opt.relax_integrality stands for the value of the relax_integrality option in the Cutting_Opt environment. We discuss these kinds of names and their uses at greater length in the next section.

As an example of how this works, Figure 14-4 shows data for cutting 110" raw rolls, to meet demands of \(48,35,24,10\) and 8 for finished rolls of widths \(20,45,50,55\) and 75 , respectively. Figure 14-5 shows the output that occurs when Figure 14-3's script is run with the model and data as shown in Figures 14-2 and 14-4. The best fractional solution cuts 46.25 raw rolls in five different patterns, using 48 rolls if the fractional values are rounded up to the next integer. The final solve using integer variables shows how a collection of six of the patterns can be applied to meet demand using only 47 raw rolls.

\subsection*{14.5 Named problems}

As our cutting-stock example has shown, the key to writing a clear and efficient script for alternating between two (or more) models lies in working with named problems that
```

ampl: commands cut.run;
CPLEX 8.0.0: optimal solution; objective 52.1
O dual simplex iterations (O in phase I)
CPLEX 8.0.0: optimal integer solution; objective -0.2
1 MIP simplex iterations
0 branch-and-bound nodes
CPLEX 8.0.0: optimal solution; objective 48.6
2 dual simplex iterations (0 in phase I)
CPLEX 8.0.0: optimal integer solution; objective -0.2
2 MIP simplex iterations
0 branch-and-bound nodes
CPLEX 8.0.0: optimal solution; objective 47
1 dual simplex iterations (0 in phase I)
CPLEX 8.0.0: optimal integer solution; objective -0.1
2 MIP simplex iterations
O branch-and-bound nodes
CPLEX 8.O.0: optimal solution; objective 46.25
2 dual simplex iterations (0 in phase I)
CPLEX 8.0.0: optimal integer solution; objective -1e-06
8 MIP simplex iterations
0 branch-and-bound nodes

nbr	$\left[{ }^{*}, *\right]$							
$:$	1	2	3	4	5	6	7	8
20	5	0	0	0	0	1	1	3
45	0	2	0	0	0	2	0	0
50	0	0	2	0	0	0	0	1
55	0	0	0	2	0	0	0	0
75	0	0	0	0	1	0	1	0

lur [*]
;
CPLEX 8.0.0: optimal integer solution; objective 47
5 MIP simplex iterations
O branch-and-bound nodes

| Cut [*] $:=$ | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 0 2 0 3 8 4 5 5 0 6 18
 $;$ | | | | | | | | | 8 | 8 | 8 |

```

Figure 14-5: Output from execution of Figure 14-3 cutting-stock script.
represent different subsets of model components. In this section we describe in more detail how AMPL's problem statement is employed to define, use, and display named problems. At the end we also introduce a similar idea, named environments, which facilitates switching between collections of AMPL options.

Illustrations in this section are taken from the cutting-stock script and from some of the other example scripts on the AMPL web site. An explanation of the logic behind these scripts is beyond the scope of this book; some suggestions for learning more are given in the references at the end of the chapter.

\section*{Defining named problems}

At any point during an AMPL session, there is a current problem consisting of a list of variables, objectives and constraints. The current problem is named Initial by default, and comprises all variables, objectives and constraints defined so far. You can define other "named"' problems consisting of subsets of these components, however, and can make them current. When a named problem is made current, all of the model components in the problem's subset are made active, while all other variables, objectives and constraints are made inactive. More precisely, variables in the problem's subset are unfixed and the remainder are fixed at their current values. Objectives and constraints in the problem's subset are restored and the remainder are dropped. (Fixing and dropping are discussed in Section 11.4.)

You can define a problem most straightforwardly through a problem declaration that gives the problem's name and its list of components. Thus in Figure 14-3 we have:
```

problem Cutting_Opt: Cut, Number, Fill;

```

A new problem named Cutting_Opt is defined, and is specified to contain all of the Cut variables, the objective Number, and all of the Fill constraints from the model in Figure 14-2. At the same time, Cutting_Opt becomes the current problem. Any fixed Cut variables are unfixed, while all other declared variables are fixed at their current values. The objective Number is restored if it had been previously dropped, while all other declared objectives are dropped; and similarly any dropped Fill constraints are restored, while all other declared constraints are dropped.

For more complex models, the list of a problem's components typically includes several collections of variables and constraints, as in this example from stoch1.run (one of the examples from the AMPL web site):
```

problem Sub: Make, Inv, Sell,
Stage2_Profit, Time, Balance2, Balance;

```

By specifying an indexing-expression after the problem name, you can define an indexed collection of problems, such as these in multi2. run (another web site example):
```

problem SubII {p in PROD}: Reduced_Cost[p],
{i in ORIG, j in DEST} Trans[i,j,p],
{i in ORIG} Supply[i,p], {j in DEST} Demand[j,p];

```

For each p in the set PROD, a problem SubII [p] is defined. Its components include the objective Reduced_Cost[p], the variables Trans[i,j,p] for each combination of \(i\) in ORIG and \(j\) in DEST, and the constraints Supply[i,p] and Demand [ \(j, p\) ] for each \(i\) in ORIG and each \(j\) in DEST, respectively.

A problem declaration's form and interpretation naturally resemble those of other AMPL statements that specify lists of model components. The declaration begins with the keyword problem, a problem name not previously used for any other model component, an optional indexing expression (to define an indexed collection of problems), and a colon. Following the colon is the comma-separated list of variables, objectives and constraints to be included in the problem. This list may contain items of any of the following forms, where 'component'" refers to any variable, objective or constraint:
- A component name, such as Cut or Fill, which refers to all components having that name.
- A subscripted component name, such as Reduced_Cost[p], which refers to that component alone.
- An indexing expression followed by a subscripted component name, such as \(\{i\) in ORIG\} Supply \([i, p]\), which refers to one component for each member of the indexing set.

To save the trouble of repeating an indexing expression when several components are indexed in the same way, the problem statement also allows an indexing expression followed by a parenthesized list of components. Thus for example the following would be equivalent:
```

{i in ORIG} Supply1[i,p], {i in ORIG} Supply2[i,p],
{i in ORIG, j in DEST} Trans[i,j,p],
{i in ORIG, j in DEST} Use[i,j,p]
{i in ORIG} (Supply1[i,p], Supply2[i,p],
{j in DEST} (Trans[i,j,p], Use[i,j,p]))

```

As these examples show, the list inside the parentheses may contain any item that is valid in a component list, even an indexing expression followed by another parenthesized list. This sort of recursion is also found in AMPL's print command, but is more general than the list format allowed in display commands.

Whenever a variable, objective or constraint is declared, it is automatically added to the current problem (or all current problems, if the most recent problem statement specified an indexed collection of problems). Thus in our cutting-stock example, all of Figure 14-2's model components are first placed by default into the problem Initial; then, when the script of Figure 14-3 is run, the components are divided into the problems Cutting_Opt and Pattern_Gen by use of problem statements. As an alternative, we can declare empty problems and then fill in their members through AMPL declarations. Figure 14-6 (cut2 .mod) shows how this would be done for the Figure 14-2 models. This approach is sometimes clearer or easier for simpler applications.

Any use of drop/restore or fix/unfix also modifies the current problem. The drop command has the effect of removing constraints or objectives from the current problem, while the restore command has the effect of adding constraints or objectives. Similarly, the fix command removes variables from the current problem and the unfix
```

problem Cutting_Opt;
param nPAT integer >= 0, default 0;
param roll_width;
set PATTERNS = 1..nPAT;
set WIDTHS;
param orders {WIDTHS} > 0;
param nbr {WIDTHS,PATTERNS} integer >= 0;
check {j in PATTERNS}:
sum {i in WIDTHS} i * nbr[i,j] <= roll_width;
var Cut {PATTERNS} >= 0;
minimize Number: sum {j in PATTERNS} Cut[j];
subject to Fill {i in WIDTHS}:
sum {j in PATTERNS} nbr[i,j] * Cut[j] >= orders[i];
problem Pattern_Gen;
param price {WIDTHS};
var Use {WIDTHS} integer >= 0;
minimize Reduced_Cost:
1 - sum {i in WIDTHS} price[i] * Use[i];
subject to Width_Limit:
sum {i in WIDTHS} i * Use[i] <= roll_width;

```

Figure 14-6: Alternate definition of named cutting-stock problems (cut \(2 . m o d\) ).
command adds variables. As an example, multil.run uses the following problem statements:
```

problem MasterI: Artificial, Weight, Excess, Multi, Convex;
problem SubI: Artif_Reduced_Cost, Trans, Supply, Demand;
problem MasterII: Total_Cost, Weight, Multi, Convex;
problem SubII: Reduced_Cost, Trans, Supply, Demand;

```
to define named problems for phases I and II of its decomposition procedure. By contrast, multila.run specifies
```

problem Master: Artificial, Weight, Excess, Multi, Convex;
problem Sub: Artif_Reduced_Cost, Trans, Supply, Demand;

```
to define the problems initially, and then
```

problem Master;
drop Artificial; restore Total_Cost; fix Excess;
problem Sub;
drop Artif_Reduced_Cost; restore Reduced_Cost;

```
when the time comes to convert the problems to a form appropriate for the second phase. Since the names Master and Sub are used throughout the procedure, one loop in the script suffices to implement both phases.

Alternatively, a redeclare problem statement can give a new definition for a problem. The drop, restore, and fix commands above could be replaced, for instance, by
```

redeclare problem Master: Total_Cost, Weight, Multi, Convex;
redeclare problem Sub: Reduced_Cost, Trans, Supply, Demand;

```

Like other declarations, however, this cannot be used within a compound statement (if, for or repeat) and so cannot be used in the multila. run example.

A form of the reset command lets you undo any changes made to the definition of a problem. For example,
```

reset problem Cutting_Opt;

```
resets the definition of Cutting_Opt to the list of components in the problem statement that most recently defined it.

\section*{Using named problems}

We next describe alternatives for changing the current problem. Any change will in general cause different objectives and constraints to be dropped, and different variables to be fixed, with the result that a different optimization problem is generated for the solver. The values associated with model components are not affected simply by a change in the current problem, however. All previously declared components are accessible regardless of the current problem, and they keep the same values unless they are explicitly changed by let or data statements, or by a solve in the case of variable and objective values and related quantities (such as dual values, slacks, and reduced costs).

Any problem statement that refers to only one problem (not an indexed collection of problems) has the effect of making that problem current. As an example, at the beginning of the cutting-stock script we want to make first one and then the other named problem current, so that we can adjust certain options in the environments of the problems. The problem statements in cut1 . run (Figure 14-3):
```

problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;
problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

```
serve both to define the new problems and to make those problems current. The analogous statements in cut2 .run are simpler:
```

problem Cutting_Opt;
option relax_integrality 1;
problem Pattern_Gen;
option relax_integrality 0;

```

These statements serve only to make the named problems current, because the problems have already been defined by problem statements in cut2. \(\bmod\) (Figure 14-6).

A problem statement may also refer to an indexed collection of problems, as in the multi2.run example cited previously:
```

problem SubII {p in PROD}: Reduced_Cost[p], ...

```

This form defines potentially many problems, one for each member of the set PROD. Subsequent problem statements can make members of a collection current one at a time, as in a loop having the form
```

for {p in PROD} {
problem SubII[p];
}

```
or in a statement such as problem SubII["coils"] that refers to a particular member.

As seen in previous examples, the solve statement can also include a problem name, in which case the named problem is made current and then sent to the solver. The effect of a statement such as solve Pattern_Gen is thus exactly the same as the effect of problem Pattern_Gen followed by solve.

\section*{Displaying named problems}

The command consisting of problem alone tells which problem is current:
```

ampl: model cut.mod;
ampl: data cut.dat;
ampl: problem;
problem Initial;
ampl: problem Cutting_Opt: Cut, Number, Fill;
ampl: problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
ampl: problem;
problem Pattern_Gen;

```

The current problem is always Initial until other named problems have been defined.
The show command can give a list of the named problems that have been defined:
```

ampl: show problems;
problems: Cutting_Opt Pattern_Gen

```

We can also use show to see the variables, objectives and constraints that make up a particular problem or indexed collection of problems:
```

ampl: show Cutting_Opt, Pattern_Gen;
problem Cutting_Opt: Fill, Number, Cut;
problem Pattern_Gen: Width_Limit, Reduced_Cost, Use;

```
and use expand to see the explicit objectives and constraints of the current problem, after all data values have been substituted:
```

ampl: expand Pattern_Gen;
minimize Reduced_Cost:
-0.166667*Use[20] - 0.416667*Use[45] - 0.5*Use[50]
- 0.5*Use[55] - 0.833333*Use[75] + 1;
subject to Width_Limit:
20*Use[20] + 45*Use[45] + 50*Use[50] + 55*Use[55] +
75*Use[75] <= 110;

```

See Section 12.6 for further discussion of show and expand.

\section*{Defining and using named environments}

In the same way that there is a current problem at any point in an AMPL session, there is also a current environment. Whereas a problem is a list of non-fixed variables and non-dropped objectives and constraints, an environment records the values of all AMPL options. By naming different environments, a script can easily switch between different collections of option settings.

In the default mode of operation, which is sufficient for many purposes, the current environment always has the same name as the current problem. At the start of an AMPL session the current environment is named Initial, and each subsequent problem statement that defines a new named problem also defines a new environment having the same name as the problem. An environment initially inherits all the option settings that existed when it was created, but it retains new settings that are made while it is current. Any problem or solve statement that changes the current problem also switches to the correspondingly named environment, with options set accordingly.

As an example, our script for the cutting stock problem (Figure 14-3) sets up the model and data and then proceeds as follows:
```

option solver cplex, solution_round 6;
option display_1col 0, display_transpose -10;
problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;
problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

```

Options solver and three others are changed (by the first two option statements) before any of the problem statements; hence their new settings are inherited by subsequently defined environments and are the same throughout the rest of the script. Next a problem statement defines a new problem and a new environment named Cutting_Opt, and makes them current. The ensuing option statement changes relax_integrality to 1 . Thereafter, when Cutting_Opt is the current problem (and environment) in the script, relax_integrality will have the value 1. Finally, another problem and option statement do much the same for problem (and environment) Pattern_Gen, except that relax_integrality is set back to 0 in that environment.

The result of these initial statements is to guarantee a proper setup for each of the subsequent solve statements in the repeat loop. The result of solve Cutting_Opt is to set the current environment to Cutting_Opt, thereby setting relax_integrality to 1 and causing the linear relaxation of the cutting optimization problem to be solved. Similarly the result of solve Pattern_Gen is to cause the pattern generation problem to be solved as an integer program. We could instead have used option statements within the loop to switch the setting of relax_integrality, but with this approach we have kept the loop - the key part of the script - as simple as possible.

In more complex situations, you can declare named environments independently of named problems, by use of a statement that consists of the keyword environ followed by a name:
```

environ Master;

```

Environments have their own name space. If the name has not been used previously as an environment name, it is defined as one and is associated with all of the current option values. Otherwise, the statement has the effect of making that environment (and its associated option values) current.

A previously declared environment may also be associated with the declaration of a new named problem, by placing environ and the environment name before the colon in the problem statement:
```

problem MasterII environ Master: ...

```

The named environment is then automatically made current whenever the associated problem becomes current. The usual creation of an environment having the same name as the problem is overridden in this case.

An indexed collection of environments may be declared in an environ statement by placing an AMPL indexing expression after the environment name. The name is then "subscripted" in the usual way to refer to individual environments.

Named environments handle changes in the same way as named problems. If an option's value is changed while some particular environment is current, the new value is recorded and is the value that will be reinstated whenever that environment is made current again.

\section*{Bibliography}

Vašek Chvátal, Linear Programming. Freeman (New York, NY, 1983). A general introduction to linear programming that has chapters on the cutting-stock problem sketched in Section 14.4 and on the Dantzig-Wolfe decomposition procedure that is behind the multi examples cited in Section 14.5.

Marshall L. Fisher, "An Applications Oriented Guide to Lagrangian Relaxation." Interfaces 15, 2 (1985) pp. 10-21. An introduction to the Lagrangian relaxation procedures underlying the trnloc2 script of Section 14.3.

Robert Fourer and David M. Gay, 'Experience with a Primal Presolve Algorithm.' In Large Scale Optimization: State of the Art, W. W. Hager, D. W. Hearn and P. M. Pardalos, eds., Kluwer Academic Publishers (Dordrecht, The Netherlands, 1994) pp. 135-154. A detailed description of the presolve procedure sketched in Section 14.1.
Robert W. Haessler, 'Selection and Design of Heuristic Procedures for Solving Roll Trim Problems." Management Science 34, 12 (1988) pp. 1460-1471. Descriptions of real cutting-stock problems, some amenable to the techniques of Section 14.4 and some not.

Leon S. Lasdon, Optimization Theory for Large Systems. Macmillan (New York, NY, 1970), reprinted by Dover (Mineola, NY, 2002). A classic source for several of the decomposition and generation procedures behind the scripts.

\title{
15
}

\section*{Network Linear Programs}

Models of networks have appeared in several chapters, notably in the transportation problems in Chapter 3. We now return to the formulation of these models, and AMPL's features for handling them.

Figure 15-1 shows the sort of diagram commonly used to describe a network problem. A circle represents a node of the network, and an arrow denotes an arc running from one node to another. A flow of some kind travels from node to node along the arcs, in the directions of the arrows.

An endless variety of models involve optimization over such networks. Many cannot be expressed in any straightforward algebraic way or are very difficult to solve. Our discussion starts with a particular class of network optimization models in which the decision variables represent the amounts of flow on the arcs, and the constraints are limited to two kinds: simple bounds on the flows, and conservation of flow at the nodes. Models restricted in this way give rise to the problems known as network linear programs. They are especially easy to describe and solve, yet are widely applicable. Some of their benefits extend to certain generalizations of the network flow form, which we also touch upon.

We begin with minimum-cost transshipment models, which are the largest and most intuitive source of network linear programs, and then proceed to other well-known cases: maximum flow, shortest path, transportation and assignment models. Examples are initially given in terms of standard AMPL variables and constraints, defined in var and subject to declarations. In later sections, we introduce node and arc declarations that permit models to be described more directly in terms of their network structure. The last section discusses formulating network models so that the resulting linear programs can be solved most efficiently.

\subsection*{15.1 Minimum-cost transshipment models}

As a concrete example, imagine that the nodes and arcs in Figure 15-1 represent cities and intercity transportation links. A manufacturing plant at the city marked PITT will


Figure 15-1: A directed network.
make 450,000 packages of a certain product in the next week, as indicated by the 450 at the left of the diagram. The cities marked NE and SE are the northeast and southeast distribution centers, which receive packages from the plant and transship them to warehouses at the cities coded as BOS, EWR, BWI, ATL and MCO. (Frequent flyers will recognize Boston, Newark, Baltimore, Atlanta, and Orlando.) These warehouses require 90, 120, 120, 70 and 50 thousand packages, respectively, as indicated by the numbers at the right. For each intercity link there is a shipping cost per thousand packages and an upper limit on the packages that can be shipped, indicated by the two numbers next to the corresponding arrow in the diagram.

The optimization problem over this network is to find the lowest-cost plan of shipments that uses only the available links, respects the specified capacities, and meets the requirements at the warehouses. We first model this as a general network flow problem, and then consider alternatives that specialize the model to the particular situation at hand. We conclude by introducing a few of the most common variations on the network flow constraints.

\section*{A general transshipment model}

To write a model for any problem of shipments from city to city, we can start by defining a set of cities and a set of links. Each link is in turn defined by a start city and an end city, so we want the set of links to be a subset of the set of ordered pairs of cities:
```

set CITIES;
set LINKS within (CITIES cross CITIES);

```

Corresponding to each city there is potentially a supply of packages and a demand for packages:
```

param supply {CITIES} >= 0;
param demand {CITIES} >= 0;

```

In the case of the problem described by Figure 15-1, the only nonzero value of supply should be the one for PITT, where packages are manufactured and supplied to the distribution network. The only nonzero values of demand should be those corresponding to the five warehouses.

The costs and capacities are indexed over the links:
```

param cost {LINKS} >= 0;
param capacity {LINKS} >= 0;

```
as are the decision variables, which represent the amounts to ship over the links. These variables are nonnegative and bounded by the capacities:
```

var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];

```

The objective is
```

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];

```
which represents the sum of the shipping costs over all of the links.
It remains to describe the constraints. At each city, the packages supplied plus packages shipped in must balance the packages demanded plus packages shipped out:
```

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]
= demand[k] + sum {(k,j) in LINKS} Ship[k,j];

```

Because the expression
```

sum {(i,k) in LINKS} Ship[i,k]

```
appears within the scope of definition of the dummy index \(k\), the summation is interpreted to run over all cities \(i\) such that ( \(i, k\) ) is in LINKS. That is, the summation is over all links into city \(k\); similarly, the second summation is over all links out of \(k\). This indexing convention, which was explained in Section 6.2, is frequently useful in describing network balance constraints algebraically. Figures \(15-2 \mathrm{a}\) and \(15-2 \mathrm{~b}\) display the complete model and data for the particular problem depicted in Figure 15-1.

If all of the variables are moved to the left of the \(=\) sign and the constants to the right, the Balance constraint becomes:
```

subject to Balance {k in CITIES}:
sum {(i,k) in LINKS} Ship[i,k]
- sum {(k,j) in LINKS} Ship[k,j]
= demand[k] - supply[k];

```

This variation may be interpreted as saying that, at each city k , shipments in minus shipments out must equal 'net demand'. If no city has both a plant and a warehouse (as in
```

set CITIES;
set LINKS within (CITIES cross CITIES);
param supply {CITIES} >= 0; \# amounts available at cities
param demand {CITIES} >= 0; \# amounts required at cities
check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];
param cost {LINKS} >= 0; \# shipment costs/1000 packages
param capacity {LINKS} >= 0; \# max packages that can be shipped
var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];
\# packages to be shipped
minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];
subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]
= demand[k] + Sum {(k,j) in LINKS} Ship[k,j];

```

Figure 15-2a: General transshipment model (net1 .mod).
```

set CITIES := PITT NE SE BOS EWR BWI ATL MCO ;
set LINKS := (PITT,NE) (PITT,SE)
(NE,BOS) (NE,EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);
param supply default 0 := PITT 450 ;
param demand default 0 :=
BOS 90, EWR 120, BWI 120, ATL 70, MCO 50;
param: cost capacity :=
PITT NE 2.5 250
PITT SE 3.5 250
NE BOS 1.7 100
NE EWR 0.7 100
NE BWI 1.3 100
SE EWR 1.3 100
SE BWI 0.8 100
SE ATL 0.2 100
SE MCO 2.1 100;

```

Figure 15-2b: Data for general transshipment model (net1. dat).
our example), then positive net demand always indicates warehouse cities, negative net demand indicates plant cities, and zero net demand indicates transshipment cities. Thus we could have gotten by with just one parameter net_demand in place of demand and supply, with the sign of net_demand \([k]\) indicating what goes on at city \(k\). Alternative formulations of this kind are often found in descriptions of network flow models.

\section*{Specialized transshipment models}

The preceding general approach has the advantage of being able to accommodate any pattern of supplies, demands, and links between cities. For example, a simple change in the data would suffice to model a plant at one of the distribution centers, or to allow shipment links between some of the warehouses.

The disadvantage of a general formulation is that it fails to show clearly what arrangement of supplies, demands and links is expected, and in fact will allow inappropriate arrangements. If we know that the situation will be like the one shown in Figure 15-1, with supply at one plant, which ships to distribution centers, which then ship to warehouses that satisfy demand, the model can be specialized to exhibit and enforce such a structure.

To show explicitly that there are three different kinds of cities in the specialized model, we can declare them separately. We use a symbolic parameter rather than a set to hold the name of the plant, to specify that only one plant is expected:
```

param p_city symbolic;
set D_CITY;
set W_CITY;

```

There must be a link between the plant and each distribution center, so we need a subset of pairs only to specify which links connect distribution centers to warehouses:
```

set DW_LINKS within (D_CITY cross W_CITY);

```

With the declarations organized in this way, it is impossible to specify inappropriate kinds of links, such as ones between two warehouses or from a warehouse back to the plant.

One parameter represents the supply at the plant, and a collection of demand parameters is indexed over the warehouses:
```

param p_supply >= 0;
param w_demand {W_CITY} >= 0;

```

These declarations allow supply and demand to be defined only where they belong.
At this juncture, we can define the sets CITIES and LINKS and the parameters supply and demand as they would be required by our previous model:
```

set CITIES = {p_city} union D_CITY union W_CITY;
set LINKS = ({p_city} cross D_CITY) union DW_LINKS;
param supply {k in CITIES} =
if k = p_city then p_supply else 0;
param demand {k in CITIES} =
if k in W_CITY then w_demand[k] else 0;

```

The rest of the model can then be exactly as in the general case, as indicated in Figures \(15-3 \mathrm{a}\) and \(15-3 \mathrm{~b}\).
```

param p_city symbolic;
set D_CITY;
set W_CITY;
set DW_LINKS within (D_CITY cross W_CITY);
param p_supply >= 0; \# amount available at plant
param w_demand {W_CITY} >= 0; \# amounts required at warehouses
check: p_supply = sum {k in W_CITY} w_demand[k];
set CITIES = {p_city} union D_CITY union W_CITY;
set LINKS = ({p_city} cross D_CITY) union DW_LINKS;
param supply {k in CITIES} =
if k = p_city then p_supply else 0;
param demand {k in CITIES} =
if k in W_CITY then w_demand[k] else 0;

Remainder same as general transshipment model

param cost {LINKS} >= 0; \# shipment costs/1000 packages
param capacity {LINKS} >= 0; \# max packages that can be shipped
var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];
\# packages to be shipped
minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];
subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]
= demand[k] + Sum {(k,j) in LINKS} Ship[k,j];

```

Figure 15-3a: Specialized transshipment model (net2 .mod).

Alternatively, we can maintain references to the different types of cities and links throughout the model. This means that we must declare two types of costs, capacities and shipments:
```

param pd_cost {D_CITY} >= 0;
param dw_cost {DW_LINKS} >= 0;
param pd_cap {D_CITY} >= 0;
param dw_cap {DW_LINKS} >= 0;
var PD_Ship {i in D_CITY} >= 0, <= pd_cap[i];
var DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j];

```

The "pd" quantities are associated with shipments from the plant to distribution centers; because they all relate to shipments from the same plant, they need only be indexed over D_CITY. The "dw' quantities are associated with shipments from distribution centers to warehouses, and so are naturally indexed over DW_LINKS.

The total shipment cost can now be given as the sum of two summations:
```

param p_city := PITT ;
set D_CITY := NE SE ;
set W_CITY := BOS EWR BWI ATL MCO ;
set DW_LINKS := (NE,BOS) (NE,EWR) (NE,BWI)
param p_supply := 450 ;
param w_demand :=
BOS 90, EWR 120, BWI 120, ATL 70, MCO 50;
param: cost capacity :=
PITT NE 2.5 250
PITT SE 3.5 250
NE BOS 1.7 100
NE EWR 0.7 100
NE BWI 1.3 100
SE EWR 1.3 100
SE BWI 0.8 100
SE ATL 0.2 100
SE MCO 2.1 100 ;

```

Figure 15-3b: Data for specialized transshipment model (net2 . dat).
```

 minimize Total_Cost:
 sum {i in D_CITY} pd_cost[i] * PD_Ship[i]
 + sum {(i,j) in DW_LINKS} dw_cost[i,j] * DW_Ship[i,j];
    ```

Finally, there must be three kinds of balance constraints, one for each kind of city. Shipments from the plant to the distribution centers must equal the supply at the plant:
```

subject to P_Bal: sum {i in D_CITY} PD_Ship[i] = p_supply;

```

At each distribution center, shipments in from the plant must equal shipments out to all the warehouses:
```

subject to D_Bal {i in D_CITY}:
PD_Ship[i] = sum {(i,j) in DW_LINKS} DW_Ship[i,j];

```

And at each warehouse, shipments in from all distribution centers must equal the demand:
```

subject to W_Bal {j in W_CITY}:
sum {(i,j) in DW_LINKS} DW_Ship[i,j] = w_demand[j];

```

The whole model, with appropriate data, is shown in Figures 15-4a and 15-4b.
The approaches shown in Figures 15-3 and 15-4 are equivalent, in the sense that they cause the same linear program to be solved. The former is more convenient for experimenting with different network structures, since any changes affect only the data for the initial declarations in the model. If the network structure is unlikely to change, however,
```

set D_CITY;
set W_CITY;
set DW_LINKS within (D_CITY cross W_CITY);
param p_supply >= 0; \# amount available at plant
param w_demand {W_CITY} >= 0; \# amounts required at warehouses
check: p_supply = sum {j in W_CITY} w_demand[j];
param pd_cost {D_CITY} >= 0; \# shipment costs/1000 packages
param dw_cost {DW_LINKS} >= 0;
param pd_cap {D_CITY} >= 0; \# max packages that can be shipped
param dw_cap {DW_LINKS} >= 0;
var PD_Ship {i in D_CITY} >= 0, <= pd_cap[i];
var DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j];
\# packages to be shipped
minimize Total_Cost:
sum {i in D_CITY} pd_cost[i] * PD_Ship[i] +
sum {(i,j) in DW_LINKS} dw_cost[i,j] * DW_Ship[i,j];
subject to P_Bal: sum {i in D_CITY} PD_Ship[i] = p_supply;
subject to D_Bal {i in D_CITY}:
PD_Ship[i] = sum {(i,j) in DW_LINKS} DW_Ship[i,j];
subject to W_Bal {j in W_CITY}:
sum {(i,j) in DW_LINKS} DW_Ship[i,j] = w_demand[j];

```

Figure 15-4a: Specialized transshipment model, version 2 (net3.mod).
the latter form facilitates alterations that affect only particular kinds of cities, such as the generalizations we describe next.

\section*{Variations on transshipment models}

Some balance constraints in a network flow model may have to be inequalities rather than equations. In the example of Figure 15-4, if production at the plant can sometimes exceed total demand at the warehouses, we should replace \(=\) by \(<=\) in the P_Bal constraints.

A more substantial modification occurs when the quantity of flow that comes out of an arc does not necessarily equal the quantity that went in. As an example, a small fraction of the packages shipped from the plant may be damaged or stolen before the packages reach the distribution center. Suppose that a parameter pd_loss is introduced to represent the loss rate:
```

param pd_loss {D_CITY} >= 0, < 1;

```

Then the balance constraints at the distribution centers must be adjusted accordingly:
```

set D_CITY := NE SE ;
set W_CITY := BOS EWR BWI ATL MCO ;
set DW_LINKS := (NE,BOS) (NE,EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);
param p_supply := 450 ;
param w_demand :=
BOS 90, EWR 120, BWI 120, ATL 70, MCO 50;
param: pd_cost pd_cap :=
NE 2.5 250
SE 3.5 250;
param: dw_cost dw_cap :=
NE BOS 1.7 100
NE EWR 0.7 100
NE BWI 1.3 100
SE EWR 1.3 100
SE BWI 0.8 100
SE ATL 0.2 100
SE MCO 2.1 100 ;

```

Figure 15-4b: Data for specialized transshipment model, version 2 (net3 . dat).
```

subject to D_Bal {i in D_CITY}:
(1-pd_loss[i]) * PD_Ship[i]
= sum {(i,j) in DW_LINKS} DW_Ship[i,j];

```

The expression to the left of the \(=\) sign has been modified to reflect the fact that only (1-pd_loss[i]) * PD_Ship[i] packages arrive at city i when PD_Ship[i] packages are shipped from the plant.

A similar variation occurs when the flow is not measured in the same units throughout the network. If demand is reported in cartons rather than thousands of packages, for example, the model will require a parameter to represent packages per carton:
```

param ppc integer > 0;

```

Then the demand constraints at the warehouses are adjusted as follows:
```

subject to W_Bal {j in W_CITY}:
sum {(i,j) in DW_LINKS} (1000/ppc) * DW_Ship[i,j]
= w_demand[j];

```

The term (1000/ppc) * DW_Ship[i,j] represents the number of cartons received at warehouse \(j\) when DW_Ship \([i, j]\) thousand packages are shipped from distribution center i.


Figure 15-5: Traffic flow network.

\subsection*{15.2 Other network models}

Not all network linear programs involve the transportation of things or the minimization of costs. We describe here three well-known model classes - maximum flow, shortest path, and transportation/assignment - that use the same kinds of variables and constraints for different purposes.

\section*{Maximum flow models}

In some network design applications the concern is to send as much flow as possible through the network, rather than to send flow at lowest cost. This alternative is readily handled by dropping the balance constraints at the origins and destinations of flow, while substituting an objective that stands for total flow in some sense.

As a specific example, Figure \(15-5\) presents a diagram of a simple traffic network. The nodes and arcs represent intersections and roads; capacities, shown as numbers next to the roads, are in cars per hour. We want to find the maximum traffic flow that can enter the network at \(a\) and leave at \(g\).

A model for this situation begins with a set of intersections, and symbolic parameters to indicate the intersections that serve as entrance and exit to the road network:
```

set INTER;
param entr symbolic in INTER;
param exit symbolic in INTER, <> entr;

```

The set of roads is defined as a subset of the pairs of intersections:
```

set ROADS within (INTER diff {exit}) cross (INTER diff {entr});

```

This definition ensures that no road begins at the exit or ends at the entrance.
Next, the capacity and traffic load are defined for each road:
```

set INTER; \# intersections
param entr symbolic in INTER; \# entrance to road network
param exit symbolic in INTER, <> entr; \# exit from road network
set ROADS within (INTER diff {exit}) cross (INTER diff {entr});
param cap {ROADS} >= 0; \# capacities
var Traff {(i,j) in ROADS} >= 0, <= cap[i,j]; \# traffic loads
maximize Entering_Traff: sum {(entr,j) in ROADS} Traff[entr,j];
subject to Balance {k in INTER diff {entr,exit}}:
sum {(i,k) in ROADS} Traff[i,k] = sum {(k,j) in ROADS} Traff[k,j];
data;
set INTER := a b c d e f g ;
param entr := a ;
param exit := g ;
param: ROADS: cap :=

| a b | 50, | a c | 100 |
| :--- | :--- | :--- | ---: |
| b d | 40, | b e | 20 |
| c d | 60, | $c \mathrm{f}$ | 20 |
| d e | 50, | d f | 60 |
| e g | 70, | f g | 70 ; |

```

Figure 15-6: Maximum traffic flow model and data (netmax.mod).
```

param cap {ROADS} >= 0;
var Traff {(i,j) in ROADS} >= 0, <= cap[i,j];

```

The constraints say that except for the entrance and exit, flow into each intersection equals flow out:
```

subject to Balance {k in INTER diff {entr,exit}}:
sum {(i,k) in ROADS} Traff[i,k]
= sum {(k,j) in ROADS} Traff[k,j];

```

Given these constraints, the flow out of the entrance must be the total flow through the network, which is to be maximized:
```

maximize Entering_Traff: sum {(entr,j) in ROADS} Traff[entr,j];

```

We could equally well maximize the total flow into the exit. The entire model, along with data for the example shown in Figure 15-5, is presented in Figure 15-6. Any linear programming solver will find a maximum flow of 130 cars per hour.

\section*{Shortest path models}

If you were to use the optimal solution to any of our models thus far, you would have to send each of the packages, cars, or whatever along some path from a supply (or entrance) node to a demand (or exit) node. The values of the decision variables do not
directly say what the optimal paths are, or how much flow must go on each one. Usually it is not too hard to deduce these paths, however, especially when the network has a regular or special structure.

If a network has just one unit of supply and one unit of demand, the optimal solution assumes a quite different nature. The variable associated with each arc is either 0 or 1 , and the arcs whose variables have value 1 comprise a minimum-cost path from the supply node to the demand node. Often the "costs" are in fact times or distances, so that the optimum gives a shortest path.

Only a few changes need be made to the maximum flow model of Figure 15-6 to turn it into a shortest path model. There are still a parameter and a variable associated with each road from \(i\) to \(j\), but we call them time[i,j] and Use[i,j], and the sum of their products yields the objective:
```

param time {ROADS} >= 0; \# times to travel roads
var Use {(i,j) in ROADS} >= 0; \# 1 iff (i,j) in shortest path
minimize Total_Time: sum {(i,j) in ROADS} time[i,j] * Use[i,j];

```

Since only those variables Use [i,j] on the optimal path equal 1 , while the rest are 0 , this sum does correctly represent the total time to traverse the optimal path. The only other change is the addition of a constraint to ensure that exactly one unit of flow is available at the entrance to the network:
```

subject to Start: sum {(entr,j) in ROADS} Use[entr,j] = 1;

```

The complete model is shown in Figure 15-7. If we imagine that the numbers on the arcs in Figure 15-5 are travel times in minutes rather than capacities, the data are the same; AMPL finds the solution as follows:
```

ampl: model netshort.mod;
ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 140
ampl: option omit_zero_rows 1;
ampl: display Use;
Use :=
a b 1
b e 1
e g 1

```

The shortest path is \(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{e} \rightarrow \mathrm{g}\), which takes 140 minutes.

\section*{Transportation and assignment models}

The best known and most widely used special network structure is the "bipartite" structure depicted in Figure 15-8. The nodes fall into two groups, one serving as origins of flow and the other as destinations. Each arc connects an origin to a destination.
```

set INTER; \# intersections
param entr symbolic in INTER; \# entrance to road network
param exit symbolic in INTER, <> entr; \# exit from road network
set ROADS within (INTER diff {exit}) cross (INTER diff {entr});
param time {ROADS} >= 0; \# times to travel roads
var Use {(i,j) in ROADS} >= 0; \# 1 iff (i,j) in shortest path
minimize Total_Time: sum {(i,j) in ROADS} time[i,j] * Use[i,j];
subject to Start: sum {(entr,j) in ROADS} Use[entr,j] = 1;
subject to Balance {k in INTER diff {entr,exit}}:
sum {(i,k) in ROADS} Use[i,k] = sum {(k,j) in ROADS} Use[k,j];
data;
set INTER := a b c d e f g ;
param entr := a ;
param exit := g ;
param: ROADS: time :=

| a b | 50, | a c | 100 |
| :--- | :--- | :--- | ---: |
| b d | 40, | b e | 20 |
| c d | 60, | c c | 20 |
| d e | 50, | d f | 60 |
| e g | 70, | f g | 70 ; |

```

Figure 15-7: Shortest path model and data (netshort.mod).

The minimum-cost transshipment model on this network is known as the transportation model. The special case in which every origin is connected to every destination was introduced in Chapter 3; an AMPL model and sample data are shown in Figures 3-1a and 3-1b. A more general example analogous to the models developed earlier in this chapter, where a set LINKS specifies the arcs of the network, appears in Figures 6-2a and 6-2b.

Every path from an origin to a destination in a bipartite network consists of one arc. Or, to say the same thing another way, the optimal flow along an arc of the transportation model gives the actual amount shipped from some origin to some destination. This property permits the transportation model to be viewed alternatively as a so-called assignment model, in which the optimal flow along an arc is the amount of something from the origin that is assigned to the destination. The meaning of assignment in this context can be broadly construed, and in particular need not involve a shipment in any sense.

One of the more common applications of the assignment model is matching people to appropriate targets, such as jobs, offices or even other people. Each origin node is associated with one person, and each destination node with one of the targets - for example, with one project. The sets might then be defined as follows:
```

set PEOPLE;
set PROJECTS;
set ABILITIES within (PEOPLE cross PROJECTS);

```


Figure 15-8: Bipartite network.

The set ABILITIES takes the role of LINKS in our earlier models; a pair ( \(i, j\) ) is placed in this set if and only if person i can work on project \(j\).

As one possibility for continuing the model, the supply at node \(i\) could be the number of hours that person \(i\) is available to work, and the demand at node \(j\) could be the number of hours required for project \(j\). Variables Assign \([i, j]\) would represent the number of hours of person i's time assigned to project \(j\). Also associated with each pair ( \(i, j\) ) would be a cost per hour, and a maximum number of hours that person i could contribute to job \(j\). The resulting model is shown in Figure 15-9.

Another possibility is to make the assignment in terms of people rather than hours. The supply at every node \(i\) is 1 (person), and the demand at node \(j\) is the number of people required for project \(j\). The supply constraints ensure that Assign [i,j] is not greater than 1 ; and it will equal 1 in an optimal solution if and only if person \(i\) is assigned to project \(j\). The coefficient cost [i, \(j]\) could be some kind of cost of assigning person \(i\) to project \(j\), in which case the objective would still be to minimize total cost. Or the coefficient could be the ranking of person \(i\) for project \(j\), perhaps on a scale from 1 (highest) to 10 (lowest). Then the model would produce an assignment for which the total of the rankings is the best possible.

Finally, we can imagine an assignment model in which the demand at each node \(j\) is also 1 ; the problem is then to match people to projects. In the objective, cost[i,j] could be the number of hours that person \(i\) would need to complete project \(j\), in which case the model would find the assignment that minimizes the total hours of work needed to finish all the projects. You can create a model of this kind by replacing all references
```

set PEOPLE;
set PROJECTS;
set ABILITIES within (PEOPLE cross PROJECTS);
param supply {PEOPLE} >= 0; \# hours each person is available
param demand {PROJECTS} >= 0; \# hours each project requires
check: sum {i in PEOPLE} supply[i] = sum {j in PROJECTS} demand[j];
param cost {ABILITIES} >= 0; \# cost per hour of work
param limit {ABILITIES} >= 0; \# maximum contributions to projects
var Assign {(i,j) in ABILITIES} >= 0, <= limit[i,j];
minimize Total_Cost:
sum {(i,j) in ABILITIES} cost[i,j] * Assign[i,j];
subject to Supply {i in PEOPLE}:
sum {(i,j) in ABILITIES} Assign[i,j] = supply[i];
subject to Demand {j in PROJECTS}:
sum {(i,j) in ABILITIES} Assign[i,j] = demand[j];

```

Figure 15-9: Assignment model (netasgn.mod).
to supply[i] and demand[j] by 1 in Figure 15-9. Objective coefficients representing rankings are an option for this model as well, giving rise to the kind of assignment model that we used as an example in Section 3.3.

\subsection*{15.3 Declaring network models by node and arc}

AMPL's algebraic notation has great power to express a variety of network linear programs, but the resulting constraint expressions are often not as natural as we would like. While the idea of constraining 'flow out minus flow in'" at each node is easy to describe and understand, the corresponding algebraic constraints tend to involve terms like
```

sum {(i,k) in LINKS} Ship[i,k]

```
that are not so quickly comprehended. The more complex and realistic the network, the worse the problem. Indeed, it can be hard to tell whether a model's algebraic constraints represent a valid collection of flow balances on a network, and consequently whether specialized network optimization software (described later in this chapter) can be used.

Algebraic formulations of network flows tend to be problematical because they are constructed explicitly in terms of variables and constraints, while the nodes and arcs are merely implicit in the way that the constraints are structured. People prefer to approach network flow problems in the opposite way. They imagine giving an explicit definition of nodes and arcs, from which flow variables and balance constraints implicitly arise. To deal with this situation, AMPL provides an alternative that allows network concepts to be declared directly in a model.

The network extensions to AMPL include two new kinds of declaration, node and arc, that take the place of the subject to and var declarations in an algebraic constraint formulation. The node declarations name the nodes of a network, and characterize the flow balance constraints at the nodes. The arc declarations name and define the arcs, by specifying the nodes that arcs connect, and by providing optional information such as bounds and costs that are associated with arcs.

This section introduces node and arc by showing how they permit various examples from earlier in this chapter to be reformulated conveniently. The following section presents the rules for these declarations more systematically.

\section*{A general transshipment model}

In rewriting the model of Figure 15-2a using node and arc, we can retain all of the set and param declarations and associated data. The changes affect only the three declarations - minimize, var, and subject to - that define the linear program.

There is a node in the network for every member of the set CITIES. Using a node declaration, we can say this directly:
```

node Balance {k in CITIES}: net_in = demand[k] - supply[k];

```

The keyword net_in stands for "net input'", that is, the flow in minus the flow out, so this declaration says that net flow in must equal net demand at each node Balance [k]. Thus it says the same thing as the constraint named Balance [ \(k\) ] in the algebraic version, except that it uses the concise term net_in in place of the lengthy expression
```

sum {(i,k) in LINKS} Ship[i,k] - Sum {(k,j) in LINKS} Ship[k,j]

```

Indeed, the syntax of subject to and node are practically the same except for the way that the conservation-of-flow constraint is stated. (The keyword net_out may also be used to stand for flow out minus flow in, so that we could have written net_out = supply[k] - demand[k].)

There is an arc in the network for every pair in the set LINKS. This too can be said directly, using an arc declaration:
```

arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
from Balance[i], to Balance[j], obj Total_Cost cost[i,j];

```

An arc Ship[i,j] is defined for each pair in LINKS, with bounds of 0 and capacity[i,j] on its flow; to this extent, the arc and var declarations are the same. The arc declaration contains additional phrases, however, to say that the arc runs from the node named Balance[i] to the node named Balance[j], with a linear coefficient of cost[i,j] in the objective function named Total_Cost. These phrases use the keywords from, to, and obj.

Since the information about the objective function is included in the arc declaration, it is not needed in the minimize declaration, which reduces to:
```

minimize Total_Cost;

```
```

set CITIES;
set LINKS within (CITIES cross CITIES);
param supply {CITIES} >= 0; \# amounts available at cities
param demand {CITIES} >= 0; \# amounts required at cities
check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];
param cost {LINKS} >= 0; \# shipment costs/1000 packages
param capacity {LINKS} >= 0; \# max packages that can be shipped
minimize Total_Cost;
node Balance {k in CITIES}: net_in = demand[k] - supply[k];
arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
from Balance[i], to Balance[j], obj Total_Cost cost[i,j];

```

Figure 15-10: General transshipment model with node and arc (net1node.mod).

The whole model is shown in Figure 15-10.
As this description suggests, arc and node take the place of var and subject to, respectively. In fact AMPL treats an arc declaration as a definition of variables, so that you would still say display Ship to look at the optimal flows in the network model of Figure 15-10; it treats a node declaration as a definition of constraints. The difference is that node and arc present the model in a way that corresponds more directly to its appearance in a network diagram. The description of the nodes always comes first, followed by a description of how the arcs connect the nodes.

\section*{A specialized transshipment model}

The node and arc declarations make it easy to define a linear program for a network that has several different kinds of nodes and arcs. For an example we return to the specialized model of Figure 15-4a.

The network has a plant node, a distribution center node for each member of D_CITY, and a warehouse node for each member of W_CITY. Thus the model requires three node declarations:
```

node Plant: net_out = p_supply;
node Dist {i in D_CITY};
node Whse {j in W_CITY}: net_in = w_demand[j];

```

The balance conditions say that flow out of node Plant must be p_supply, while flow into node Whse [j] is w_demand [j]. (The network has no arcs into the plant or out of the warehouses, so net_out and net_in are just the flow out and flow in, respectively.) The conditions at node Dist[i] could be written either net_in = 0 or net_out \(=0\), but since these are assumed by default we need not specify any condition at all.
```

set D_CITY;
set W_CITY;
set DW_LINKS within (D_CITY cross W_CITY);
param p_supply >= 0; \# amount available at plant
param w_demand {W_CITY} >= 0; \# amounts required at warehouses
check: p_supply = sum {j in W_CITY} w_demand[j];
param pd_cost {D_CITY} >= 0; \# shipment costs/1000 packages
param dw_cost {DW_LINKS} >= 0;
param pd_cap {D_CITY} >= 0; \# max packages that can be shipped
param dw_cap {DW_LINKS} >= 0;
minimize Total_Cost;
node Plant: net_out = p_supply;
node Dist {i in D_CITY};
node Whse {j in W_CITY}: net_in = w_demand[j];
arc PD_Ship {i in D_CITY} >= 0, <= pd_cap[i],
from Plant, to Dist[i], obj Total_Cost pd_cost[i];
arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[j], obj Total_Cost dw_cost[i,j];

```

Figure 15-11: Specialized transshipment model with node and arc (net3node.mod).

This network has two kinds of arcs. There is an arc from the plant to each member of D_CITY, which can be declared by:
```

arc PD_Ship {i in D_CITY} >= 0, <= pd_cap[i],
from Plant, to Dist[i], obj Total_Cost pd_cost[i];

```

And there is an arc from distribution center \(i\) to warehouse \(j\) for each pair ( \(i, j\) ) in DW_LINKS:
```

arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[j], obj Total_Cost dw_cost[i,j];

```

The arc declarations specify the relevant bounds and objective coefficients, as in our previous example. The whole model is shown in Figure 15-11.

\section*{Variations on transshipment models}

The balance conditions in node declarations may be inequalities, like ordinary algebraic balance constraints. If production at the plant can sometimes exceed total demand at the warehouses, it would be appropriate to give the condition in the declaration of node Plant as net_out <= p_supply.

An arc declaration can specify losses in transit by adding a factor at the end of the to phrase:
```

arc PD_Ship {i in D_CITY} >= 0, <= pd_cap[i],
from Plant, to Dist[i] 1-pd_loss[i],
obj Total_Cost pd_cost[i];

```

This is interpreted as saying that PD_Ship [i] is the number of packages that leave node Plant, but (1-pd_loss[i]) * PD_Ship[i] is the number that enter node Dist[i].

The same option can be used to specify conversions. To use our previous example, if shipments are measured in thousands of packages but demands are measured in cartons, the arcs from distribution centers to warehouses should be declared as:
```

arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[j] (1000/ppc),
obj Total_Cost dw_cost[i,j];

```

If the shipments to warehouses are also measured in cartons, the factor should be applied at the distribution center:
```

arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i] (ppc/1000), to Whse[j],
obj Total_Cost dw_cost[i,j];

```

A loss factor could also be applied to the to phrase in these examples.

\section*{Maximum flow models}

In the diagram of Figure 15-5 that we have used to illustrate the maximum flow problem, there are three kinds of intersections represented by nodes: the one where traffic enters, the one where traffic leaves, and the others where traffic flow is conserved. Thus a model of the network could have three corresponding node declarations:
```

node Entr_Int: net_out >= 0;
node Exit_Int: net_in >= 0;
node Intersection {k in INTER diff {entr,exit}};

```

The condition net_out >= 0 implies that the flow out of node Entr_Int may be any amount at all; this is the proper condition, since there is no balance constraint on the entrance node. An analogous comment applies to the condition for node Exit_Int.

There is one arc in this network for each pair ( \(i, j\) ) in the set ROADS. Thus the declaration should look something like this:
```

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j], \# NOT RIGHT
from Intersection[i], to Intersection[j],
obj Entering_Traff (if i = entr then 1);

```

Since the aim is to maximize the total traffic leaving the entrance node, the arc is given a coefficient of 1 in the objective if and only if i takes the value entr. When i does take this value, however, the arc is specified to be from Intersection[entr], a node that does not exist; the arc should rather be from node Entr_Int. Similarly, when \(j\) takes the value exit, the arc should not be to Intersection [exit], but to

Exit_Int. AMPL will catch these errors and issue a message naming one of the nonexistent nodes that has been referenced.

It might seem reasonable to use an if-then-else to get around this problem, in the following way:
```

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j], \# SYNTAX ERROR
from (if i = entr then Entr_Int else Intersection[i]),
to (if j = exit then Exit_Int else Intersection[j]),
obj Entering_Traff (if i = entr then 1);

```

However, the if-then-else construct in AMPL does not apply to model components such as Entr_Int and Intersection[i]; this version will be rejected as a syntax error. Instead you need to use from and to phrases qualified by indexing expressions:
```

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j],
from {if i = entr} Entr_Int,
from {if i <> entr} Intersection[i],
to {if j = exit} Exit_Int,
to {if j <> exit} Intersection[j],
obj Entering_Traff (if i = entr then 1);

```

The special indexing expression beginning with if works much the same way here as it does for constraints (Section 8.4); the from or to phrase is processed if the condition following if is true. Thus Traff \([i, j]\) is declared to be from Entr_Int if \(i\) equals entr, and to be from Intersection[i] if \(i\) is not equal to entr, which is what we intend.

As an alternative, we can combine the declarations of the three different kinds of nodes into one. Observing that net_out is positive or zero for Entr_Int, negative or zero for Exit_Int, and zero for all other nodes Intersection [i], we can declare:
```

node Intersection {k in INTER}:
(if k = exit then -Infinity)
<= net_out <= (if k = entr then Infinity);

```

The nodes that were formerly declared as Entr_Int and Exit_Int are now just Intersection [entr] and Intersection [exit], and consequently the arc declaration that we previously marked 'not right' now works just fine. The choice between this version and the previous one is entirely a matter of convenience and taste. (Infinity is a predefined AMPL parameter that may be used to specify any 'infinitely large"' bound; its technical definition is given in Section A.7.2.)

Arguably the AMPL formulation that is most convenient and appealing is neither of the above, but rather comes from interpreting the network diagram of Figure 15-5 in a slightly different way. Suppose that we view the arrows into the entrance node and out of the exit node as representing additional arcs, which happen to be adjacent to only one node rather than two. Then flow in equals flow out at every intersection, and the node declaration simplifies to:
```

node Intersection {k in INTER};

```
```

set INTER; \# intersections
param entr symbolic in INTER; \# entrance to road network
param exit symbolic in INTER, <> entr; \# exit from road network
set ROADS within (INTER diff {exit}) cross (INTER diff {entr});
param cap {ROADS} >= 0; \# capacities of roads
node Intersection {k in INTER};
arc Traff_In >= 0, to Intersection[entr];
arc Traff_Out >= 0, from Intersection[exit];
arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j],
from Intersection[i], to Intersection[j];
maximize Entering_Traff: Traff_In;
data;
set INTER := a b c d e f g ;
param entr := a ;
param exit := g ;
param: ROADS: cap :=

| | | | |
| :---: | :---: | :---: | :---: |
| a b | 50, | a c | 100 |
| b d | 40, | b e | 20 |
| c d | 60, | c f | 20 |
| d e | 50, | d f | 60 |
| e g | 70, | f g | 70 ; |

```

Figure 15-12: Maximum flow model with node and arc (netmax 3 .mod).

The two arcs "hanging" at the entrance and exit are defined in the obvious way, but include only a to or a from phrase:
```

arc Traff_In >= 0, to Intersection[entr];
arc Traff_Out >= 0, from Intersection[exit];

```

The arcs that represent roads within the network are declared as before:
```

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j],
from Intersection[i], to Intersection[j];

```

When the model is represented in this way, the objective is to maximize Traff_In (or equivalently Traff_Out). We could do this by adding an obj phrase to the arc declaration for Traff_In, but in this case it is perhaps clearer to define the objective algebraically:
```

maximize Entering_Traff: Traff_In;

```

This version is shown in full in Figure 15-12.

\subsection*{15.4 Rules for node and arc declarations}

Having defined node and arc by example, we now describe more comprehensively the required and optional elements of these declarations, and comment on their interaction with the conventional declarations minimize or maximize, subject to, and var when both kinds appear in the same model.

\section*{node declarations}

A node declaration begins with the keyword node, a name, an optional indexing expression, and a colon. The expression following the colon, which describes the balance condition at the node, may have any of the following forms:
```

net-expr = arith-expr
net-expr <= arith-expr
net-expr >= arith-expr
arith-expr = net-expr
arith-expr <= net-expr
arith-expr >= net-expr
arith-expr <= net-expr <= arith-expr
arith-expr >= net-expr >= arith-expr

```
where an arith-expr may be any arithmetic expression that uses previously declared model components and currently defined dummy indices. A net-expr is restricted to one of the following:
```

\pm net_in

```
\(\pm\) net_in + arith-expr \(\pm\) net_out + arith-expr
arith-expr \(\pm\) net_in arith-expr \(\pm\) net_out
(and a unary + may be omitted). Each node defined in this way induces a constraint in the resulting linear program. A node name is treated like a constraint name in the AMPL command environment, for example in a display statement.

For declarations that use net_in, AMPL generates the constraint by substituting, at the place where net_in appears in the balance conditions, a linear expression that represents flow into the node minus flow out of the node. Declarations that use net_out are handled the same way, except that AMPL substitutes flow out minus flow in. The expressions for flow in and flow out are deduced from the arc declarations.

\section*{arc declarations}

An arc declaration consists of the keyword arc, a name, an optional indexing expression, and a series of optional qualifying phrases. Each arc creates a variable in the resulting linear program, whose value is the amount of flow over the arc; the arc name may be used to refer to this variable elsewhere. All of the phrases that may appear in a var definition have the same significance in an arc definition; most commonly, the \(>=\)
and <= phrases are used to specify values for lower and upper bounds on the flow along the arc.

The from and to phrases specify the nodes connected by an arc. Usually these consist of the keyword from or to followed by a node name. An arc is interpreted to contribute to the flow out of the from node, and to the flow into the to node; these interpretations are what permit the inference of the constraints associated with the nodes.

Typically one from and one to phrase are specified in an arc declaration. Either may be omitted, however, as in Figure 15-12. Either may also be followed by an optional indexing expression, which should be one of two kinds:
- An indexing expression that specifies - depending on the data - an empty set (in which case the from or to phrase is ignored) or a set with one member (in which case the from or to phrase is used).
- An indexing expression of the special form \{if logical-expr\}, which causes the from or to phrase to be used if and only if the logical-expr evaluates to true.
It is possible to specify that an arc carries flow out of or into two or more nodes, by giving more than one from or to phrase, or by using an indexing expression that specifies a set having more than one member. The result is not a network linear program, however, and AMPL displays an appropriate warning message.

At the end of a from or to phrase, you may add an arithmetic expression representing a factor to multiply the flow, as shown in our examples of shipping-loss and change-of-unit variations in Section 15.3. If the factor is in the to phrase, it multiplies the arc variable in determining the flow into the specified node; that is, for a given flow along the arc, an amount equal to the to-factor times the flow is considered to enter the to node. A factor in the from phrase is interpreted analogously. The default factor is 1.

An optional obj phrase specifies a coefficient that will multiply the arc variable to create a linear term in a specified objective function. Such a phrase consists of the keyword obj, the name of an objective that has previously been defined in a minimize or maximize declaration, and an arithmetic expression for the coefficient value. The keyword may be followed by an indexing expression, which is interpreted as for the from and to phrases.

\section*{Interaction with objective declarations}

If all terms in the objective function are specified through obj phrases in arc declarations, the declaration of the objective is simply minimize or maximize followed by an optional indexing expression and a name. This declaration must come before the arc declarations that refer to the objective.

Alternatively, arc names may be used as variables to specify the objective function in the usual algebraic way. In this case the objective must be declared after the arcs, as in Figure 15-12.
```

set CITIES;
set LINKS within (CITIES cross CITIES);
set PRODS;
param supply {CITIES,PRODS} >= 0; \# amounts available at cities
param demand {CITIES,PRODS} >= 0; \# amounts required at cities
check {p in PRODS}:
sum {i in CITIES} supply[i,p] = sum {j in CITIES} demand[j,p];
param cost {LINKS,PRODS} >= 0; \# shipment costs/1000 packages
param capacity {LINKS,PRODS} >= 0; \# max packages shipped
param cap_joint {LINKS} >= 0; \# max total packages shipped/link
minimize Total_Cost;
node Balance {k in CITIES, p in PRODS}:
net_in = demand[k,p] - supply[k,p];
arc Ship {(i,j) in LINKS, p in PRODS} >= 0, <= capacity[i,j,p],
from Balance[i,p], to Balance[j,p], obj Total_Cost cost[i,j,p];
subject to Multi {(i,j) in LINKS}:
sum {p in PRODS} Ship[i,j,p] <= cap_joint[i,j];

```

Figure 15-13: Multicommodity flow with side constraints (netmulti.mod).

\section*{Interaction with constraint declarations}

The components defined in arc declarations may be used as variables in additional subject to declarations. The latter represent "side constraints' that are imposed in addition to balance of flow at the nodes.

As an example, consider how a multicommodity flow problem can be built from the node-and-arc network formulation in Figure 15-10. Following the approach in Section 4.1, we introduce a set PRODS of different products, and add it to the indexing of all parameters, nodes and arcs. The result is a separate network linear program for each product, with the objective function being the sum of the costs for all products. To tie these networks together, we provide for a joint limit on the total shipments along any link:
```

param cap_joint {LINKS} >= 0;
subject to Multi {(i,j) in LINKS}:
sum {p in PRODS} Ship[p,i,j] <= cap_joint[i,j];

```

The final model, shown in Figure 15-13, is not a network linear program, but the network and non-network parts of it are cleanly separated.

\section*{Interaction with variable declarations}

Just as an arc variable may be used in a subject to declaration, an ordinary var variable may be used in a node declaration. That is, the balance condition in a node
declaration may contain references to variables that were defined by preceding var declarations. These references define "side variables' to the network linear program.

As an example, we again replicate the formulation of Figure 15-10 over the set PRODS. This time we tie the networks together by introducing a set of feedstocks and associated data:
```

set FEEDS;
param yield {PRODS, FEEDS} >= 0;
param limit {FEEDS,CITIES} >= 0;

```

We imagine that at city \(k\), in addition to the amounts supply \([p, k]\) of products available to be shipped, up to limit \([\mathrm{f}, \mathrm{k}]\) of feedstock f can be converted into products; one unit of feedstock \(f\) gives rise to yield [p,f] units of each product \(p\). A variable Feed \([f, k]\) represents the amount of feedstock \(f\) used at city \(k\) :
```

var Feed {f in FEEDS, k in CITIES} >= 0, <= limit[f,k];

```

The balance condition for product p at city k can now say that the net flow out equals net supply plus the sum of the amounts derived from the various feedstocks:
```

node Balance {p in PRODS, k in CITIES}:
net_out = supply[p,k] - demand[p,k]
+ sum {f in FEEDS} yield[p,f] * Feed[f,k];

```

The arcs are unchanged, leading to the model shown in Figure 15-14. At a given city \(k\), the variables Feed \([\mathrm{f}, \mathrm{k}]\) appear in the node balance conditions for all the different products, bringing together the product networks into a single linear program.

\subsection*{15.5 Solving network linear programs}

All of the models that we have described in this chapter give rise to linear programs that have a "network" property of some kind. AMPL can send these linear programs to an LP solver and retrieve the optimal values, much as for any other class of LPs. If you use AMPL in this way, the network structure is helpful mainly as a guide to formulating the model and interpreting the results.

Many of the models that we have described belong as well to a more restricted class of problems that (confusingly) are also known as "network linear programs." In modeling terms, the variables of a network LP must represent flows on the arcs of a network, and the constraints must be only of two types: bounds on the flows along the arcs, and limits on flow out minus flow in at the nodes. A more technical way to say the same thing is that each variable of a network linear program must appear in at most two constraints (aside from lower or upper bounds on the variables), such that the variable has a coefficient of +1 in at most one constraint, and a coefficient of -1 in at most one constraint.
"Pure" network linear programs of this restricted kind have some very strong properties that make their use particularly desirable. So long as the supplies, demands, and
```

set CITIES;
set LINKS within (CITIES cross CITIES);
set PRODS;
param supply {PRODS,CITIES} >= 0; \# amounts available at cities
param demand {PRODS,CITIES} >= 0; \# amounts required at cities
check {p in PRODS}:
sum {i in CITIES} supply[p,i] = sum {j in CITIES} demand[p,j];
param cost {PRODS,LINKS} >= 0; \# shipment costs/1000 packages
param capacity {PRODS,LINKS} >= 0; \# max packages shipped of product
set FEEDS;
param yield {PRODS,FEEDS} >= 0; \# amounts derived from feedstocks
param limit {FEEDS,CITIES} >= 0; \# feedstocks available at cities
minimize Total_Cost;
var Feed {f in FEEDS, k in CITIES} >= 0, <= limit[f,k];
node Balance {p in PRODS, k in CITIES}:
net_out = supply[p,k] - demand[p,k]
+ sum {f in FEEDS} yield[p,f] * Feed[f,k];
arc Ship {p in PRODS, (i,j) in LINKS} >= 0, <= capacity[p,i,j],
from Balance[p,i], to Balance[p,j],
obj Total_Cost cost[p,i,j];

```

Figure 15-14: Multicommodity flow with side variables (netfeeds.mod).
bounds are integers, a network linear program must have an optimal solution in which all flows are integers. Moreover, if the solver is of a kind that finds 'extreme" solutions (such as those based on the simplex method) it will always find one of the all-integer optimal solutions. We have taken advantage of this property, without explicitly mentioning it, in assuming that the variables in the shortest path problem and in certain assignment problems come out to be either zero or one, and never some fraction in between.

Network linear programs can also be solved much faster than other linear programs of comparable size, through the use of solvers that are specialized to take advantage of the network structure. If you write your model in terms of node and arc declarations, AMPL automatically communicates the network structure to the solver, and any special network algorithms available in the solver can be applied automatically. On the other hand, a network expressed algebraically using var and subject to may or may not be recognized by the solver, and certain options may have to be set to ensure that it is recognized. For example, when using the algebraic model of Figure 15-4a, you may see the usual response from the general LP algorithm:

\footnotetext{
ampl: model net3.mod; data net3.dat; solve;
CPLEX 8.0.0: optimal solution; objective 1819
1 dual simplex iterations ( 0 in phase I)
}

But when using the equivalent node and arc formulation of Figure 15-11, you may get a somewhat different response to reflect the application of a special network LP algorithm:
```

ampl: model net3node.mod
ampl: data net3.dat
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 1819
Network extractor found 7 nodes and 7 arcs.
7 network simplex iterations.
O simplex iterations (0 in phase I)

```

To determine how your favorite solver behaves in this situation, consult the solverspecific documentation that is supplied with your AMPL installation.

Because network linear programs are much easier to solve, especially with integer data, the success of a large-scale application may depend on whether a pure network formulation is possible. In the case of the multicommodity flow model of Figure 15-13, for example, the joint capacity constraints disrupt the network structure - they represent a third constraint in which each variable figures - but their presence cannot be avoided in a correct representation of the problem. Multicommodity flow problems thus do not necessarily have integer solutions, and are generally much harder to solve than singlecommodity flow problems of comparable size.

In some cases, a judicious reformulation can turn what appears to be a more general model into a pure network model. Consider, for instance, a generalization of Figure 15-10 in which capacities are defined at the nodes as well as along the arcs:
```

param city_cap {CITIES} >= 0;
param link_cap {LINKS} >= 0;

```

The arc capacities represent, as before, upper limits on the shipments between cities. The node capacities limit the throughput, or total flow handled at a city, which may be written as the supply at the city plus the sum of the flows in, or equivalently as the demand at the city plus the sum of the flows out. Using the former, we arrive at the following constraint:
```

subject to through_limit {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k] <= node_cap[k];

```

Viewed in this way, the throughput limit is another example of a "side constraint'" that disrupts the network structure by adding a third coefficient for each variable. But we can achieve the same effect without a side constraint, by using two nodes to represent each city; one receives flow into a city plus any supply, and the other sends flow out of a city plus any demand:
```

node Supply {k in CITIES}: net_out = supply[k];
node Demand {k in CITIES}: net_in = demand[k];

```

A shipment link between cities \(i\) and \(j\) is represented by an arc that connects the node Demand[i] to node Supply[j]:
```

set CITIES;
set LINKS within (CITIES cross CITIES);
param supply {CITIES} >= 0; \# amounts available at cities
param demand {CITIES} >= 0; \# amounts required at cities
check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];
param cost {LINKS} >= 0; \# shipment costs per ton
param city_cap {CITIES} >= 0; \# max throughput at cities
param link_cap {LINKS} >= 0; \# max shipment over links
minimize Total_Cost;
node Supply {k in CITIES}: net_out = supply[k];
node Demand {k in CITIES}: net_in = demand[k];
arc Ship {(i,j) in LINKS} >= 0, <= link_cap[i,j],
from Demand[i], to Supply[j], obj Total_Cost cost[i,j];
arc Through {k in CITIES} >= 0, <= city_cap[k],
from Supply[k], to Demand[k];

```

Figure 15-15: Transshipment model with node capacities (netthru.mod).
```

arc Ship {(i,j) in LINKS} >= 0, <= link_cap[i,j],
from Demand[i], to Supply[j], obj Total_Cost cost[i,j];

```

The throughput at city \(k\) is represented by a new kind of arc, from Supply \([k]\) to Demand [k]:
```

arc Through {k in cities} >= 0, <= city_cap[k],
from Supply[k], to Demand[k];

```

The throughput limit is now represented by an upper bound on this arc's flow, rather than by a side constraint, and the network structure of the model is preserved. A complete listing appears in Figure 15-15.

The preceding example exhibits an additional advantage of using the node and arc declarations when developing a network model. If you use only node and arc in their simple forms - no variables in the node conditions, and no optional factors in the from and to phrases - your model is guaranteed to give rise only to pure network linear programs. By contrast, if you use var and subject to, it is your responsibility to ensure that the resulting linear program has the necessary network structure.

Some of the preceding comments can be extended to "generalized network" linear programs in which each variable still figures in at most two constraints, but not necessarily with coefficients of +1 and -1 . We have seen examples of generalized networks in the cases where there is a loss of flow or change of units on the arcs. Generalized network LPs do not necessarily have integer optimal solutions, but fast algorithms for them do exist. A solver that promises a "network"' algorithm may or may not have an extension to generalized networks; check the solver-specific documentation before you make any assumptions.

\section*{Bibliography}

Ravindra K. Ahuja, Thomas L. Magnanti and James B. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice-Hall (Englewood Cliffs, NJ, 1993).

Dimitri P. Bertsekas Network Optimization: Continuous and Discrete Models. Athena Scientific (Princeton, NJ, 1998).
L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks. Princeton University Press (Princeton, NJ, 1962). A highly influential survey of network linear programming and related topics, which stimulated much subsequent study.
Fred Glover, Darwin Klingman and Nancy V. Phillips, Network Models in Optimization and their Applications in Practice. John Wiley \& Sons (New York, 1992).
Walter Jacobs, "The Caterer Problem." Naval Research Logistics Quarterly 1 (1954) pp. 154-165. The origin of the network problem described in Exercise 15-8.
Katta G. Murty, Network Programming. Prentice-Hall (Englewood Cliffs, NJ, 1992).

\section*{Exercises}

15-1. The following diagram can be interpreted as representing a network transshipment problem:


The arrows into nodes A and B represent supply in the indicated amounts, 100 and 50; the arrows out of nodes E and F similarly represent demand in the amounts 30 and 120. The remaining arrows indicate shipment possibilities, and the numbers on them are the unit shipping costs. There is a capacity of 80 on every arc.
(a) Solve this problem by developing appropriate data statements to go along with the model of Figure 15-2a.
(b) Check that you get the same solution using the node and arc formulation of Figure 15-10. Does the solver appear to be using the same algorithm as in (a)? Try this comparison with each LP solver available to you.

15-2. Reinterpret the numbers on the arcs between nodes, in the diagram of the preceding exercise, to solve the following problems. (Ignore the numbers on the arrows into A and B and on the arrows out of E and F.)
(a) Regarding the numbers on the arcs between nodes as lengths, use a model such as the one in Figure 15-7 to find the shortest path from A to F.
(b) Regarding the numbers on the arcs between nodes as capacities, use a model such as the one in Figure 15-6 to find the maximum flow from A to F.
(c) Generalize the model from (b) so that it can find the maximum flow from any subset of nodes to any other subset of nodes, in some meaningful sense. Use your generalization to find the maximum flow from A and B to E and F.
15-3. Section 4.2 showed how a multiperiod model could be constructed by replicating a static model over time periods, and using inventories to tie the periods together. Consider applying the same approach to the specialized transshipment model of Figure 15-4a.
(a) Construct a multi-week version of Figure 15-4a, with the inventories kept at the distribution centers (the members of D_CITY).
(b) Now consider expanding the data of Figure \(15-4 \mathrm{~b}\) for this model. Suppose that the initial inventory is 200 at NE and 75 at SE , and that the inventory carrying cost per 1000 packages is 0.15 per week at NE and 0.12 per week at SE. Let the supplies and demands over 5 weeks be as follows:

Demand
\begin{tabular}{cccrccc} 
Week & Supply & BOS & EWR & BWI & ATL & MCO \\
1 & 450 & 50 & 90 & 95 & 50 & 20 \\
2 & 450 & 65 & 100 & 105 & 50 & 20 \\
3 & 400 & 70 & 100 & 110 & 50 & 25 \\
4 & 250 & 70 & 110 & 120 & 50 & 40 \\
5 & 325 & 80 & 115 & 120 & 55 & 45
\end{tabular}

Leave the cost and capacity data unchanged, the same in all weeks. Develop an appropriate data file for this situation, and solve the multi-week problem.
(c) The multi-week model in this case can be viewed as a pure network model, with arcs representing inventories as well as shipments. To show that this is the case, reformulate the model from (a) using only node and arc declarations for the constraints and variables.
15-4. For each of the following network problems, construct a data file that permits it to be solved using the general transshipment model of Figure 15-2a.
(a) The transportation problem of Figure 3-1.
(b) The assignment problem of Figure 3-2.
(c) The maximum flow problem of Figure 15-6.
(d) The shortest path problem of Figure 15-7.

15-5. Reformulate each of the following network models using node and arc declarations as much as possible:
(a) The transportation model of Figure 6-2a.
(b) The shortest path model of Figure 15-7.
(c) The production/transportation model of Figure 4-6.
(d) The multicommodity transportation model of Figure 6-5.

15-6. The professor in charge of an industrial engineering design course is faced with the problem of assigning 28 students to eight projects. Each student must be assigned to one project, and each project group must have 3 or 4 students. The students have been asked to rank the projects, with 1 being the best ranking and higher numbers representing lower rankings.
(a) Formulate an algebraic assignment model, using var and subject to declarations, for this problem.
(b) Solve the assignment problem for the following table of rankings:

A ED EZ G H1 H2 RB SC
\begin{tabular}{llllllllllllllllll} 
Allen & 1 & 3 & 4 & 7 & 7 & 5 & 2 & 6 & Knorr & 7 & 4 & 1 & 2 & 2 & 5 & 6 & 3 \\
Black & 6 & 4 & 2 & 5 & 5 & 7 & 1 & 3 & Manheim & 4 & 7 & 2 & 1 & 1 & 3 & 6 & 5 \\
Chung & 6 & 2 & 3 & 1 & 1 & 7 & 5 & 4 & Morris & 7 & 5 & 4 & 6 & 6 & 3 & 1 & 2 \\
Clark & 7 & 6 & 1 & 2 & 2 & 3 & 5 & 4 & Nathan & 4 & 7 & 5 & 6 & 6 & 3 & 1 & 2 \\
Conners & 7 & 6 & 1 & 3 & 3 & 4 & 5 & 2 & Neuman & 7 & 5 & 4 & 6 & 6 & 3 & 1 & 2 \\
Cumming & 6 & 7 & 4 & 2 & 2 & 3 & 5 & 1 & Patrick & 1 & 7 & 5 & 4 & 4 & 2 & 3 & 6 \\
Demming & 2 & 5 & 4 & 6 & 6 & 1 & 3 & 7 & Rollins & 6 & 2 & 3 & 1 & 1 & 7 & 5 & 4 \\
Eng & 4 & 7 & 2 & 1 & 1 & 6 & 3 & 5 & Schuman & 4 & 7 & 3 & 5 & 5 & 1 & 2 & 6 \\
Farmer & 7 & 6 & 5 & 2 & 2 & 1 & 3 & 4 & Silver & 4 & 7 & 3 & 1 & 1 & 2 & 5 & 6 \\
Forest & 6 & 7 & 2 & 5 & 5 & 1 & 3 & 4 & Stein & 6 & 4 & 2 & 5 & 5 & 7 & 1 & 3 \\
Goodman & 7 & 6 & 2 & 4 & 4 & 5 & 1 & 3 & Stock & 5 & 2 & 1 & 6 & 6 & 7 & 4 & 3 \\
Harris & 4 & 7 & 5 & 3 & 3 & 1 & 2 & 6 & Truman & 6 & 3 & 2 & 7 & 7 & 5 & 1 & 4 \\
Holmes & 6 & 7 & 4 & 2 & 2 & 3 & 5 & 1 & Wolman & 6 & 7 & 4 & 2 & 2 & 3 & 5 & 1 \\
Johnson & 7 & 2 & 4 & 6 & 6 & 5 & 3 & 1 & Young & 1 & 3 & 4 & 7 & 7 & 6 & 2 & 5
\end{tabular}

How many students are assigned second or third choice?
(c) Some of the projects are harder than others to reach without a car. Thus it is desirable that at least a certain number of students assigned to each project must have a car; the numbers vary by project as follows:
A \(1 \quad\) ED \(0 \quad\) EZ 0
G 2 H1 2
H2 2 RB 1
SC 1

The students who have cars are:
\begin{tabular}{lllll} 
Chung & Eng & Manheim & Nathan & Rollins \\
Demming & Holmes & Morris & Patrick & Young
\end{tabular}

Modify the model to add this car constraint, and solve the problem again. How many more students than before must be assigned second or third choice?
(d) Your formulation in (c) can be viewed as a transportation model with side constraints. By defining appropriate network nodes and arcs, reformulate it as a "pure" network flow model, as discussed in Section 15.5. Write the formulation in AMPL using only node and arc declarations for the constraints and variables. Solve with the same data as in (c), to show that the optimal value is the same.

15-7. To manage its excess cash over the next 12 months, a company may purchase 1 -month, 2 -month or 3-month certificates of deposit from any of several different banks. The current cash on hand and amounts invested are known, while the company must estimate the cash receipts and expenditures for each month, and the returns on the different certificates.
The company's problem is to determine the best investment strategy, subject to cash requirements. (As a practical matter, the company would use the first month of the optimal solution as a guide to its current purchases, and then re-solve with updated estimates at the beginning of the next month.)
(a) Draw a network diagram for this situation. Show each month as a node, and the investments, receipts and expenditures as arcs.
(b) Formulate the relevant optimization problem as an AMPL model, using node and arc declarations. Assume that any cash from previously-purchased certificates coming due in the early months is included in data for the receipts.
There is more than one way to describe the objective function for this model. Explain your choice.
(c) Suppose that the company's estimated receipts and expenses (in thousands of dollars) over the next 12 months are as follows:
\begin{tabular}{rcc} 
& receipt & expense \\
1 & 3200 & 200 \\
2 & 3600 & 200 \\
3 & 3100 & 400 \\
4 & 1000 & 800 \\
5 & 1000 & 2100 \\
6 & 1000 & 4500 \\
7 & 1200 & 3300 \\
8 & 1200 & 1800 \\
9 & 1200 & 600 \\
10 & 1500 & 200 \\
11 & 1800 & 200 \\
12 & 1900 & 200
\end{tabular}

The two banks competing for the business are estimating the following rates of return for the next 12 months:
\begin{tabular}{cccccccc} 
CIT: & 1 & 2 & 3 & NBD: & 1 & 2 & 3 \\
1 & 0.00433 & 0.01067 & 0.01988 & 1 & 0.00425 & 0.01067 & 0.02013 \\
2 & 0.00437 & 0.01075 & 0.02000 & 2 & 0.00429 & 0.01075 & 0.02025 \\
3 & 0.00442 & 0.01083 & 0.02013 & 3 & 0.00433 & 0.01083 & 0.02063 \\
4 & 0.00446 & 0.01092 & 0.02038 & 4 & 0.00437 & 0.01092 & 0.02088 \\
5 & 0.00450 & 0.01100 & 0.02050 & 5 & 0.00442 & 0.01100 & 0.02100 \\
6 & 0.00458 & 0.01125 & 0.02088 & 6 & 0.00450 & 0.01125 & 0.02138 \\
7 & 0.00467 & 0.01142 & 0.02113 & 7 & 0.00458 & 0.01142 & 0.02162 \\
8 & 0.00487 & 0.01183 & 0.02187 & 8 & 0.00479 & 0.01183 & 0.02212 \\
9 & 0.00500 & 0.01217 & 0.02237 & 9 & 0.00492 & 0.01217 & 0.02262 \\
10 & 0.00500 & 0.01217 & 0.02250 & 10 & 0.00492 & 0.01217 & 0.02275 \\
11 & 0.00492 & 0.01217 & 0.02250 & 11 & 0.00483 & 0.01233 & 0.02275 \\
12 & 0.00483 & 0.01217 & 0.02275 & 12 & 0.00475 & 0.01250 & 0.02312
\end{tabular}

Construct an appropriate data file, and solve the resulting linear program. Use display to produce a summary of the indicated purchases.
(d) Company policy prohibits investing more than \(70 \%\) of its cash in new certificates of any one bank in any month. Devise a side constraint on the model from (b) to impose this restriction.
Again solve the resulting linear program, and summarize the indicated purchases. How much income is lost due to the restrictive policy?
\(\mathbf{1 5 - 8}\). A caterer has booked dinners for the next \(T\) days, and has as a result a requirement for a certain number of napkins each day. He has a certain initial stock of napkins, and can buy new ones each day at a certain price. In addition, used napkins can be laundered either at a slow service that takes 4 days, or at a faster but more expensive service that takes 2 days. The caterer's problem is to find the most economical combination of purchase and laundering that will meet the forthcoming demand.
(a) It is not hard to see that the decision variables for this problem should be something like the following:
\[
\begin{array}{ll}
\text { Buy }[t] & \text { clean napkins bought for day } t \\
\text { Carry [ } t \text { ] } & \text { clean napkins still on hand at the end of day } t \\
\text { Wash2 [ } t \text { ] } & \text { used napkins sent to the fast laundry after day } t \\
\text { Wash4 [ } t \text { ] } & \text { used napkins sent to the slow laundry after day } t \\
\text { Trash }[t] & \text { used napkins discarded after day } t
\end{array}
\]

There are two collections of constraints on these variables, which can be described as follows:
- The number of clean napkins acquired through purchase, carryover and laundering on day \(t\) must equal the number sent to laundering, discarded or carried over after day \(t\).
- The number of used napkins laundered or discarded after day \(t\) must equal the number that were required for that day's catering.
Formulate an AMPL linear programming model for this problem.
(b) Formulate an alternative network linear programming model for this problem. Write it in AMPL using node and arc declarations.
(c) The 'caterer problem'' was introduced in a 1954 paper by Walter Jacobs of the U.S. Air Force. Although it has been presented in countless books on linear and network programming, it does not seem to have ever been used by any caterer. In what application do you suppose it really originated?
(d) Since this is an artificial problem, you might as well make up your own data for it. Use your data to check that the formulations in (a) and (b) give the same optimal value.

\section*{16}

\section*{Columnwise Formulations}

Because the fundamental idea of an optimization problem is to minimize or maximize a function of the decision variables, subject to constraints on them, AMPL is oriented toward explicit descriptions of variables and constraints. This is why var declarations tend to come first, followed by the minimize or maximize and subject to declarations that use the variables. A wide variety of optimization problems can be formulated with this approach, as the examples in this book demonstrate.

For certain kinds of linear programs, however, it can be preferable to declare the objective and constraints before the variables. Usually in these cases, there is a much simpler pattern or interpretation to the coefficients of a single variable down all the constraints than to the coefficients of a single constraint across all the variables. In the jargon of linear programming, it is easier to describe the matrix of constraint coefficients "columnwise" than "row-wise". As a result, the formulation is simplified by first declaring the constraints and objective, then listing the nonzero coefficients in the declarations of the variables.

One example of this phenomenon is provided by the network linear programs described in Chapter 15. Each variable has at most two nonzero coefficients in the constraints, \(a+1\) and \(a-1\). Rather than trying to describe the constraints algebraically, you may find it easier to specify, in each variable's declaration, the one or two constraints that the variable figures in. In fact, this is exactly what you do by using the special node and arc declarations introduced by Section 15.3. The node declarations come first to describe the nature of the constraints at the network nodes. Then the arc declarations define the network flow variables, using from and to phrases to locate their nonzero coefficients among the node constraints. This approach is particularly appealing because it corresponds directly to the way most people think about a network flow problem.

It would be impractical for AMPL to offer special declarations and phrases for every kind of linear program that you might want to declare by columns rather than by rows. Instead, additional options to the var and subject to declarations permit any linear program to be given a columnwise declaration. This chapter introduces AMPL's columnwise features through two contrasting examples - an input-output production model, and
a work-shift scheduling model - and concludes with a summary of the language extensions that may be used in columnwise formulations.

\subsection*{16.1 An input-output model}

In simple maximum-profit production models such as the examples in Chapter 1, the goods produced are distinct from the resources consumed, so that overall production is limited in an obvious way by resources available. In a more realistic model of a complex operation such as a steel mill or refinery, however, production is carried out at a series of units; as a result, some of a production unit's inputs may be the outputs from other units. For this situation we need a model that deals more generally with materials that may be inputs or outputs, and with production activities that may involve several inputs and outputs each.

We begin by developing an AMPL formulation in the usual row-wise (or constraintoriented) way. Then we explain the columnwise (or variable-oriented) alternative, and discuss refinements of the model.

\section*{Formulation by constraints}

The definition of our model starts with a set of materials and a set of activities:
```

set MAT;
set ACT;

```

The key data values are the input-output coefficients for all material-activity combinations:
```

param io {MAT,ACT};

```

If \(i o[i, j]>0\), \(i t\) is interpreted as the amount of material \(i\) produced (as an output) by a unit of activity \(j\). On the other hand, if \(i o[i, j]<0\), it represents minus the amount of material \(i\) consumed (as an input) by a unit of activity \(j\). For example, a value of 10 represents 10 units of \(i\) produced per unit of \(j\), while a value of -10 represents 10 units consumed per unit of \(j\). Of course, we can expect that for many combinations of \(i\) and \(j\) we will have \(i o[i, j]=0\), signifying that material \(i\) does not figure in activity \(j\) at all.

To see why we want to interpret \(i o[i, j]\) in this manner, suppose we define Run [ \(j\) ] to be the level at which we operate (run) activity \(j\) :
```

param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];
var Run {j in ACT} >= act_min[j], <= act_max[j];

```

Then io[ \(i, j\) ] * Run [ \(j\) ] is the total amount of material \(i \operatorname{produced}\) (if \(i o[i, j]>0\) ) or minus the amount of material \(i\) consumed (if \(i o[i, j]<0\) ) by activity j. Summing over all activities, we see that
```

set MAT; \# materials
set ACT; \# activities
param io {MAT,ACT}; \# input-output coefficients
param revenue {ACT};
param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];
var Run {j in ACT} >= act_min[j], <= act_max[j];
maximize Net_Profit: sum {j in ACT} revenue[j] * Run[j];
subject to Balance {i in MAT}:
sum {j in ACT} io[i,j] * Run[j] = 0;

```

Figure 16-1: Input-output model by rows (iorow.mod).
```

sum {j in ACT} io[i,j] * Run[j]

```
represents the amount of material i produced in the operation minus the amount consumed. These amounts must balance, as expressed by the following constraint:
```

subject to Balance {i in MAT}:
sum {j in ACT} io[i,j] * Run[j] = 0;

```

What about the availability of resources, or the requirements for finished goods? These are readily modeled through additional activities that represent the purchase or sale of materials. A purchase activity for material \(i\) has no inputs and just \(i\) as an output; the upper limit on Run [i] represents the amount of this resource available. Similarly, a sale activity for material i has no outputs and just \(i\) as an input, and the lower limit on Run [i] represents the amount of this good that must be produced for sale.

We complete the model by associating unit revenues with the activities. Sale activities necessarily have positive revenues, while purchase and production activities have negative revenues - that is, costs. The sum of unit revenues times activity levels gives the total net profit of the operation:
```

param revenue {ACT};
maximize Net_Profit: sum {j in ACT} revenue[j] * Run[j];

```

The completed model is shown in Figure 16-1.

\section*{A columnwise formulation}

As our discussion of purchase and sale activities suggests, everything in this model can be organized by activity. Specifically, for each activity \(j\) we have a decision variable Run[j], a cost or income represented by revenue[j], limits act_min[j] and act_max[j], and a collection of input-output coefficients \(i o[i, j]\). Changes such as improving the yield of a unit, or acquiring a new source of supply, are accommodated by adding an activity or by modifying the data for an activity.

In the formulation by rows, the activities' importance to this model is somewhat hidden. While act_min[j] and act_max[j] appear in the declaration of the variables, revenue [ \(j\) ] is in the objective, and the \(i o[i, j]\) values are in the constraint declaration. The columnwise alternative brings all of this information together, by adding obj and coeff phrases to the var declaration:
```

var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit revenue[j],
coeff {i in MAT} Balance[i] io[i,j];

```

The obj phrase says that in the objective function named Net_Profit, the variable Run [j] has the coefficient revenue[j]; that is, the term revenue[j] * Run[j] should be added in. The coeff phrase is a bit more complicated, because it is indexed over a set. It says that for each material \(i\), in the constraint Balance [i] the variable Run [ \(j\) ] should have the coefficient io [ \(i, j\) ], so that the term io [ \(i, j\) ] * Run [ \(j\) ] is added in. Together, these phrases describe all the coefficients of all the variables in the linear program.

Since we have placed all the coefficients in the var declaration, we must remove them from the other declarations:
```

maximize Net_Profit;
subject to Balance {i in MAT}: to_come = 0;

```

The keyword to_come indicates where the terms io[i,j] * Run [j] generated by the var declaration are to be "added in." You can think of to_come \(=0\) as a template for the constraint, which will be filled out as the coefficients are declared. No template is needed for the objective in this example, however, since it is exclusively the sum of the terms revenue[j] * Run [j]. Templates may be written in a limited variety of ways, as shown in Section 16.3 below.

Because the obj and coeff phrases refer to Net_Profit and Balance, the var declaration must come after the maximize and subject to declarations in the columnwise formulation. The complete model is shown in Figure 16-2.
```

set MAT; \# materials
set ACT; \# activities
param io {MAT,ACT}; \# input-output coefficients
param revenue {ACT};
param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];
maximize Net_Profit;
subject to Balance {i in MAT}: to_come = 0;
var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit revenue[j],
coeff {i in MAT} Balance[i] io[i,j];

```

Figure 16-2: Columnwise formulation (iocol1.mod).

\section*{Refinements of the columnwise formulation}

The advantages of a columnwise approach become more evident as the model becomes more complicated. As one example, consider what happens if we want to have separate variables to represent sales of finished materials. We declare a subset of materials that can be sold, and use it to index new collections of bounds, revenues and variables:
```

set MATF within MAT; \# finished materials
param revenue {MATF} >= 0;
param sell_min {MATF} >= 0;
param sell_max {i in MATF} >= sell_min[i];
var Sell {i in MATF} >= sell_min[i], <= sell_max[i];

```

We may now dispense with the special sale activities previously described. Since the remaining members of ACT represent purchase or production activities, we can introduce a nonnegative parameter cost associated with them:
```

param cost {ACT} >= 0;

```

In the row-wise approach, the new objective is written as
```

maximize Net_Profit:
sum {i in MATF} revenue[i] * Sell[i]
- sum {j in ACT} cost[j] * Run[j];

```
to represent total sales revenue minus total raw material and production costs.
So far we seem to have improved upon the model in Figure 16-1. The composition of net profit is more clearly modeled, and sales are restricted to explicitly designated finished materials; also the optimal amounts sold are more easily examined apart from the other variables, by a command such as display Sell. It remains to fix up the constraints. We would like to say that the net output of material i from all activities, represented as
```

sum {j in ACT} io[i,j] * Run[j]

```
in Figure 16-1, must balance the amount sold - either Sell [i] if i is a finished material, or zero. Thus the constraint declaration must be written:
```

subject to Balance {i in MAT}:
sum {j in ACT} io[i,j] * Run[j]
= if i in MATF then Sell[i] else 0;

```

Unfortunately this constraint seems less clear than our original one, due to the complication introduced by the if-then-el se expression.

In the columnwise alternative, the objective and constraints are the same as in Figure 16-2, while all the changes are reflected in the declarations of the variables:
```

set MAT; \# materials
set ACT; \# activities
param io {MAT,ACT}; \# input-output coefficients
set MATF within MAT; \# finished materials
param revenue {MATF} >= 0;
param sell_min {MATF} >= 0;
param sell_max {i in MATF} >= sell_min[i];
param cost {ACT} >= 0;
param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];
maximize Net_Profit;
subject to Balance {i in MAT}: to_come = 0;
var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit -cost[j],
coeff {i in MAT} Balance[i] io[i,j];
var Sell {i in MATF} >= sell_min[i], <= sell_max[i],
obj Net_Profit revenue[i],
coeff Balance[i] -1;

```

Figure 16-3: Columnwise formulation, with sales activities (iocol2 .mod).
```

var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit -cost[j],
coeff {i in MAT} Balance[i] io[i,j];
var Sell {i in MATF} >= sell_min[i], <= sell_max[i],
obj Net_Profit revenue[i],
coeff Balance[i] -1;

```

In this view, the variable Sell [i] represents the kind of sale activity that we previously described, with only material \(i\) as input and no materials as output - hence the single coefficient of -1 in constraint Balance [i]. We need not specify all the zero coefficients for Sell [i]; a zero is assumed for any constraint not explicitly cited in a coeff phrase in the declaration. The whole model is shown in Figure 16-3.

This example suggests that a columnwise approach is particularly suited to refinements of the input-output model that distinguish different kinds of activities. It would be easy to add another group of variables that represent purchases of raw materials, for instance.

On the other hand, versions of the input-output model that involve numerous specialized constraints would lend themselves more to a formulation by rows.

\subsection*{16.2 A scheduling model}

In Section 2.4 we observed that the general form of a blending model was applicable to certain scheduling problems. Here we describe a related scheduling model for which the columnwise approach is particularly attractive.

Suppose that a factory's production for the next week is divided into fixed time periods, or shifts. You want to assign employees to shifts, so that the required number of people are working on each shift. You cannot fill each shift independently of the others, however, because only certain weekly schedules are allowed; for example, a person cannot work five shifts in a row. Your problem is thus more properly viewed as one of assigning employees to schedules, so that each shift is covered and the overall assignment is the most economical.

We can conveniently represent the schedules for this problem by an indexed collection of subsets of shifts:
```

set SHIFTS; \# shifts
param Nsched; \# number of schedules;
set SCHEDS = 1..Nsched; \# set of schedules
set SHIFT_LIST {SCHEDS} within SHIFTS;

```

For each schedule \(j\) in the set SCHEDS, the shifts that a person works on schedule \(j\) are contained in the set SHIFT_LIST[j]. We also specify a pay rate per person on each schedule, and the number of people required on each shift:
```

param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;

```

We let the variable Work[j] represent the number of people assigned to work each schedule \(j\), and minimize the sum of rate [j] * Work [ \(j\) ] over all schedules:
```

var Work {SCHEDS} >= 0;
minimize Total_Cost: sum {j in SCHEDS} rate[j] * Work[j];

```

Finally, our constraints say that the total of employees assigned to each shift i must be at least the number required:
```

subject to Shift_Needs {i in SHIFTS}:
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j]
>= required[i];

```

On the left we take the sum of Work[j] over all schedules \(j\) such that \(i\) is in SHIFT_LIST[j]. This sum represents the total employees who are assigned to schedules that contain shift \(i\), and hence equals the total employees covering shift \(i\).

The awkward description of the constraint in this formulation motivates us to try a columnwise formulation. As in our previous examples, we declare the objective and constraints first, but with the variables left out:
```

minimize Total_Cost;
subject to Shift_Needs {i in SHIFTS}: to_come >= required[i];

```

The coefficients of Work [j] appear instead in its var declaration. In the objective, it has a coefficient of rate[j]. In the constraints, the membership of SHIFT_LIST[j] tells us exactly what we need to know: Work[j] has a coefficient of 1 in constraint Shift_Needs [i] for each i in SHIFT_LIST[j], and a coefficient of 0 in the other constraints. This leads us to the following concise declaration:
```

var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j],
coeff {i in SHIFT_LIST[j]} Shift_Needs[i] 1;

```

The full model is shown in Figure 16-4.
As a specific instance of this model, imagine that you have three shifts a day on Monday through Friday, and two shifts on Saturday. Each day you need 100, 78 and 52 employees on the first, second and third shifts, respectively. To keep things simple, suppose that the cost per person is the same regardless of schedule, so that you may just minimize the total number of employees by setting rate [ \(j\) ] to 1 for all \(j\).

As for the schedules, a reasonable scheduling rule might be that each employee works five shifts in a week, but never more than one shift in any 24 -hour period. Part of the data file is shown in Figure 16-5; we don't show the whole file, because there are 126 schedules that satisfy the rule! The resulting 126-variable linear program is not hard to solve, however:
```

ampl: model sched.mod; data sched.dat; solve;
MINOS 5.5: optimal solution found.
19 iterations, objective 265.6
ampl: option display_eps .000001;
ampl: option omit_zero_rows 1;
ampl: option display_1col 0, display_width 60;
ampl: display Work;
Work [*] :=
10 28.8 30 14.4 71 35.6 106 23.2 123 35.6
18
24 6.8 66 35.6 87 14.4 113 14.4
;

```

As you can see, this optimal solution makes use of 13 of the schedules, some in fractional amounts. (There exist many other optimal solutions to this problem, so the results you get may differ.) If you round each fraction in this solution up to the next highest value, you get a pretty good feasible solution using 271 employees. To determine whether this is the best whole-number solution, however, it is necessary to use integer programming techniques, which are the subject of Chapter 20.

The convenience of the columnwise formulation in this case follows directly from how we have chosen to represent the data. We imagine that the modeler will be thinking in terms of schedules, and will want to try adding, dropping or modifying different schedules to see what solutions can be obtained. The subsets SHIFT_LIST[j] provide a convenient and concise way of maintaining the schedules in the data. Since the data are then organized by schedules, and there is also a variable for each schedule, it proves to be
```

set SHIFTS; \# shifts
param Nsched; \# number of schedules;
set SCHEDS = 1..Nsched; \# set of schedules
set SHIFT_LIST {SCHEDS} within SHIFTS;
param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;
minimize Total_Cost;
subject to Shift_Needs {i in SHIFTS}: to_come >= required[i];
var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j],
coeff {i in SHIFT_LIST[j]} Shift_Needs[i] 1;

```

Figure 16-4: Columnwise scheduling model (sched.mod).
```

set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
Mon3 Tue3 Wed3 Thu3 Fri3 ;
param Nsched := 126 ;
set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;

```
(117 lines omitted)
```

set SHIFT_LIST[123] := Tue1 Wed1 Thu1 Fri2 Sat2 ;
set SHIFT_LIST[124] := Tue1 Wed1 Thu2 Fri2 Sat2 ;
set SHIFT_LIST[125] := Tue1 Wed2 Thu2 Fri2 Sat2 ;
set SHIFT_LIST[126] := Tue2 Wed2 Thu2 Fri2 Sat2 ;
param rate default 1 ;
param required := Mon1 100 Mon2 78 Mon3 52
Tue1 100 Tue2 78 Tue3 52
Wed1 }100\mathrm{ Wed2 }78\mathrm{ Wed3 52
Thu1 100 Thu2 78 Thu3 52
Fri1 100 Fri2 78 Fri3 52
Sat1 100 Sat2 78 ;

```

Figure 16-5: Partial data for scheduling model (sched. dat).
simpler - and for larger examples, more efficient — to specify the coefficients by variable.

Models of this kind are used for a variety of scheduling problems. As a convenience, the keyword cover may be used (in the manner of from and to for networks) to specify a coefficient of 1 :
```

var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j],
cover {i in SHIFT_LIST[j]} Shift_Needs[i];

```

Some of the best known and largest examples are in airline crew scheduling, where the variables may represent the assignment of crews rather than individuals, the shifts become flights, and the requirement is one crew for each flight. We then have what is known as a set covering problem, in which the objective is to most economically cover the set of all flights with subsets representing crew schedules.

\subsection*{16.3 Rules for columnwise formulations}

The algebraic description of an AMPL constraint can be written in any of the following ways:
```

arith-expr <= arith-expr
arith-expr = arith-expr
arith-expr >= arith-expr
const-expr <= arith-expr <= const-expr
const-expr >= arith-expr >= const-expr

```

Each const-expr must be an arithmetic expression not containing variables, while an arith-expr may be any valid arithmetic expression - though it must be linear in the variables (Section 8.2) if the result is to be a linear program. To permit a columnwise formulation, one of the arith-exprs may be given as:
```

to_come
to_come + arith-expr
arith-expr + to_come

```

Most often a "template" constraint of this kind consists, as in our examples, of to_come, a relational operator and a const-expr; the constraint's linear terms are all provided in subsequent var declarations, and to_come shows where they should go. If the template constraint does contain variables, they must be from previous var declarations, and the model becomes a sort of hybrid between row-wise and columnwise forms.

The expression for an objective function may also incorporate to_come in one of the ways shown above. If the objective is a sum of linear terms specified entirely by subsequent var declarations, as in our examples, the expression for the objective is just to_come and may be omitted.

In a var declaration, constraint coefficients may be specified by one or more phrases consisting of the keyword coeff, an optional indexing expression, a constraint name, and an arith-expr. If an indexing expression is present, a coefficient is generated for each member of the indexing set; otherwise, one coefficient is generated. The indexing expression may also take the special form \{if logical-expr\} as seen in Section 8.4 or 15.3, in which case a coefficient is generated only if the logical-expr evaluates to true. Our simple examples have required just one coeff phrase in each var declaration, but
```

set CITIES;
set LINKS within (CITIES cross CITIES);
set PRODS;
param supply {CITIES,PRODS} >= 0; \# amounts available at cities
param demand {CITIES,PRODS} >= 0; \# amounts required at cities
check {p in PRODS}:
sum {i in CITIES} supply[i,p] = sum {j in CITIES} demand[j,p];
param cost {LINKS,PRODS} >= 0; \# shipment costs/1000 packages
param capacity {LINKS,PRODS} >= 0; \# max packages shipped
param cap_joint {LINKS} >= 0; \# max total packages shipped/link
minimize Total_Cost;
node Balance {k in CITIES, p in PRODS}:
net_in = demand[k,p] - supply[k,p];
subject to Multi {(i,j) in LINKS}:
to_come <= cap_joint[i,j];
arc Ship {(i,j) in LINKS, p in PRODS} >= 0, <= capacity[i,j,p],
from Balance[i,p], to Balance[j,p],
coeff Multi[i,j] 1.0,
obj Total_Cost cost[i,j,p];

```

Figure 16-6: Columnwise formulation of Figure 15-13 (netmcol .mod).
in general a separate coeff phrase is needed for each different indexed collection of constraints in which a variable appears.

Objective function coefficients may be specified in the same way, except that the keyword obj is used instead of coeff.

The obj phrase in a var declaration is the same as the obj phrase used in arc declarations for networks (Section 15.4). The constraint coefficients for the network variables defined by an arc declaration are normally given in from and to phrases, but coeff phrases may be present as well; they can be useful if you want to give a columnwise description of "side" constraints that apply in addition to the balance-of-flow constraints. As an example, Figure 16-6 shows how a coeff phrase can be used to rewrite the multicommodity flow model of Figure 15-13 in an entirely columnwise manner.

\section*{Bibliography}

Gerald Kahan, "Walking Through a Columnar Approach to Linear Programming of a Business." Interfaces 12, 3 (1982) pp. 32-39. A brief for the columnwise approach to linear programming, with a small example.

\section*{Exercises}

16-1. (a) Construct a columnwise formulation of the diet model of Figure 2-1.
(b) Construct a columnwise formulation of the diet model of Figure 5-1. Since there are two separate collections of constraints in this diet model, you will need two coeff phrases in the var declaration.

16-2. Expand the columnwise production model of Figure \(16-3\) to incorporate variables Buy [i] that represent purchases of raw materials.

16-3. Formulate a multiperiod version of the model of Figure 16-3, using the approach introduced in Section 4.2: first replicate the model over a set of weeks, then introduce inventory variables to tie the weeks together. Use only columnwise declarations for all of the variables, including those for inventory.
16-4. The 'roll trim', or 'cutting stock" problem has much in common with the scheduling problem described in this chapter. Review the description of the roll trim problem in Exercise 2-6, and use it to answer the following questions.
(a) What is the relationship between the available cutting patterns in the roll trim problem, and the coefficients of the variables in the linear programming formulation?
(b) Formulate an AMPL model for the roll trim problem that uses only columnwise declarations of the variables.
(c) Solve the roll trim problem for the data given in Exercise 2-6. As a test of your formulation, show that it gives the same optimal value as a row-wise formulation of the model.
16-5. The set covering problem, mentioned at the end of Section 16.2, can be stated in a general way as follows. You are given a set \(S\), and certain subsets \(T_{1}, T_{2}, \ldots, T_{n}\) of \(S\); a cost is associated with each of the subsets. A selection of some of the subsets \(T_{j}\) is said to cover \(S\) if every member of \(S\) is also a member of at least one of the selected subsets. For example, if
\[
S=\{1,2,3,4\}
\]
and
\[
\mathrm{T} 1=\{1,2,4\} \quad \mathrm{T} 2=\{2,3\} \quad \mathrm{T} 3=\{1\} \quad \mathrm{T} 4=\{3,4\} \quad \mathrm{T} 5=\{1,3\}
\]
the selections ( \(T 1, T 2\) ) and ( \(T 2, T 4, T 5\) ) cover \(S\), but the selection ( \(T 3, T 4, T 5\) ) does not.
The goal of the set covering problem is to find the least costly selection of subsets that covers \(S\). Formulate a columnwise linear program that solves this problem for any given set and subsets.

\section*{17}

\section*{Piecewise-Linear Programs}

Several kinds of linear programming problems use functions that are not really linear, but are pieced together from connected linear segments:


These '"piecewise-linear'' terms are easy to imagine, but can be hard to describe in conventional algebraic notation. Hence AMPL provides a special, concise way of writing them.

This chapter introduces AMPL's piecewise-linear notation through examples of piecewise-linear objective functions. In Section 17.1, terms of potentially many pieces are used to describe costs more accurately than a single linear relationship. Section 17.2 shows how terms of two or three pieces can be valuable for such purposes as penalizing deviations from constraints, dealing with infeasibilities, and modeling "reversible" activities. Finally, Section 17.3 describes piecewise-linear functions that can be written with other AMPL operators and functions; some are most effectively handled by converting them to the piecewise-linear notation, while others can be accommodated only through more extensive transformations.

Although the piecewise-linear examples in this chapter are all easy to solve, seemingly similar examples can be much more difficult. The last section of this chapter thus offers guidelines for forming and using piecewise-linear terms. We explain how the easy cases can be characterized by the convexity or concavity of the piecewise-linear terms.


Figure 17-1: Piecewise-linear function, with three slopes.

\subsection*{17.1 Cost terms}

Piecewise-linearities are often employed to give a more realistic description of costs than can be achieved by linear terms alone. In this kind of application, piecewise-linear terms serve much the same purpose as nonlinear ones, but without some of the difficulties to be described in Chapter 18.

To make the comparison explicit, we will use the same transportation example as in Chapter 18. We introduce AMPL's notation for piecewise-linear terms with a simple example that has a fixed number of cost levels (and linear pieces) for each shipping link. Then we show how an extension of the notation can use indexing expressions to specify a varying number of pieces controlled through the data.

\section*{Fixed numbers of pieces}

In a linear transportation model like Figure 3-1a, any number of units can be shipped from a given origin to a given destination at the same cost per unit. More realistically, however, the most favorable rate may be available for only a limited number of units; shipments beyond this limit pay higher rates. As an example, imagine that three cost rate levels are specified for each origin-destination pair. Then the total cost of shipments along a link increases with the amount shipped in a piecewise-linear fashion, with three pieces as shown in Figure 17-1.

To model the three-piece costs, we replace the parameter cost of Figure 3-1a by three rates and two limits:
```

param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];
param limit1 {i in ORIG, j in DEST} > 0;
param limit2 {i in ORIG, j in DEST} > limit1[i,j];

```

Shipments from \(i\) to \(j\) are charged at rate1[i,j] per unit up to limit1[i,j] units, then at rate2[i,j] per unit up to limit2[i,j], and then at rate3[i,j]. Normally rate2[i,j] would be greater than rate1[i,j] and rate3[i,j] would be greater than rate2[i,j], but they may be equal if the link from \(i\) to \(j\) does not have three distinct rates.

In the linear transportation model, the objective is expressed in terms of the variables and the parameter cost as follows:
```

var Trans {ORIG,DEST} >= 0;
minimize Total_Cost:
sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];

```

We could express a piecewise-linear objective analogously, by introducing three collections of variables, one to represent the amount shipped at each rate:
```

var Trans1 {i in ORIG, j in DEST} >= 0, <= limit1[i,j];
var Trans2 {i in ORIG, j in DEST} >= 0, <= limit2[i,j]
- limit1[i,j];
var Trans3 {i in ORIG, j in DEST} >= 0;
minimize Total_Cost:
sum {i in ORIG, j in DEST} (rate1[i,j] * Trans1[i,j]
+ rate2[i,j] * Trans2[i,j] + rate3[i,j] * Trans3[i,j]);

```

But then the new variables would have to be introduced into all the constraints, and we would also have to deal with these variables whenever we wanted to display the optimal results. Rather than go to all this trouble, we would much prefer to describe the piecewise-linear cost function explicitly in terms of the original variables. Since there is no standard way to describe piecewise-linear functions in algebraic notation, AMPL supplies its own syntax for this purpose.

The piecewise-linear function depicted in Figure 17-1 is written in AMPL as follows:
```

<<limit1[i,j], limit2[i,j];
rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j]

```

The expression between << and >> describes the piecewise-linear function, and is followed by the name of the variable to which it applies. (You can think of it as "multiplying" Trans [i,j], but by a series of coefficients rather than just one.) There are two parts to the expression, a list of breakpoints where the slope of the function changes, and a list of the slopes - which in this case are the cost rates. The lists are separated by a semicolon, and members of each list are separated by commas. Since the first slope applies to values before the first breakpoint, and the last slope to values after the last breakpoint, the number of slopes must be one more than the number of breakpoints.

Although the lists of breakpoints and slopes are sufficient to describe the piecewiselinear cost function for optimization, they do not quite specify the function uniquely. If we added, say, 10 to the cost at every point, we would have a different cost function even though all the breakpoints and slopes would be the same. To resolve this ambiguity,
```

set ORIG; \# origins
set DEST; \# destinations
param supply {ORIG} >= 0; \# amounts available at origins
param demand {DEST} >= 0; \# amounts required at destinations
check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];
param limit1 {i in ORIG, j in DEST} > 0;
param limit2 {i in ORIG, j in DEST} > limit1[i,j];
var Trans {ORIG,DEST} >= 0; \# units to be shipped
minimize Total_Cost:
sum {i in ORIG, j in DEST}
<<limit1[i,j], limit2[i,j];
rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];
subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

```

Figure 17-2: Piecewise-linear model with three slopes (transpl1.mod).

AMPL assumes that a piecewise-linear function evaluates to zero at zero, as in Figure 17-1. Options for other possibilities are discussed later in this chapter.

Summing the cost over all links, the piecewise-linear objective function is now written
```

minimize Total_Cost:
sum {i in ORIG, j in DEST}
<<limit1[i,j], limit2[i,j];
rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];

```

The declarations of the variables and constraints stay the same as before; the complete model is shown in Figure 17-2.

\section*{Varying numbers of pieces}

The approach taken in the preceding example is most useful when there are only a few linear pieces for each term. If there were, for example, 12 pieces instead of three, a model defining rate1[i,j] through rate12[i,j] and limit1[i,j] through limit11[i,j] would be unwieldy. Realistically, moreover, there would more likely be up to 12 pieces, rather than exactly 12 , for each term; a term with fewer than 12 pieces could be handled by making some rates equal, but for large numbers of pieces this would
be a cumbersome device that would require many unnecessary data values and would obscure the actual number of pieces in each term.

A much better approach is to let the number of pieces (that is, the number of shipping rates) itself be a parameter of the model, indexed over the links:
```

param npiece {ORIG,DEST} integer >= 1;

```

We can then index the rates and limits over all combinations of links and pieces:
```

param rate {i in ORIG, j in DEST, p in 1..npiece[i,j]}
>= if p = 1 then 0 else rate[i,j,p-1];
param limit {i in ORIG, j in DEST, p in 1..npiece[i,j]-1}
> if p = 1 then 0 else limit[i,j,p-1];

```

For any particular origin \(i\) and destination \(j\), the number of linear pieces in the cost term is given by npiece[i,j]. The slopes are rate[i,j,p] for pranging from 1 to npiece[i,j], and the intervening breakpoints are limit[i,j,p] for p from 1 to npiece \([i, j]-1\). As before, there is one more slope than there are breakpoints.

To use AMPL's piecewise-linear function notation with these data values, we have to give indexed lists of breakpoints and slopes, rather than the explicit lists of the previous example. This is done by placing indexing expressions in front of the slope and breakpoint values:
```

minimize Total_Cost:
sum {i in ORIG, j in DEST}
<<{p in 1..npiece[i,j]-1} limit[i,j,p];
{p in 1..npiece[i,j]} rate[i,j,p]>> Trans[i,j];

```

Once again, the rest of the model is the same. Figure 17-3a shows the whole model and Figure 17-3b illustrates how the data would be specified. Notice that since npiece["PITT","STL"] is 1, Trans["PITT", "STL"] has only one slope and no breakpoints; this implies a one-piece linear term for Trans["PITT", "STL"] in the objective function.

\subsection*{17.2 Common two-piece and three-piece terms}

Simple piecewise-linear terms have a variety of uses in otherwise linear models. In this section we present three cases: allowing limited violations of the constraints, analyzing infeasibility, and representing costs for variables that are meaningful at negative as well as positive levels.

\section*{Penalty terms for 'soft'" constraints}

Linear programs most easily express 'hard'" constraints: that production must be at least at a certain level, for example, or that resources used must not exceed those available. Real situations are often not nearly so definite. Production and resource use may
```

set ORIG; \# origins
set DEST; \# destinations
param supply {ORIG} >= 0; \# amounts available at origins
param demand {DEST} >= 0; \# amounts required at destinations
check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
param npiece {ORIG,DEST} integer >= 1;
param rate {i in ORIG, j in DEST, p in 1..npiece[i,j]}
>= if p = 1 then 0 else rate[i,j,p-1];
param limit {i in ORIG, j in DEST, p in 1..npiece[i,j]-1}
> if p = 1 then 0 else limit[i,j,p-1];
var Trans {ORIG,DEST} >= 0; \# units to be shipped
minimize Total_Cost:
sum {i in ORIG, j in DEST}
<<{p in 1..npiece[i,j]-1} limit[i,j,p];
{p in 1..npiece[i,j]} rate[i,j,p]>> Trans[i,j];
subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

```

Figure 17-3a: Piecewise-linear model with indexed slopes (transpl2 .mod).
have certain preferred levels, yet we may be allowed to violate these levels by accepting some extra costs or reduced profits. The resulting 'soft" constraints can be modeled by adding piecewise-linear "penalty"' terms to the objective function.

For an example, we return to the multi-week production model developed in Chapter 4. As seen in Figure 4-4, the constraints say that, in each of weeks 1 through T, total hours used to make all products may not exceed hours available:
```

subject to Time {t in 1..T}:
sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

```

Suppose that, in reality, a larger number of hours may be used in each week, but at some penalty per hour to the total profit. Specifically, we replace the parameter avail [ \(t\) ] by two availability levels and an hourly penalty rate:
```

param avail_min {1..T} >= 0;
param avail_max {t in 1..T} >= avail_min[t];
param time_penalty {1..T} > 0;

```

Up to avail_min[t] hours are available without penalty in week \(t\), and up to avail_max[t] hours are available at a loss of time_penalty[t] in profit for each hour above avail_min[t].

To model this situation, we introduce a new variable Use [ \(t\) ] to represent the hours used by production. Clearly Use[t] may not be less than zero, or greater than
```

param: ORIG: supply :=
GARY 1400 CLEV 2600 PITT 2900;
param: DEST: demand :=
FRA 900 DET 1200 LAN 600 WIN 400
STL 1700 FRE 1100 LAF 1000 ;
param npiece: FRA DET LAN WIN STL FRE LAF :=

| GARY | 3 | 3 | 3 | 2 | 3 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 CLEV
 PITT 2 2 2 2 1 2 2 2 1 ;
 param rate :=
[GARY,FRA,*] 1 39 2 50 3 70 [GARY,DET,*] 1 14 14 2 17 17 3 33
[GARY,LAN,*] 1 11 2 12 3 23 [GARY,WIN,*] 1 14 2 17
[GARY,STL,*] 1 16 2 23 3 40 [GARY,FRE,*] 1 82 2 98
[GARY,LAF,*] 1 8 2 16 3 24
[CLEV,FRA,*] 1 27 2 37 3 47 [CLEV,DET, *] 1 1 9 9 2 1 19 3 24
[CLEV,LAN,*] 1 12 2 32 3 39 [CLEV,WIN,*] 1 1 9 % 2 14 14 3
[CLEV,STL,*] 1 26 2 36 3 47 [CLEV,FRE,*] 1 95 2 105 3 129
[CLEV,LAF,*] 1 8 2 16 3 24
[PITT,FRA,*] 1 24 2 34 [PITT,DET,*] 1 14 2 24
[PITT,LAN,*] 1 17 2 27 [PITT,WIN,*] 1 13 2 23
[PITT,STL,*] 1 28 [PITT,FRE,*] 1 99 2 140
[PITT,LAF,*] 1 20 ;
param limit :=
[GARY,*,*] FRA 1 500 FRA 2 1000 DET 1 500 DET 2 1000
LAN 1 500 LAN 2 1000 WIN 1 1000
STL 1 500 STL 2 1000 FRE 1 1000
LAF 1 500 LAF 2 1000
[CLEV,*,*] FRA 1 500 FRA 2 1000 DET 1 500 DET 2 1000
LAN 1 500 LAN 2 1000 WIN 1 500 WIN 2 1000
STL 1 500 STL 2 1000 FRE 1 500 FRE 2 1000
LAF 1 500 LAF 2 1000
[PITT,*,*] FRA 1 1000 DET 1 1000 LAN 1 1000 WIN 1 1000
FRE 1 1000 ;

```

Figure 17-3b: Data for piecewise-linear model (transpl2 . dat).
avail_max[t]. In place of our previous constraint, we say that the total hours used to make all products must equal Use [ \(t\) ]:
```

var Use {t in 1..T} >= 0, <= avail_max[t];
subject to Time {t in 1..T}:
sum {p in PROD} (1/rate[p]) * Make[p,t] = Use[t];

```

We can now describe the hourly penalty in terms of this new variable. If Use [ \(t\) ] is between 0 and avail_min[t], there is no penalty; if Use[t] is between avail_min[t] and avail_max[t], the penalty is time_penalty[t] per hour


Figure 17-4: Piecewise-linear penalty function for hours used.
that it exceeds avail_min[t]. That is, the penalty is a piecewise-linear function of Use [ \(t\) ] as shown in Figure 17-4, with slopes of 0 and time_penalty [ \(t\) ] surrounding a breakpoint at avail_min[t]. Using the syntax previously introduced, we can rewrite the expression for the objective function as:
```

maximize Net_Profit:
sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t])

- sum {t in 1..T} <<avail_min[t]; 0,time_penalty[t]>> Use[t];

```

The first summation is the same expression for total profit as before, while the second is the sum of the piecewise-linear penalty functions over all weeks. Between \(\ll\) and \(\gg\) are the breakpoint avail_min[t] and a list of the surrounding slopes, 0 and time_penalty[t]; this is followed by the argument Use[t].

The complete revised model is shown in Figure 17-5a, and our small data set from Chapter 4 is expanded with the new availabilities and penalties in Figure 17-5b. In the optimal solution, we find that the hours used are as follows:
```

ampl: model steelpl1.mod; data steelpl1.dat; solve;
MINOS 5.5: optimal solution found.
21 iterations, objective 457572.8571
ampl: display avail_min,Use,avail_max;
: avail_min Use avail_max :=
1
2 35 42 42
3 30 30 40
4 35 42 42

```

In weeks 1 and 3 we use only the unpenalized hours available, while in weeks 2 and 4 we also use the penalized hours. Solutions to piecewise-linear programs usually display this sort of solution, in which many (though not necessarily all) of the variables 'stick" at one of the breakpoints.
```

set PROD; \# products
param T > 0; \# number of weeks
param rate {PROD} > 0; \# tons per hour produced
param inv0 {PROD} >= 0; \# initial inventory
param commit {PROD,1..T} >= 0; \# minimum tons sold in week
param market {PROD,1..T} >= 0; \# limit on tons sold in week
param avail_min {1..T} >= 0; \# unpenalized hours available
param avail_max {t in 1..T} >= avail_min[t]; \# total hours avail
param time_penalty {1..T} > 0;
param prodcost {PROD} >= 0; \# cost/ton produced
param invcost {PROD} >= 0; \# carrying cost/ton of inventory
param revenue {PROD,1..T} >= 0; \# revenue/ton sold
var Make {PROD,1..T} >= 0; \# tons produced
var Inv {PROD,0..T} >= 0; \# tons inventoried
var Sell {p in PROD, t in 1..T}
>= commit[p,t], <= market[p,t]; \# tons sold
var Use {t in 1..T} >= 0, <= avail_max[t]; \# hours used
maximize Total_Profit:
sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t])
- sum {t in 1..T} <<avail_min[t]; 0,time_penalty[t]>> Use[t];
\# Objective: total revenue less costs in all weeks
subject to Time {t in 1..T}:
sum {p in PROD} (1/rate[p]) * Make[p,t] = Use[t];
\# Total of hours used by all products
\# may not exceed hours available, in each week
subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];
\# Initial inventory must equal given value
subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];
\# Tons produced and taken from inventory
\# must equal tons sold and put into inventory

```

Figure 17-5a: Piecewise-linear objective with penalty function (steelpl1.mod).

\section*{Dealing with infeasibility}

The parameters commit \([p, t]\) in Figure \(17-5 b\) represent the minimum production amounts for each product in each week. If we change the data to raise these commitments:
\begin{tabular}{rrrrrl} 
param commit: & 1 & 2 & 3 & 4 & \(:=\) \\
bands & 3500 & 5900 & 3900 & 6400 & \\
coils & 2500 & 2400 & 3400 & 4100 & \(;\)
\end{tabular}
```

param T := 4;
set PROD := bands coils;
param: rate inv0 prodcost invcost :=
bands 200 10 10 2.5
coils 140 0 11 3 ;
param: avail_min avail_max time_penalty :=
1
2 35 42 3000
3 30 40 3700
4 35 42 3100;
param revenue: 1 2 3 4 :=
bands 25 26 27 27
coils 30 35 37 39 ;
param commit: 1 2 3 :=
bands 3000 3000 3000 3000
coils 2000 2000 2000 2000 ;
param market: 1 2 3 4 :=
bands 6000 6000 4000 6500
coils 4000 2500 3500 4200 ;

```

Figure 17-5b: Data for Figure 17-5a (steelpl1. dat).
then there are not enough hours to produce even these minimum amounts, and the solver reports that the problem is infeasible:
```

ampl: model steelpl1.mod;
ampl: data steelpl2.dat;
ampl: solve;
MINOS 5.5: infeasible problem.
13 iterations

```

In the solution that is returned, the inventory of coils in the last period is negative:
```

ampl: option display_1col 0;
ampl: display Inv;
Inv [*,*] (tr)
: bands coils :=
$010 \quad 0$
10937
20287
300
$4 \quad 0 \quad-2700$

```
and production of coils in several periods is below the minimum required:


Figure 17-6: Penalty function for hours used, with two breakpoints.
\begin{tabular}{lrrrc} 
ampl: & display commit, Make, market; \\
: & commit & Make market \\
bands & 1 & 3500 & 3490 & 6000 \\
bands & 2 & 5900 & 5900 & 6000 \\
bands & 3 & 3900 & 3900 & 4000 \\
bands & 4 & 6400 & 6400 & 6500 \\
coils & 1 & 2500 & 3437 & 4000 \\
coils & 2 & 2400 & 1750 & 2500 \\
coils & 3 & 3400 & 2870 & 3500 \\
coils & 4 & 4100 & 1400 & 4200 \\
; & & & &
\end{tabular}

These are typical of the infeasible results that solvers return. The infeasibilities are scattered around the solution, so that it is hard to tell what changes might be necessary to achieve feasibility. By extending the idea of penalties, we can better concentrate the infeasibility where it can be understood.

Suppose that we want to view the infeasibility in terms of a shortage of hours. Imagine that we extend the piecewise-linear penalty function of Figure 17-4 to the one shown in Figure 17-6. Now Use [t] is allowed to increase past avail_max[t], but only with an extremely steep penalty per hour - so that the solution will use hours above avail_max[t] only to the extent absolutely necessary.

In AMPL, the new penalty function is introduced through the following changes:
```

var Use {t in 1..T} >= 0;
maximize Total_Profit:
sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t])
- sum {t in 1..T} <<avail_min[t],avail_max[t];
0,time_penalty[t],100000>> Use[t];

```

The former bound avail_max[t] has become a breakpoint, and to its right a very large slope of 100,000 has been introduced. Now we get a feasible solution, which uses hours as follows:


Figure 17-7: Penalty function for sales.
```

ampl: model steelpl2.mod; data steelpl2.dat; solve;
MINOS 5.5: optimal solution found.
19 iterations, objective -1576814.857
ampl: display avail_max,Use;
: avail_max Use :=
1 42 42
2 42 42
340 41.7357
4 42 61.2857

```

This table implies that the commitments can be met only by adding about 21 hours, mostly in the last week.

Alternatively, we may view the infeasibility in terms of an excess of commitments. For this purpose we subtract a very large penalty from the objective for each unit that Sell [ \(p, t\) ] falls below commit [ \(p, t]\); the penalty as a function of \(S e l l[p, t]\) is depicted in Figure 17-7.

Since this function has a breakpoint at commit [ \(p, t\) ], with a slope of 0 to the right and a very negative value to the left, it would seem that the AMPL representation could be
```

<<commit[p,t]; -100000,0>> Sell[p,t]

```

Recall, however, AMPL's convention that such a function takes the value zero at zero. Figure 17-7 clearly shows that we want our penalty function to take a positive value at zero, so that it will fall to zero at commit \([p, t]\) and beyond. In fact we want the function to take a value of 100000 * commit [p,t] at zero, and we could express the function properly by adding this constant to the penalty expression:
```

<<commit[p,t]; -100000,0>> Sell[p,t] + 100000*commit[p,t]

```

The same thing may be said more concisely by using a second argument that states explicitly where the piecewise-linear function should evaluate to zero:
```

<<commit[p,t]; -100000,0>> (Sell[p,t],commit[p,t])

```

This says that the function should be zero at commit [p,t], as Figure 17-7 shows. In the completed model, we have:
```

var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t];
maximize Total_Profit:
sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -
prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t])

- sum {t in 1..T} <<avail_min[t]; 0,time_penalty[t]>> Use[t]
- sum {p in PROD, t in 1..T}
<<commit[p,t]; -100000,0>> (Sell[p,t],commit[p,t]);

```

The rest of the model is the same as in Figure 17-5a. Notice that Sell [p, t] appears in both a linear and a piecewise-linear term within the objective function; AMPL automatically recognizes that the sum of these terms is also piecewise-linear.

This version, using the same data, produces a solution in which the amounts sold are as follows:
```

ampl: model steelpl3.mod; data steelpl2.dat; solve;
MINOS 5.5: optimal solution found.
24 iterations, objective -293856347
ampl: display Sell,commit;
: Sell commit :=
bands 1 3500 3500
bands 2 5900 5900
bands 3 3900 3900
bands 4 6400 6400
coils 1 0 2500
coils 2 2400 2400
coils 3 3400 3400
coils 4 3657 4100
;

```

To get by with the given number of hours, commitments to deliver coils are cut by 2500 tons in the first week and 443 tons in the fourth week.

\section*{Reversible activities}

Almost all of the linear programs in this book are formulated in terms of nonnegative variables. Sometimes a variable makes sense at negative as well as positive values, however, and in many such cases the associated cost is piecewise-linear with a breakpoint at zero.

One example is provided by the inventory variables in Figure 17-5a. We have defined Inv \([p, t]\) to represent the tons of product \(p\) inventoried at the end of week \(t\). That is, after week \(t\) there are \(\operatorname{Inv}[p, t]\) tons of product \(p\) that have been made but not sold. A negative value of Inv [p,t] could thus reasonably be interpreted as representing tons of product p that have been sold but not made - tons backordered, in effect. The material balance constraints,
```

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

```
remain valid under this interpretation.

This analysis suggests that we remove the \(>=0\) from the declaration of Inv in our model. Then backordering might be especially attractive if the sales price were expected to drop in later weeks, like this:
\begin{tabular}{crrrrl} 
param revenue: & 1 & 2 & 3 & 4 & \(:=\) \\
bands & 25 & 26 & 23 & 20 & \\
coils & 30 & 35 & 31 & 25 & \(;\)
\end{tabular}

When we re-solve with appropriately revised model and data files, however, the results are not what we expect:
```

ampl: model steelpl4.mod; data steelpl4.dat; solve;
MINOS 5.5: optimal solution found.
1 5 iterations, objective 1194250
ampl: display Make,Inv,Sell;
: Make Inv Sell :=
bands 0 . 10
bands 1 0 -5990 6000
bands 2 0 -11990 6000
bands 3 0 -15990 4000
bands 4 0 -22490 6500
coils 0 % 0 0
coils 2 0 -6500 2500
coils 3 0 -10000 3500
coils 4 0 -14200 4200

```

The source of difficulty is in the objective function, where invcost [p] * Inv [p,t] is subtracted from the sales revenue. When Inv [p,t] is negative, a negative amount is subtracted, increasing the apparent total profit. The greater the amount backordered, the more the total profit is increased - hence the odd solution in which the maximum possible sales are backordered, while nothing is produced!

A proper inventory cost function for this model looks like the one graphed in Figure 17-8. It increases both as Inv [p,t] becomes more positive (greater inventories) and as Inv \([p, t]\) becomes more negative (greater backorders). We represent this piecewiselinear function in AMPL by declaring a backorder cost to go with the inventory cost:


Figure 17-8: Inventory cost function.
```

param invcost {PROD} >= 0;
param backcost {PROD} >= 0;

```

Then the slopes for the \(\operatorname{Inv}[p, t]\) term in the objective are -backcost [p] and invcost [p], with the breakpoint at zero, and the correct objective function is:
```

maximize Total_Profit:
sum {p in PROD, t in 1..T}
(revenue[p,t]*Sell[p,t] - prodcost[p]*Make[p,t]
- <<0; -backcost[p],invcost[p]>> Inv[p,t])

- sum {t in 1..T} <<avail_min[t]; 0,time_penalty[t]>> Use[t];

```

In contrast to our first example, the piecewise-linear function is subtracted rather than added. The result is still piecewise-linear, though; it's the same as if we had added the expression <<0; backcost[p], -invcost [p]>> Inv [p,t].

When we make this change, and add some backorder costs to the data, we get a more reasonable-looking solution. Nevertheless, there remains a tendency to make nothing and backorder everything in the later periods; this is an "end effect" that occurs because the model does not account for the eventual production cost of items backordered past the last period. As a quick fix, we can rule out any remaining backorders at the end, by adding a constraint that final-week inventory must be nonnegative:
```

subject to Final {p in PROD}: Inv[p,T] >= 0;

```

Solving with this constraint, and with backcost values of 1.5 for band and 2 for coils:
```

ampl: model steelpl5.mod; data steelpl5.dat; solve;
MINOS 5.5: optimal solution found.
20 iterations, objective 370752.8571
ampl: display Make,Inv,Sel1;
: Make Inv Sell :=
bands 0 . 10
bands 1 4142.86 0 4152.86
bands 2 6000 0 6000
bands 3 3000 0 3000
bands 4 3000 0 3000
coils 0 . 0 .
coils 1 2000 0 2000
coils 2 1680 -820 2500
coils 3 2100 -800 2080
coils 4 2800 0 2000
;

```

About 800 tons of coils for weeks 2 and 3 will be delivered a week late under this plan.

\subsection*{17.3 Other piecewise-linear functions}

Many simple piecewise-linear functions can be modeled in several equivalent ways in AMPL. The function of Figure 17-4, for example, could be written as
```

if Use[t] > avail_min[t]
then time_penalty[t] * (Use[t] - avail_min[t]) else 0

```
or more concisely as
```

max(0, time_penalty[t] * (Use[t] - avail_min[t]))

```

The current version of AMPL does not detect that these expressions are piecewise-linear, so you are unlikely to get satisfactory results if you try to solve a model that has expressions like these in its objective. To take advantage of linear programming techniques that can be applied for piecewise-linear terms, you need to use the piecewise-linear terminology
```

<<avail_min[t]; 0,time_penalty[t]>> Use[t]

```
so the structure can be noted and passed to a solver.
The same advice applies to the function abs. Imagine that we would like to encourage the number of hours used to be close to avail_min [t]. Then we would want the penalty term to equal time_penalty[ \(t\) ] times the amount that Use[ \(t\) ] deviates from avail_min [t], either above or below. Such a term can be written as
```

time_penalty[t] * abs(Use[t] - avail_min[t])

```

To express it in an explicitly piecewise-linear fashion, however, you should write it as
```

time_penalty[t] * <<avail_min[t]; -1,1>> Use[t]

```
or equivalently,
```

<<avail_min[t]; -time_penalty[t],time_penalty[t]>> Use[t]

```

As this example shows, multiplying a piecewise-linear function by a constant is the same as multiplying each of its slopes individually.

As a final example of a common piecewise-linearity in the objective, we return to the kind of assignment model that was discussed in Chapter 15. Recall that, for \(i\) in the set PEOPLE and \(j\) in the set PROJECTS, cost [ \(i, j]\) is the cost for person \(i\) to work an hour on project \(j\), and the decision variable Assign [i,j] is the number of hours that person \(i\) is assigned to work on project \(j\) :
```

set PEOPLE;
set PROJECTS;
param cost {PEOPLE,PROJECTS} >= 0;
var Assign {PEOPLE,PROJECTS} >= 0;

```

We originally formulated the objective as the total cost of all assignments,
```

sum {i in PEOPLE, j in PROJECTS} cost[i,j] * Assign[i,j]

```

What if we want the fairest assignment instead of the cheapest? Then we might minimize the maximum cost of any one person's assignments:
```

set PEOPLE;
set PROJECTS;
param supply {PEOPLE} >= 0; \# hours each person is available
param demand {PROJECTS} >= 0; \# hours each project requires
check: sum {i in PEOPLE} supply[i]
= sum {j in PROJECTS} demand[j];
param cost {PEOPLE,PROJECTS} >= 0; \# cost per hour of work
param limit {PEOPLE,PROJECTS} >= 0; \# maximum contributions
\# to projects
var M;
var Assign {i in PEOPLE, j in PROJECTS} >= 0, <= limit[i,j];
minimize Max_Cost: M;
subject to M_def {i in PEOPLE}:
M >= sum {j in PROJECTS} cost[i,j] * Assign[i,j];
subject to Supply {i in PEOPLE}:
sum {j in PROJECTS} Assign[i,j] = supply[i];
subject to Demand {j in PROJECTS}:
sum {i in PEOPLE} Assign[i,j] = demand[j];

```

Figure 17-9: Min-max assignment model (minmax.mod).
```

minimize Max_Cost:
max {i in PEOPLE}
sum {j in PROJECTS} cost[i,j] * Assign[i,j];

```

This function is also piecewise-linear, in a sense; it is pieced together from the linear functions sum \{j in PROJECTS \(\}\) cost[i,j] * Assign [i,j] for different people i. However, it is not piecewise-linear in the individual variables - in mathematical jargon, it is not separable - and hence it cannot be written using the \(\ll \ldots\). \(\gg\) notation.

This is a case in which piecewise-linearity can only be handled by rewriting the model as a linear program. We introduce a new variable \(M\) to represent the maximum. Then we write constraints to guarantee that \(M\) is greater than or equal to each cost of which it is the maximum:
```

var M;
minimize Max_Cost: M;
subject to M_def {i in PEOPLE}:
M >= sum {j in PROJECTS} cost[i,j] * Assign[i,j];

```

Because \(M\) is being minimized, at the optimal solution it will in fact equal the maximum of sum \{j in PROJECTS cost[i,j] * Assign[i,j] over all i in PEOPLE. The other constraints are the same as in any assignment problem, as shown in Figure 17-9.

This kind of reformulation can be applied to any problem that has a "min-max" objective. The same idea works for the analogous "max-min'" objective, with maximize instead of minimize and with \(M<=\ldots\) in the constraints.

\subsection*{17.4 Guidelines for piecewise-linear optimization}

AMPL's piecewise-linear notation has the power to specify a variety of useful functions. We summarize below its various forms, most of which have been illustrated earlier in this chapter.

Because this notation is so general, it can be used to specify many functions that are not readily optimized by any efficient and reliable algorithms. We conclude by describing the kinds of piecewise-linear functions that are most likely to appear in tractable models, with particular emphasis on the property of convexity or concavity.

\section*{Forms for piecewise-linear expressions}

An AMPL piecewise-linear term has the general form

> <<breakpoint-list; slope-list>> pl-argument
where breakpoint-list and slope-list each consist of a comma-separated list of one or more items. An item may be an individual arithmetic expression, or an indexing expression followed by an arithmetic expression. In the latter case, the indexing expression must be an ordered set; the item is expanded to a list by evaluating the arithmetic expression once for each set member (as in the example of Figure 17-3a).

After any indexed items are expanded, the number of slopes must be one more than the number of breakpoints, and the breakpoints must be nondecreasing. The resulting piecewise-linear function is constructed by interleaving the slopes and breakpoints in the order given, with the first slope to the left of the first breakpoint, and the last slope to the right of the last breakpoint. By indexing breakpoints over an empty set, it is possible to specify no breakpoints and one slope, in which case the function is linear.

The pl-argument may have one of the forms
```

var-ref
(arg-expr)
(arg-expr, zero-expr)

```

The var-ref (a reference to a previously declared variable) or the arg-expr (an arithmetic expression) specifies the point where the piecewise-linear function is to be evaluated. The zero-expr is an arithmetic expression that specifies a place where the function is zero; when the zero-expr is omitted, the function is assumed to be zero at zero.

\section*{Suggestions for piecewise-linear models}

As seen in all of our examples, AMPL's terminology for piecewise-linear functions of variables is limited to describing functions of individual variables. In model declarations, no variables may appear in the breakpoint-list, slope-list and zero-expr (if any), while an arg-expr can only be a reference to an individual variable. (Piecewise-linear expressions in commands like display may use variables without limitation, however.)

A piecewise-linear function of an individual variable remains such a function when multiplied or divided by an arithmetic expression without variables. AMPL also treats a sum or difference of piecewise-linear and linear functions of the same variable as representing one piecewise-linear function of that variable. A separable piecewise-linear function of a model's variables is a sum or difference (using + , - or sum) of piecewiselinear or linear functions of the individual variables. Optimizers can effectively handle these separable functions, which are the ones that appear in our examples.

A piecewise-linear function is convex if successive slopes are nondecreasing (along with the breakpoints), and is concave if the slopes are nonincreasing. The two kinds of piecewise-linear optimization most easily handled by solvers are minimizing a separable convex piecewise-linear function, and maximizing a separable concave piecewise-linear function, subject to linear constraints. You can easily check that all of this chapter's examples are of these kinds. AMPL can obtain solutions in these cases by translating to an equivalent linear program, applying any LP solver, and then translating the solution back; the whole sequence occurs automatically when you type solve.

Outside of these two cases, optimizing a separable piecewise-linear function must be viewed as an application of integer programming - the topic of Chapter 20 - and AMPL must translate piecewise-linear terms to equivalent integer programming forms. This, too, is done automatically, for solution by an appropriate solver. Because integer programs are usually much harder to solve than similar linear programs of comparable size, however, you should not assume that just any separable piecewise-linear function can be readily optimized; a degree of experimentation may be necessary to determine how large an instance your solver can handle. The best results are likely to be obtained by solvers that accept an option known (mysteriously) as "special ordered sets of type \(2^{\prime}\) '; check the solver-specific documentation for details.

The situation for the constraints can be described in a similar way. However, a separable piecewise-linear function in a constraint can be handled through linear programming only under a restrictive set of circumstances:
- If it is convex and on the left-hand side of a \(\leq\) constraint (or equivalently, the right-hand side of a \(\geq\) constraint);
- If it is concave and on the left-hand side of a \(\geq\) constraint (or equivalently, the right-hand side of \(\mathrm{a} \leq\) constraint).
Other piecewise-linearities in the constraints must be dealt with through integer programming techniques, and the preceding comments for the case of the objective apply.

If you have access to a solver that can handle piecewise-linearities directly, you can turn off AMPL's translation to the linear or integer programming form by setting the
option pl_linearize to 0 . The case of minimizing a convex or maximizing a concave separable piecewise-linear function can in particular be handled very efficiently by piecewise-linear generalizations of LP techniques. A solver intended for nonlinear programming may also accept piecewise-linear functions, but it is unlikely to handle them reliably unless it has been specially designed for "nondifferentiable" optimization.

The differences between hard and easy piecewise-linear cases can be slight. This chapter's transportation example is easy, in particular because the shipping rates increase along with shipping volume. The same example would be hard if economies of scale caused shipping rates to decrease with volume, since then we would be minimizing a concave rather than a convex function. We cannot say definitively that shipping rates ought to be one way or the other; their behavior depends upon the specifics of the situation being modeled.

In all cases, the difficulty of piecewise-linear optimization gradually increases with the total number of pieces. Thus piecewise-linear cost functions are most effective when the costs can be described or approximated by relatively few pieces. If you need more than about a dozen pieces to describe a cost accurately, you may be better off using a nonlinear function as described in Chapter 18.

\section*{Bibliography}

Robert Fourer, "A Simplex Algorithm for Piecewise-Linear Programming III: Computational Analysis and Applications." Mathematical Programming 53 (1992) pp. 213-235. A survey of conversions from piecewise-linear to linear programs, and of applications.
Robert Fourer and Roy E. Marsten, "Solving Piecewise-Linear Programs: Experiments with a Simplex Approach." ORSA Journal on Computing 4 (1992) pp. 16-31. Descriptions of varied applications and of experience in solving them.
Spyros Kontogiorgis, "Practical Piecewise-Linear Approximation for Monotropic Optimization." INFORMS Journal on Computing 12 (2000) pp. 324-340. Guidelines for choosing the breakpoints when approximating a nonlinear function by a piecewise-linear one.

\section*{Exercises}

17-1. Piecewise-linear models are sometimes an alternative to the nonlinear models described in Chapter 18, replacing a smooth curve by a series of straight-line segments. This exercise deals with the model shown in Figure 18-4.
(a) Reformulate the model of Figure 18-4 so that it approximates each nonlinear term
```

Trans[i,j] / (1 - Trans[i,j]/limit[i,j])

```
by a piecewise-linear term having three pieces. Set the breakpoints at (1/3) * limit \([i, j]\) and \((2 / 3)\) * limit \([i, j]\). Pick the slopes so that the approximation equals the original nonlinear term when Trans[i,j] is \(0,1 / 3\) * \(\operatorname{limit}[i, j], 2 / 3\) * \(\operatorname{limit}[i, j]\), or \(11 / 12\) * limit[i,j]; you should find that the three slopes are \(3 / 2,9 / 2\) and 36 in every term, regardless
of the size of limit [i,j]. Finally, place an explicit upper limit of 0.99 * limit [i,j] on Trans[i,j].
(b) Solve the approximation with the data given in Figure 18-5, and compare the optimal shipment amounts to the amounts recommended by the nonlinear model.
(c) Formulate a more sophisticated version in which the number of linear pieces for each term is given by a parameter nsl. Pick the breakpoints to be at ( \(k / n s l\) ) * limit \([i, j]\) for \(k\) from 1 to nsl-1. Pick the slopes so that the piecewise-linear function equals the original nonlinear function when Trans [ \(i, j]\) is \((k / n s l)\) * limit \([i, j]\) for any \(k\) from 0 to \(n s l-1\), or when Trans[i,j] is (nsl-1/4)/nsl *limit[i,j].
Check your model by showing that you get the same results as in (b) when nsl is 3 . Then, by trying higher values of ns 1 , determine how many linear pieces the approximation requires in order to determine all shipment amounts to within about \(10 \%\) of the amounts recommended by the original nonlinear model.

17-2. This exercise asks how you might convert the demand constraints in the transportation model of Figure 3-1a into the kind of "soft" constraints described in Section 17.2.
Suppose that instead of a single parameter called demand [ \(j\) ] at each destination \(j\), you are given the following four parameters that describe a more complicated situation:
```

dem_min_abs[j] absolute minimum that must be shipped to j
dem_min_ask[j] preferred minimum amount shipped to j
dem_max_ask[j] preferred maximum amount shipped to j
dem_max_abs[j] absolute maximum that may be shipped to j

```

There are also two penalty costs for shipment amounts outside of the preferred limits:
```

dem_min_pen penalty per unit that shipments fall below dem_min_ask[j]
dem_max_pen penalty per unit that shipments exceed dem_max_ask[j]

```

Because the total shipped to \(j\) is no longer fixed, a new variable Receive [ \(j\) ] is introduced to represent the amount received at \(j\).
(a) Modify the model of Figure 3-1a to use this new information. The modifications will involve declaring Receive[j] with the appropriate lower and upper bounds, adding a three-piece piecewise-linear penalty term to the objective function, and substituting Receive[j] for demand [ \(j\) ] in the constraints.
(b) Add the following demand information to the data of Figure 3-1b:
\begin{tabular}{lcccc} 
& dem_min_abs & dem_min_ask & dem_max_ask & dem_max_abs \\
FRA & 800 & 850 & 950 & 1100 \\
DET & 975 & 1100 & 1225 & 1250 \\
LAN & 600 & 600 & 625 & 625 \\
WIN & 350 & 375 & 450 & 500 \\
STL & 1200 & 1500 & 1800 & 2000 \\
FRE & 1100 & 1100 & 1100 & 1125 \\
LAF & 800 & 900 & 1050 & 1175
\end{tabular}

Let dem_min_pen and dem_max_pen be 2 and 4, respectively. Find the new optimal solution. In the solution, which destinations receive shipments that are outside the preferred levels?

17-3. When the diet model of Figure 2-1 is run with the data of Figure 2-3, there is no feasible solution. This exercise asks you to use the ideas of Section 17.2 to find some good near-feasible solutions.
(a) Modify the model so that it is possible, at a very high penalty, to purchase more than the specified maximum of a food. In the resulting solution, which maximums are exceeded?
(b) Modify the model so that it is possible, at a very high penalty, to supply more than the specified maximum of a nutrient. In the resulting solution, which maximums are exceeded?
(c) Using extremely large penalties, such as \(10^{20}\) may give the solver numerical difficulties. Experiment to see how available solvers behave when you use penalty terms like \(10^{20}\) and \(10^{30}\).

17-4. In the model of Exercise 4-4(b), the change in crews from one period to the next is limited to some number \(M\). As an alternative to imposing this limit, suppose that we introduce a new variable \(D_{t}\) that represents the change in number of crews (in all shifts) at period \(t\). This variable may be positive, indicating an increase in crews over the previous period, or negative, indicating a decrease in crews.
To make use of this variable, we introduce a defining constraint,
\[
D_{t}=\sum_{s \in S}\left(Y_{s t}-Y_{s, t-1}\right),
\]
for each \(t=1, \ldots, T\). We then estimate costs of \(c^{+}\)per crew added from period to period, and \(c^{-}\) per crew dropped from period to period; as a result, the following cost must be included in the objective for each month \(t\) :
\[
\begin{array}{ll}
c^{-} D_{t}, & \text { if } D_{t}<0 \\
c^{+} D_{t}, & \text { if } D_{t}>0 .
\end{array}
\]

Reformulate the model in AMPL accordingly, using a piecewise-linear function to represent this extra cost.
Solve using \(c^{-}=-20000\) and \(c^{+}=100000\), together with the data previously given. How does this solution compare to the one from Exercise 4-4(b)?

17-5. The following "credit scoring" problem appears in many contexts, including the processing of credit card applications. A set APPL of people apply for a card, each answering a set QUES of questions on the application. The response of person \(i\) to question \(j\) is converted to a number, ans [ \(i, j\) ]; typical numbers are years at current address, monthly income, and a home ownership indicator (say, 1 if a home is owned and 0 otherwise).
To summarize the responses, the card issuer chooses weights Wt [ \(j\) ], from which a score for each person \(i\) in APPL is computed by the linear formula
```

sum {j in QUES} ans[i,j] * Wt[j]

```

The issuer also chooses a cutoff, Cut; credit is granted when an applicant's score is greater than or equal to the cutoff, and is denied when the score is less than the cutoff. In this way the decision can be made objectively (if not always most wisely).
To choose the weights and the cutoff, the card issuer collects a sample of previously accepted applications, some from people who turned out to be good customers, and some from people who never paid their bills. If we denote these two collections of people by sets GOOD and BAD, then the ideal weights and cutoff (for this data) would satisfy
```

sum {j in QUES} ans[i,j] * Wt[j] >= Cut foreach i in GOOD
sum {j in QUES} ans[i,j] * Wt[j] < Cut foreach i in BAD

```

Since the relationship between answers to an application and creditworthiness is imprecise at best, however, no values of \(\mathrm{Wt}[\mathrm{j}]\) and Cut can be found to satisfy all of these inequalities. Instead,
the issuer has to choose values that are merely the best possible, in some sense. There are any number of ways to make such a choice; here, naturally, we consider an optimization approach.
(a) Suppose that we define a new variable Diff [i] that equals the difference between person i's score and the cutoff:
```

Diff[i] = sum {j in QUES} ans[i,j] * Wt[j] - Cut

```

Clearly the undesirable cases are where \(\operatorname{Diff}[i]\) is negative for \(i\) in GOOD, and where it is nonnegative for \(i\) in BAD. To discourage these cases, we can tell the issuer to minimize the function
```

sum {i in GOOD} max(0,-Diff[i]) + sum {i in BAD} max(0,Diff[i])

```

Explain why minimizing this function tends to produce a desirable choice of weights and cutoff.
(b) The expression above is a piecewise-linear function of the variables Diff[i]. Rewrite it using AMPL's notation for piecewise-linear functions.
(c) Incorporate the expression from (b) into an AMPL model for finding the weights and cutoff.
(d) Given this approach, any positive value for Cut is as good as any other. We can fix it at a convenient round number - say, 100. Explain why this is the case.
(e) Using a Cut of 100, apply the model to the following imaginary credit data:


What are the chosen weights? Using these weights, how many of the good customers would be denied a card, and how many of the bad risks would be granted one?
You should find that a lot of the bad risks have scores right at the cutoff. Why does this happen in the solution? How might you adjust the cutoff to deal with it?
(f) To force scores further away from the cutoff (in the desired direction), it might be preferable to use the following objective,
```

sum {i in GOOD} max(0,-Diff[i]+offset) +
sum {i in BAD} max(0,Diff[i]+offset)

```
where offset is a positive parameter whose value is supplied. Explain why this change has the desired effect. Try offset values of 2 and 10 and compare the results with those in (e).
(g) Suppose that giving a card to a bad credit risk is considered much more undesirable than refusing a card to a good credit risk. How would you change the model to take this into account?
(h) Suppose that when someone's application is accepted, his or her score is also used to suggest an initial credit limit. Thus it is particularly important that bad credit risks not receive very large scores. How would you add pieces to the piecewise-linear objective function terms to account for this concern?

17-6. In Exercise 18-3, we suggest a way to estimate position, velocity and acceleration values from imprecise data, by minimizing a nonlinear "sum of squares" function:
\[
\sum_{j=1}^{n}\left[h_{j}-\left(a_{0}-a_{1} t_{j}-1 / 2 a_{2} t_{j}^{2}\right)\right]^{2}
\]

An alternative approach instead minimizes a sum of absolute values:
\[
\sum_{j=1}^{n}\left|h_{j}-\left(a_{0}-a_{1} t_{j}-1 / 2 a_{2} t_{j}^{2}\right)\right| .
\]
(a) Substitute the sum of absolute values directly for the sum of squares in the model from Exercise 18-3, first with the abs function, and then with AMPL's explicit piecewise-linear notation.
Explain why neither of these formulations is likely to be handled effectively by any solver.
(b) To model this situation effectively, we introduce variables \(e_{j}\) to represent the individual formulas \(h_{j}-\left(a_{0}-a_{1} t_{j}-1 / 2 a_{2} t_{j}^{2}\right)\) whose absolute values are being taken. Then we can express the minimization of the sum of absolute values as the following constrained optimization problem:
\[
\begin{aligned}
& \text { Minimize } \sum_{j=1}^{n}\left|e_{j}\right| \\
& \text { Subject to } e_{j}=h_{j}-\left(a_{0}-a_{1} t_{j}-1 / 2 a_{2} t_{j}^{2}\right), j=1, \ldots, n
\end{aligned}
\]

Write an AMPL model for this formulation, using the piecewise-linear notation for the terms \(\left|e_{j}\right|\).
(c) Solve for \(a_{0}, a_{1}\), and \(a_{2}\) using the data from Exercise 18-3. How much difference is there between this estimate and the least-squares one?
Use display to print the \(e_{j}\) values for both the least-squares and the least-absolute-values solutions. What is the most obvious qualitative difference?
(d) Yet another possibility is to focus on the greatest absolute deviation, rather than the sum:
\[
\max _{j=1, \ldots, n}\left|h_{j}-\left(a_{0}-a_{1} t_{j}-1 / 2 a_{2} t_{j}^{2}\right)\right|
\]

Formulate an AMPL linear program that will minimize this quantity, and test it on the same data as before. Compare the resulting estimates and \(e_{j}\) values. Which of the three estimates would you choose in this case?

17-7. A planar structure consists of a set of joints connected by bars. For example, in the following diagram, the joints are represented by circles, and the bars by lines between two circles:


Consider the problem of finding a minimum-weight structure to meet certain external forces. We let \(J\) be the set of joints, and \(B \subseteq J \times J\) be the set of admissible bars; for the diagram above, we could take \(J=\{1,2,3,4,5\}\), and
\[
B=\{(1,2),(1,3),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)\}
\]

The 'origin'' and 'destination', of a bar are arbitrary. The bar between joints 1 and 2, for example, could be represented in \(B\) by either \((1,2)\) or \((2,1)\), but it need not be represented by both.
We can use two-dimensional Euclidean coordinates to specify the position of each joint in the plane, taking some arbitrary point as the origin:
\(a_{i}^{x} \quad\) horizontal position of joint \(i\) relative to the origin
\(a_{i}^{y} \quad\) vertical position of joint \(i\) relative to the origin
For the example, if the origin lies exactly at joint 2 , we might have
\[
\begin{aligned}
& \left(a_{1}^{x}, a_{1}^{y}\right)=(0,2),\left(a_{2}^{x}, a_{2}^{y}\right)=(0,0),\left(a_{3}^{x}, a_{3}^{y}\right)=(2,1), \\
& \left(a_{4}^{x}, a_{4}^{y}\right)=(4,2),\left(a_{5}^{x}, a_{5}^{y}\right)=(4,0) .
\end{aligned}
\]

The remaining data consist of the external forces on the joints:
\(f_{i}^{x}\) horizontal component of the external force on joint \(i\)
\(f_{i}^{y} \quad\) vertical component of the external force on joint \(i\)
To resist this force, a subset \(S \subseteq J\) of joints is fixed in position. (It can be proved that fixing two joints is sufficient to guarantee a solution.)
The external forces induce stresses on the bars, which we can represent as
\[
\begin{aligned}
F_{i j} & \text { if }>0, \text { tension on bar }(i, j) \\
& \text { if }<0, \text { compression of bar }(i, j)
\end{aligned}
\]

A set of stresses is in equilibrium if the external forces, tensions and compressions balance at all joints, in both the horizontal and vertical components - except at the fixed joints. That is, for each joint \(k \notin S\),
\[
\begin{aligned}
& \sum_{i \in J:(i, k) \in B} c_{i k}^{x} F_{i k}-\sum_{j \in J:(k, j) \in B} c_{k j}^{x} F_{k j}=f_{k}^{x} \\
& \sum_{i \in J:(i, k) \in B} c_{i k}^{y} F_{i k}-\sum_{j \in J:(k, j) \in B} c_{k j}^{y} F_{k j}=f_{k}^{y}
\end{aligned}
\]
where \(c_{s t}^{x}\) and \(c_{s t}^{y}\) are the cosines of the direction from joint \(s\) to joint \(t\) with the horizontal and vertical axes,
\[
\begin{aligned}
& c_{s t}^{x}=\left(a_{t}^{x}-a_{s}^{x}\right) / l_{s t}, \\
& c_{s t}^{y}=\left(a_{t}^{y}-a_{s}^{y}\right) / l_{s t},
\end{aligned}
\]
and \(l_{s t}\) is the length of the \(\operatorname{bar}(s, t)\) :
\[
l_{s t}=\sqrt{\left(a_{t}^{x}-a_{s}^{x}\right)^{2}+\left(a_{t}^{y}-a_{s}^{y}\right)^{2}}
\]

In general, there are infinitely many different sets of equilibrium stresses. However, it can be shown that a given system of stresses will be realized in a structure of minimum weight if and only if the cross-sectional areas of the bars are proportional to the absolute values of the stresses. Since the weight of a bar is proportional to the cross section times length, we can take the (suitably scaled) weight of bar \((i, j)\) to be
\[
w_{i j}=l_{i j} \cdot\left|F_{i j}\right|
\]

The problem is then to find a system of stresses \(F_{i j}\) that meet the equilibrium conditions, and that minimize the sum of the weights \(w_{i j}\) over all bars \((i, j) \in B\).
(a) The indexing sets for this linear program can be declared in AMPL as:
```

set joints;
set fixed within joints;
set bars within {i in joints, j in joints: i <> j};

```

Using these set declarations, formulate an AMPL model for the minimum-weight structural design problem. Use the piecewise-linear notation of this chapter to represent the absolute-value terms in the objective function.
(b) Now consider in particular a structure that has the following joints:


Assume that there is one unit horizontally and vertically between joints, and that the origin is at the lower left; thus \(\left(a_{1}^{x}, a_{1}^{y}\right)=(0,2)\) and \(\left(a_{15}^{x}, a_{15}^{y}\right)=(5,0)\).
Let there be external forces of 3.25 and 1.75 units straight downward on joints 1 and 7 , so that \(f_{1}^{y}=\) \(-3.25, f_{7}^{y}=-1.75\), and otherwise all \(f_{i}^{x}=0\) and \(f_{i}^{y}=0\). Let \(S=\{6,15\}\). Finally, let the admissible bars consist of all possible bars that do not go directly through a joint; for example, \((1,2)\) or \((1,9)\) or \((1,13)\) would be admissible, but not \((1,3)\) or \((1,12)\) or \((1,14)\).
Determine all the data for the problem that is needed by the linear program, and represent it as AMPL data statements.
(c) Use AMPL to solve the linear program and to examine the minimum-weight structure that is determined.
Draw a diagram of the optimal structure, indicating the cross sections of the bars and the nature of the stresses. If there is zero force on a bar, it has a cross section of zero, and may be left out of your diagram.
(d) Repeat parts (b) and (c) for the case in which all possible bars are admissible. Is the resulting structure different? Is it any lighter?

\section*{18}

\section*{Nonlinear Programs}

Although any model that violates the linearity rules of Chapter 8 is 'not linear", the term ' 'nonlinear program'" is traditionally used in a more narrow sense. For our purposes in this chapter, a nonlinear program, like a linear program, has continuous (rather than integer or discrete) variables; the expressions in its objective and constraints need not be linear, but they must represent "smooth" functions. Intuitively, a smooth function of one variable has a graph like that in Figure 18-1a, for which there is a well-defined slope at every point; there are no jumps as in Figure 18-1b, or kinks as in Figure 18-1c. Mathematically, a smooth function of any number of variables must be continuous and must have a well-defined gradient (vector of first derivatives) at every point; Figures 18-1b and 18-1c exhibit points at which a function is discontinuous and nondifferentiable, respectively.

Optimization problems in functions of this kind have been singled out for several reasons: because they are readily distinguished from other 'not linear'" problems, because they have many and varied applications, and because they are amenable to solution by well-established types of algorithms. Indeed, most solvers for nonlinear programming use methods that rely on the assumptions of continuity and differentiability. Even with these assumptions, nonlinear programs are typically a lot harder to formulate and solve than comparable linear ones.

This chapter begins with an introduction to sources of nonlinearity in mathematical programs. We do not try to cover the variety of nonlinear models systematically, but instead give a few examples to indicate why and how nonlinearities occur. Subsequent sections discuss the implications of nonlinearity for AMPL variables and expressions. Finally, we point out some of the difficulties that you are likely to confront in trying to solve nonlinear programs.

While the focus of this chapter is on nonlinear optimization, keep in mind that AMPL can also express systems of nonlinear equations or inequalities, even if there is no objective to optimize. There exist solvers specialized to this case, and many solvers for nonlinear optimization can also do a decent job of finding a feasible solution to an equation or inequality system.


Figure 18-1: Classes of nonlinear functions.

\subsection*{18.1 Sources of nonlinearity}

We discuss here three ways that nonlinearities come to be included in optimization models: by dropping a linearity assumption, by constructing a nonlinear function to achieve a desired effect, and by modeling an inherently nonlinear physical process.

As an example, we describe some nonlinear variants of the linear network flow model net1.mod introduced in Chapter 15 (Figure 15-2a). This linear program's objective is to minimize total shipping cost,
```

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];

```
where cost [i,j] and Ship [i,j] represent the cost per unit and total units shipped between cities \(i\) and \(j\), with LINKS being the set of all city pairs between which shipment routes exist. The constraints are balance of flow at each city:
```

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]
= demand[k] + Sum {(k,j) in LINKS} Ship[k,j];

```
with the nonnegative parameters supply[i] and demand[i] representing the units either available or required at city i.

\section*{Dropping a linearity assumption}

The linear network flow model assumes that each unit shipped from city i to city \(j\) incurs the same shipping cost, cost \([i, j]\). Figure 18-2a shows a typical plot of shipping cost versus amount shipped in this case; the plot is a line with slope cost \([i, j]\) (hence the term linear). The other plots in Figure 18-2 show a variety of other ways, none of them linear, in which shipping cost could depend on the shipment amount.

In Figure 18-2b the cost also tends to increase linearly with the amount shipped, but at certain critical amounts the cost per unit (that is, the slope of the line) makes an abrupt change. This kind of function is called piecewise-linear. It is not linear, strictly speaking, but it is also not smoothly nonlinear. The use of piecewise-linear objectives is the topic of Chapter 17.

In Figure 18-2c the function itself jumps abruptly. When nothing is shipped, the shipping cost is zero; but when there is any shipment at all, the cost is linear starting from a value greater than zero. In this case there is a fixed cost for using the link from i to \(j\), plus a variable cost per unit shipped. Again, this is not a function that can be handled by linear programming techniques, but it is also not a smooth nonlinear function. Fixed costs are most commonly handled by use of integer variables, which are the topic of Chapter 20.

The remaining plots illustrate the sorts of smooth nonlinear functions that we want to consider in this chapter. Figure 18-2d shows a kind of concave cost function. The incremental cost for each additional unit shipped (that is, the slope of the plot) is great at first, but becomes less as more units are shipped; after a certain point, the cost is nearly linear. This is a continuous alternative to the fixed cost function of Figure 18-2c. It could also be used to approximate the cost for a situation (resembling Figure 18-2b) in which volume discounts become available as the amount shipped increases.

Figure 18-2e shows a kind of convex cost function. The cost is more or less linear for smaller shipments, but rises steeply as shipment amounts approach some critical amount. This sort of function would be used to model a situation in which the lowest cost shippers are used first, while shipping becomes progressively more expensive as the number of units increases. The critical amount represents, in effect, an upper bound on the shipments.

These are some of the simplest functional forms. The functions that you consider will depend on the kind of situation that you are trying to model. Figure 18-2f shows a possibility that is neither concave nor convex, combining features of the previous two examples.

Whereas linear functions are essentially all the same except for the choice of coefficients (or slopes), nonlinear functions can be defined by an infinite variety of different formulas. Thus in building a nonlinear programming model, it is up to you to derive or specify nonlinear functions that properly represent the situation at hand. In the objective
\(\qquad\)


Figure 18-2: Nonlinear cost functions.
of the transportation example, for instance, one possibility would be to replace the product cost[i,j] * Ship[i,j] by
```

(cost1[i,j] + cost2[i,j]*Ship[i,j]) / (1 + Ship[i,j])
* Ship[i,j]

```

This function grows quickly at small shipment levels but levels off to essentially linear at larger levels. Thus it represents one way to implement the curve shown in Figure 18-2d.

Another way to approach the specification of a nonlinear objective function is to focus on the slopes of the plots in Figure 18-2. In the linear case of Figure 18-2a, the slope of the plot is constant; that is why we can use a single parameter cost [i,j] to represent the cost per unit shipped. In the piecewise-linear case of Figure 18-2b, the slope is constant within each interval; we can express such piecewise-linear functions as explained in Chapter 17.

In the nonlinear case, however, the slope varies continuously with the amount shipped. This suggests that we go back to our original linear formulation of the network flow problem, and turn the parameter cost [i,j] into a variable Cost [i,j]:
```

var Cost {ORIG,DEST}; \# shipment costs per unit
var Ship {ORIG,DEST} >= 0; \# units to ship
minimize Total_Cost:
sum {i in ORIG, j in DEST} Cost[i,j] * Ship[i,j];

```

This is no longer a linear objective, because it multiplies a variable by another variable. We add some equations to specify how the cost relates to the amount shipped:
```

subject to Cost_Relation {i in ORIG, j in DEST}:
Cost[i,j] =
(cost1[i,j] + cost2[i,j]*Ship[i,j]) / (1 + Ship[i,j]);

```

These equations are also nonlinear, because they involve division by an expression that contains a variable. It is easy to see that Cost \([i, j]\) is near cost \(1[i, j]\) where shipments are near zero, but levels off to cost2[i,j] at sufficiently high shipment levels. Thus the concave cost of Figure \(18-2 \mathrm{~d}\) is realized provided that the first cost is greater than the second.

Assumptions of nonlinearity can be found in constraints as well. The constraints of the network flow model embody only a weak linearity assumption, to the effect that the total shipped out of a city is the sum of the shipments to the other cities. But in the production model of Figure 1-6a, the constraint
```

subject to Time {s in STAGE}:
sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];

```
embodies a strong assumption that the number of hours used in each stage \(s\) of making each product p grows linearly with the level of production.

\section*{Achieving a nonlinear effect}

Sometimes nonlinearity arises from a need to model a situation in which a linear function could not possibly exhibit the desired behavior.

In a network model of traffic flows, as one example, it may be necessary to take congestion into account. The total time to traverse a shipment link should be essentially a constant for small shipment amounts, but should increase rapidly towards infinity as the capacity of the link is approached. No linear function has this property, so we are forced to make travel time a nonlinear function of shipment load in order to get the desired effect.

One possibility for expressing the travel time is given by the function
```

time[i,j] + (sens[i,j]*Ship[i,j]) / (1 - Ship[i,j]/cap[i,j])

```

This function is approximately time \([i, j]\) for small values of Ship \([i, j]\), but goes to infinity as Ship[i,j] approaches cap[i,j]; a third parameter sens[i,j] governs the shape of the function between the two extremes. This function is always convex, and so has a graph resembling Figure 18-2e. (Exercise 18-4 suggests how this travel time function can be incorporated into a network model of traffic flows.)

As another example, we may want to allow demand to be satisfied only approximately. We can model this possibility by introducing a variable Discrepancy [k], to represent the deviation of the amount delivered from the amount demanded. This variable, which can be either positive or negative, is added to the right-hand side of the balance constraint:
```

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]
= demand[k] + Discrepancy[k] +
sum {(k,j) in LINKS} Ship[k,j];

```

One established approach for keeping the discrepancy from becoming too large is to add a penalty cost to the objective. If this penalty is proportional to the amount of the discrepancy, then we have a convex piecewise-linear penalty term,
```

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j] +
sum {k in CITIES} pen * <<-1,1; 0>> Discrepancy[k];

```
where pen is a positive parameter. AMPL readily transforms this objective to a linear one.

This form of penalty may not achieve the effect that we want, however, because it penalizes each unit of the discrepancy equally. To discourage large discrepancies, we would want the penalty to become steadily larger per unit as the discrepancy becomes worse, but this is not a property that can be achieved by linear penalty functions (or piecewise-linear ones that have a finite number of pieces). Instead a more appropriate penalty function would be quadratic:
```

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j] +
sum {k in CITIES} pen * Discrepancy[k] ^ 2;

```

Nonlinear objectives that are a sum of squares of some quantities are common in optimization problems that involve approximation or data fitting.

\section*{Modeling an inherently nonlinear process}

There are many sources of nonlinearity in models of physical activities like oil refining, power transmission, and structural design. More often than not, the nonlinearities in these models cannot be traced to the relaxation of any linearity assumptions, but are a consequence of inherently nonlinear relationships that govern forces, volumes, currents and so forth. The forms of the nonlinear functions in physical models may be easier to determine, because they arise from empirical measurements and the underlying laws of physics (rather than economics). On the other hand, the nonlinearities in physical models tend to involve more complicated functional forms and interactions among the variables.

As a simple example, a model of a natural gas pipeline network must incorporate not only the shipments between cities but also the pressures at individual cities, which are subject to certain bounds. Thus in addition to the flow variables Ship [i,j] the model must define a variable Press [ \(k\) ] to represent the pressure at each city \(k\). If the pressure is greater at city \(i\) than at city \(j\), then the flow is from \(i\) to \(j\) and is related to the pressure by
```

Flow[i,j]^2 = c[i,j]^2 * (Press[i]^2 - Press[j]^2)

```
where \(c[i, j]\) is a constant determined by the length, diameter, and efficiency of the pipe and the properties of the gas. Compressors and valves along the pipeline give rise to different nonlinear flow relationships. Other kinds of networks, notably for transmission of electricity, have their own nonlinear flow relationships that are dictated by the physics of the situation.

If you know the algebraic form of a nonlinear expression that you want to include in your model, you can probably see a way to write it in AMPL. The next two sections of this chapter consider some of the specific issues and features relevant to declaring variables for nonlinear programs and to writing nonlinear expressions. Lest you get carried away by the ease of writing nonlinear expressions, however, the last section offers some cautionary advice on solving nonlinear programs.

\subsection*{18.2 Nonlinear variables}

Although AMPL variables are declared for nonlinear programs in the same way as for linear programs, two features of variables - initial values and automatic substitution are particularly useful in working with nonlinear models.

\section*{Initial values of variables}

You may specify values for AMPL variables. Prior to optimization, these "initial" values can be displayed and manipulated by AMPL commands. When you type solve, they are passed to the solver, which may use them as a starting guess at the solution. After the solver has finished its work, the initial values are replaced by the computed optimal ones.

All of the AMPL features for assigning values to parameters are also available for variables. A var declaration may also specify initial values in an optional \(:=\) phrase; for the transportation example, you can write
```

var Ship {LINKS} >= 0, := 1;

```
to set every Ship [i,j] initially to 1 , or
```

var Ship {(i,j) in LINKS} >= 0, := cap[i,j] - 1;

```
to initialize each Ship [i,j] to 1 less than cap \([i, j]\). Alternatively, initial values may be given in a data statement along with the other data for a model:
\begin{tabular}{rllllllll} 
var Ship: & FRA & DET & LAN & WIN & STL & FRE & LAF & \(:=\) \\
GARY & 800 & 400 & 400 & 200 & 400 & 200 & 200 & \\
CLEV & 800 & 800 & 800 & 600 & 600 & 500 & 600 & \\
PITT & 800 & 800 & 800 & 200 & 300 & 800 & 500 & ;
\end{tabular}

Any of the data statements for parameters can also be used for variables, as explained in Section 9.4.

All of these features for assigning values to the regular ('"primal'") variables also apply to the dual variables associated with constraints (Section 12.5). AMPL interprets an assignment to a constraint name as an assignment to the associated dual variable or (in the terminology more common in nonlinear programming) to the associated Lagrange multiplier. A few solvers, such as MINOS, can make use of initial values for these multipliers.

You can often speed up the work of the solver by suggesting good initial values. This can be so even for linear programs, but the effect is much stronger in the nonlinear case. The choice of an initial guess may determine what value of the objective is found to be "optimal'" by the solver, or even whether the solver finds any optimal solution at all. These possibilities are discussed further in the last section of this chapter.

If you don't give any initial value for a variable, then AMPL will tentatively set it to zero. If the solver incorporates a routine for determining initial values, then it may re-set the values of any uninitialized variables, while making use of the values of variables that have been initialized. Otherwise, uninitialized variables will be left at zero. Although zero is an obvious starting point, it has no special significance; for some of the examples that we will give in Section 18.4, the solver cannot optimize successfully unless the initial values are reset away from zero.

\section*{Automatic substitution of variables}

The issue of substituting variables has already arisen in an example of the previous section, where we declared variables to represent the shipping costs, and then defined them in terms of other variables by use of a constraint:
```

subject to Cost_Relation {(i,j) in LINKS}:
Cost[i,j] =
(cost1[i,j] + cost2[i,j]*Ship[i,j]) / (1 + Ship[i,j]);

```

If the expression to the right of the \(=\) sign is substituted for every appearance of Cost[i,j], the Cost variables can be eliminated from the model, and these constraints need not be passed to the solver. There are two ways in which you can tell AMPL to make such substitutions automatically.

First, by changing option substout from its default value of zero to one, you can tell AMPL to look for all 'defining' constraints that have the form shown above: a single variable to the left of an = sign. When this alternative is employed, AMPL tries to use as many of these constraints as possible to substitute variables out of the model. After you have typed solve and a nonlinear program has been generated from a model and data, the constraints are scanned in the order that they appeared in the model. A constraint is identified as "defining' provided that
- it has just one variable to the left of an = sign;
- the left-hand variable's declaration did not specify any restrictions, such as integrality or bounds; and
- the left-hand variable has not already appeared in a constraint identified as defining.
The expression to the right of the \(=\) sign is then substituted for every appearance of the left-hand variable in the other constraints, and the defining constraint is dropped. These rules give AMPL an easy way to avoid circular substitutions, but they do imply that the nature and number of substitutions may depend on the ordering of the constraints.

As an alternative, if you want to specify explicitly that a certain collection of variables is to be substituted out, use an = phrase in the declarations of the variables. For the preceding example, you could write:
```

var Cost {(i,j) in LINKS}
= (cost1[i,j] + cost2[i,j]*Ship[i,j]) / (1 + Ship[i,j]);

```

Then the variables Cost \([i, j]\) would be replaced everywhere by the expression following the \(=\) sign. Declarations of this kind can appear in any order, subject to the usual requirement that every variable appearing in an = phrase must be previously defined.

Variables that can be substituted out are not mathematically necessary to the optimization problem. Nevertheless, they often serve an essential descriptive purpose; by associating names with nonlinear expressions, they permit more complicated expressions to be written understandably. Moreover, even though these variables have been removed from the problem sent to the solver, their names remain available for use in browsing through the results of optimization.

When the same nonlinear expression appears more than once in the objective and constraints, introducing a defined variable to represent it may make the model more concise as well as more readable. AMPL also processes such a substitution efficiently. In generating a representation of the nonlinear program for the solver, AMPL does not substitute a copy of the whole defining expression for each occurrence of a defined variable. Instead it breaks the expression into a linear and a nonlinear part, and saves one copy of the nonlinear part together with a list of the locations where its value is to be substituted; only the terms of the linear part are substituted explicitly in multiple locations. This separate treatment of linear terms is advantageous for solvers (such as MINOS) that handle the linear terms specially, but it may be turned off by setting option linelim to zero.

From the solver's standpoint, substitutions reduce the number of constraints and variables, but tend to make the constraint and objective expressions more complex. As a result, there are circumstances in which a solver will perform better if defined variables are not substituted out. When developing a new model, you may have to experiment to determine which substitutions give the best results.

\subsection*{18.3 Nonlinear expressions}

Any of AMPL's arithmetic operators (Table 7-1) and arithmetic functions (Table 7-2) may be applied to variables as well as parameters. If any resulting objective or constraint does not satisfy the rules for linearity (Chapter 8) or piecewise-linearity (Chapter 17), AMPL treats it as 'not linear'. When you type solve, AMPL passes along instructions that are sufficient for your solver to evaluate every expression in every objective and constraint, together with derivatives if appropriate.

If you are using a typical nonlinear solver, it is up to you to define your objective and constraints in terms of the 'smooth"' functions that the solver requires. The generality of AMPL's expression syntax can be misleading in this regard. For example, if you are trying to use variables Flow[i,j] representing flow between points \(i\) and \(j\), it is tempting to write expressions like
```

cost[i,j] * abs(Flow[i,j])

```
or
```

if Flow[i,j] = 0 then 0 else base[i,j] + cost[i,j]*Flow[i,j]

```

These are certainly not linear, but the first is not smooth (its slope changes abruptly at zero) and the second is not even continuous (its value jumps suddenly at zero). If you try to use such expressions, AMPL will not complain, and your solver may even return what it claims to be an optimal solution - but the results could be wrong.

Expressions that apply nonsmooth functions (such as abs, min, and max) to variables generally produce nonsmooth results; the same is true of if-then-else expressions in which a condition involving variables follows if. Nevertheless, there are useful exceptions where a carefully written expression can preserve smoothness. As an exam-


Figure 18-3: Smooth nonlinear functions.
ple, consider again the flow-pressure relationship from Section 18.1. If the pressure is greater at city \(i\) than at city \(j\), then the flow is from \(i\) to \(j\) and is related to the pressure by
```

Flow[i,j]^2 = c[i,j]^2 * (Press[i]^2 - Press[j]^2)

```

If instead the pressure is greater at city \(j\) than at city \(i\), a similar equation can be written:
```

Flow[j,i]^2 = c[j,i]^2 * (Press[j]^2 - Press[i]^2)

```

But since the constants \(c[i, j]\) and \(c[j, i]\) refer to the same pipe, they are equal. Thus instead of defining a separate variable for flow in each direction, we can let Flow [i,j] be unrestricted in sign, with a positive value indicating flow from \(i\) to \(j\) and a negative value indicating the opposite. Using this variable, the previous pair of flow-pressure constraints can be replaced by one:
```

(if Flow[i,j] >= 0 then Flow[i,j]^2 else -Flow[i,j]^2)
= c[i,j]^2 * (Press[i]^2 - Press[j]^2)

```

Normally the use of an if expression would give rise to a nonsmooth constraint, but in this case it gives a function whose two quadratic halves "meet" smoothly where Flow[ \(i, j\) ] is zero, as seen in Figure 18-3a.

As another example, the convex function in Figure 18-3b is most easily written \(\log (F l o w[i, j]) /(F l o w[i, j]-1)\), but unfortunately if Flow[i,j] is 1 this simplifies to \(0 / 0\), which would be reported as an error. In fact, this expression does not evaluate accurately if Flow [ \(i, j\) ] is merely very close to zero. If instead we write
```

if abs(Flow[i,j]-1) > 0.00001 then
log(Flow[i,j])/(Flow[i,j]-1)
else
1.5 - Flow[i,j]/2

```
a highly accurate linear approximation is substituted at small magnitudes of Flow \([i, j]\). This alternative is not smooth in a literal mathematical sense, but it is numerically close enough to being smooth to suffice for use with some solvers.

In the problem instance that it sends to a solver, AMPL distinguishes linear from nonlinear constraints and objectives, and breaks each constraint and objective expression into a sum of linear terms plus a not-linear part. Additional terms that become linear due to the fixing of some variables are recognized as linear. For example, in our example from Section 18.1,
```

minimize Total_Cost:
sum {i in ORIG, j in DEST} Cost[i,j] * Ship[i,j];

```
each fixing of a Cost \([i, j]\) variable gives rise to a linear term; if all the Cost \([i, j]\) variables are fixed, then the objective is represented to the solver as linear. Variables may be fixed by a fix command (Section 11.4) or through the actions of the presolve phase (Section 14.1); although the presolving algorithm ignores nonlinear constraints, it works with any linear constraints that are available, as well as any constraints that become linear as variables are fixed.

AMPL's built-in functions are only some of the ones most commonly used in model formulations. Libraries of other useful functions can be introduced when needed. To use cumulative normal and inverse cumulative normal functions from a library called statlib, for example, you would first load the library with a statement such as
```

load statlib.dll;

```
and declare the functions by use of AMPL function statements:
```

function cumnormal;
function invcumnormal;

```

Your model could then make use of these functions to form expressions such as cumnormal (mean[i],sdev[i], Inv[i,t]) and invcumnormal(6). If these functions are applied to variables, AMPL also arranges for function evaluations to be carried out during the solution process.

A function declaration specifies a library function's name and (optionally) its required arguments. There may be any number of arguments, and even iterated collections of arguments. Each function's declaration must appear before its use. For your convenience, a script containing the function declarations may be supplied along with the library, so that a statement such as include statlib is sufficient to provide access to all of the library's functions. Documentation for the library will indicate the functions available and the numbers and meanings of their arguments.

Determining the correct load command may involve a number of details that depend on the type of system you're using and even its specific configuration. See Section A. 22 for further discussion of the possibilities and the related AMPLFUNC option.

If you are ambitious, you can write and compile your own function libraries. Instructions and examples are available from the AMPL web site.

\subsection*{18.4 Pitfalls of nonlinear programming}

While AMPL gives you the power to formulate diverse nonlinear optimization models, no solver can guarantee an acceptable solution every time you type solve. The algorithms used by solvers are susceptible to a variety of difficulties inherent in the complexities of nonlinear functions. This is in unhappy contrast to the linear case, where a welldesigned solver can be relied upon to solve almost any linear program.

This section offers a brief introduction to the pitfalls of nonlinear programming. We focus on two common kinds of difficulties, function range violations and multiple local optima, and then mention several other traps more briefly.

For illustration we begin with the nonlinear transportation model shown in Figure 18-4. It is identical to our earlier transportation example (Figure 3-1a) except that the terms cost \([i, j]\) * Trans [ \(i, j\) ] are replaced by nonlinear terms in the objective:
```

minimize Total_Cost:
sum {i in ORIG, j in DEST}
rate[i,j] * Trans[i,j] / (1 - Trans[i,j]/limit[i,j]);

```

Each term is a convex increasing function of Trans [i,j] like that depicted in Figure 18-2e; it is approximately linear with slope rate \([i, j]\) at relatively small values of Trans[i,j], but goes to infinity as Trans[i,j] approaches limit[i,j]. Associated data values, also similar to those used for the linear transportation example in Chapter 3, are given in Figure 18-5.

\section*{Function range violations}

An attempt to solve using the model and data as given proves unsuccessful:
```

ampl: model nltrans.mod;
ampl: data nltrans.dat;
ampl: solve;
MINOS 5.5 Error evaluating objective Total_Cost
can't compute 8000/0
MINOS 5.5: solution aborted.
8 iterations, objective 0

```

The solver's message is cryptic, but strongly suggests a division by zero while evaluating the objective. That could only happen if the expression
```

1 - Trans[i,j]/limit[i,j]

```
```

set ORIG; \# origins
set DEST; \# destinations
param supply {ORIG} >= 0; \# amounts available at origins
param demand {DEST} >= 0; \# amounts required at destinations
check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
param rate {ORIG,DEST} >= 0; \# base shipment costs per unit
param limit {ORIG,DEST} > 0; \# limit on units shipped
var Trans {i in ORIG, j in DEST} >= 0; \# units to ship
minimize Total_Cost:
sum {i in ORIG, j in DEST}
rate[i,j] * Trans[i,j] / (1 - Trans[i,j]/limit[i,j]);
subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

```

Figure 18-4: Nonlinear transportation model (nltrans .mod).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline m: & \begin{tabular}{l}
ORIG: \\
GARY
\end{tabular} & \[
\begin{array}{r}
\text { suppl } \\
1400
\end{array}
\] & ly := & CLEV & 2600 & & PITT & 2900 \\
\hline \multirow[t]{4}{*}{param:} & DEST: & \multicolumn{3}{|l|}{demand : =} & & & & \\
\hline & FRA & 900 & & DET & 1200 & & LAN & 600 \\
\hline & WIN & 400 & & STL & 1700 & & FRE & 1100 \\
\hline & LAF & 1000 & ; & & & & & \\
\hline \multirow[t]{4}{*}{param} & rate : & FRA & DET & LAN & WIN & STL & FRE & LAF : \(=\) \\
\hline & GARY & 39 & 14 & 11 & 14 & 16 & 82 & 8 \\
\hline & CLEV & 27 & 9 & 12 & 9 & 26 & 95 & 17 \\
\hline & PITT & 24 & 14 & 17 & 13 & 28 & 99 & 20 \\
\hline \multirow[t]{4}{*}{param} & limit : & FRA & DET & LAN & WIN & STL & FRE & LAF \\
\hline & GARY & 500 & 1000 & 1000 & 1000 & 800 & 500 & 1000 \\
\hline & CLEV & 500 & 800 & 800 & 800 & 500 & 500 & 1000 \\
\hline & PITT & 800 & 600 & 600 & 600 & 500 & 500 & 900 \\
\hline
\end{tabular}

Figure 18-5: Data for nonlinear transportation model (nltrans. dat).
is zero at some point. If we use display to print the pairs where Trans [i,j] equals limit[i,j]:
ampl: display \{i in ORIG, \(j\) in DEST: Trans[i,j] = limit[i,j]\}; set \{i in ORIG, j in DEST: Trans[i,j] == limit[i,j]\} := (GARY,LAF) (PITT,LAN);
ampl: display Trans['GARY','LAF'], limit['GARY','LAF'];
Trans['GARY','LAF'] = 1000
limit['GARY','LAF'] = 1000
we can see the problem. The solver has allowed Trans [GARY, LAF] to have the value 1000, which equals limit [GARY, LAF]. As a result, the objective function term
```

rate[GARY,LAF] * Trans[GARY,LAF]
/ (1 - Trans[GARY,LAF]/limit[GARY,LAF])

```
evaluates to \(8000 / 0\). Since the solver is unable to evaluate the objective function, it gives up without finding an optimal solution.

Because the behavior of a nonlinear optimization algorithm can be sensitive to the choice of starting guess, we might hope that the solver will have greater success from a different start. To ensure that the comparison is meaningful, we first set
```

ampl: option send_statuses 0;

```
so that status information about variables that was returned by the previous solve will not be sent back to help determine a starting point for the next solve. Then AMPL's let command may be used to suggest, for example, a new initial value for each Trans [i,j] that is half of limit [i,j]:
```

ampl: let {i in ORIG, j in DEST} Trans[i,j] := limit[i,j]/2;
ampl: solve;
MINOS 5.5: the current point cannot be improved.
32 iterations, objective -7.385903389e+18

```

This time the solver runs to completion, but there is still something wrong. The objective is less than \(-10^{18}\), or \(-\infty\) for all practical purposes, and the solution is described as 'cannot be improved" rather than optimal.

Examining the values of Trans \([i, j] / \operatorname{limit}[i, j]\) in the solution that the solver has returned gives a clue to the difficulty:
```

ampl: display {i in ORIG, j in DEST} Trans[i,j]/limit[i,j];
Trans[i,j]/limit[i,j] [*,*] (tr)
: CLEV GARY PITT :=
DET -6.125e-14 0 2
FRA 0 1.5 0.1875
FRE 0.7 1 0.5
LAF 0.4 0.15 0.5
LAN 0.375 7.03288e-15 0.5
STL 2.9 0}00.
WIN 0.125 0 0.5

```

These ratios show that the shipments for several pairs, such as Trans [CLEV, STL], significantly exceed their limits. More seriously, Trans [GARY, FRE] seems to be right at limit [GARY, FRE], since their ratio is given as 1. If we display them to full precision, however, we see:
```

ampl: option display_precision 0;
ampl: display Trans['GARY','FRE'], limit['GARY','FRE'];
Trans['GARY','FRE'] = 500.0000000000028
limit['GARY','FRE'] = 500

```


Figure 18-6: Singularity in cost function \(y=x /(1-x / c)\).

The variable is just slightly larger than the limit, so the cost term has a huge negative value. If we graph the entire cost function, as in Figure 18-6, we see that indeed the cost function goes off to \(-\infty\) to the right of the singularity at limit [GARY, FRE].

The source of error in both runs above is our assumption that, since the objective goes to \(+\infty\) as Trans [i,j] approaches limit[i,j] from below, the solver will keep Trans [i,j] between 0 and limit[i,j]. At least for this solver, we must enforce such an assumption by giving each Trans \([i, j]\) an explicit upper bound that is slightly less than limit \([i, j]\), but close enough not to affect the eventual optimal solution:
```

var Trans {i in ORIG, j in DEST} >= 0, <= .9999 * limit[i,j];

```

With this modification, the solver readily finds an optimum:
```

ampl: option display_precision 6;
ampl: model nltransb.mod; data nltrans.dat; solve;
MINOS 5.5: optimal solution found.
81 iterations, objective 1212117
ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 586.372 187.385 426.242
FRA 294.993 81.2205 523.787
FRE 365.5 369.722 364.778
LAF 490.537 0 509.463
LAN 294.148 0 305.852
STL 469.691 761.672 468.637
WIN 98.7595 0 301.241
;

```

These values of the variables are well away from any singularity, with Trans[i,j]/limit[i,j] being less than 0.96 in every case. (If you change the starting guess to be limit[i,j]/2 as before, you should find that the solution is the same but the solver needs only about half as many iterations to find it.)

The immediate lesson here is that nonlinear functions can behave quite badly outside the intended range of the variables. The incomplete graph in Figure 18-2e made this cost function look misleadingly well-behaved, whereas Figure 18-6 shows the need for a bound to keep the variable away from the singularity.

A more general lesson is that difficulties posed by a nonlinear function may lead the solver to fail in a variety of ways. When developing a nonlinear model, you need to be alert to bizarre results from the solver, and you may have to do some detective work to trace the problem back to a flaw in the model.

\section*{Multiple local optima}

To illustrate a different kind of difficulty in nonlinear optimization, we consider a slightly modified objective function that has the following formula:
```

minimize Total_Cost:
sum {i in ORIG, j in DEST}
rate[i,j] * Trans[i,j]^0.8 / (1 - Trans[i,j]/limit[i,j]);

```

By raising the amount shipped to the power 0.8, we cause the cost function to be concave at lower shipment amounts and convex at higher amounts, in the manner of Figure 18-2f. Attempting to solve this new model, we again initially run into technical difficulties:
```

ampl: model nltransc.mod; data nltrans.dat; solve;
MINOS 5.5: Error evaluating objective Total_Cost:
can't evaluate pow'(0,0.8)
MINOS 5.5: solution aborted.
8 iterations, objective 0

```

This time our suspicion naturally centers upon Trans \([i, j]^{\wedge} 0.8\), the only expression that we have changed in the model. A further clue is provided by the error message's reference to pow' \((0,0.8)\), which denotes the derivative of the exponential (power) function at zero. When Trans [ \(i, j\) ] is zero, this function has a well-defined value, but its derivative with respect to the variable - the slope of the graph in Figure 18-2f — is infinite. As a result, the partial derivative of the total cost with respect to any variable at zero cannot be returned to the solver; since the solver requires all the partial derivatives for its optimization algorithm, it gives up.

This is another variation on the range violation problem, and again it can be remedied by imposing some bounds to keep the solution away from troublesome points. In this case, we move the lower bound from zero to a very small positive number:
```

var Trans {i in ORIG, j in DEST}
>= 1e-10, <= .9999 * limit[i,j], := 0;

```

We might also move the starting guess away from zero, but in this example the solver takes care of that automatically, since the initial values only suggest a starting point.

With the bounds adjusted, the solver runs normally and reports a solution:
```

ampl: model nltransd.mod; data nltrans.dat; solve;
MINOS 5.5: optimal solution found.
6 5 iterations, objective 427568.1225
ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 689.091 1e-10 510.909
FRA 1e-10 199.005 700.995
FRE 385.326 326.135 388.54
LAF 885.965 114.035 1e-10
LAN 169.662 1e-10 430.338
STL 469.956 760.826 469.218
WIN 1e-10 1e-10 400

```

We can regard each \(1 \mathrm{e}-10\) as a zero, since such a small value is negligible in comparison with the rest of the solution.

Next we again try a starting guess at limit [i,j]/2, in the hope of speeding things up. This is the result:
```

ampl: let {i in ORIG, j in DEST} Trans[i,j] := limit[i,j]/2;
ampl: solve;
MINOS 5.5: optimal solution found.
40 iterations, objective 355438.2006
ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 540.601 265.509 393.89
FRA 328.599 1e-10 571.401
FRE 364.639 371.628 363.732
LAF 491.262 1e-10 508.738
LAN 301.741 1e-10 298.259
STL 469.108 762.863 468.029
WIN 104.049 1e-10 295.951
;

```

Not only is the solution completely different, but the optimal value is \(17 \%\) lower! The first solution could not truly have minimized the objective over all solutions that are feasible in the constraints.

Actually both solutions can be considered correct, in the sense that each is locally optimal. That is, each solution is less costly than any other nearby solutions. All of the classical methods of nonlinear optimization, which are the methods considered in this chapter, are designed to seek a local optimum. Started from one specified initial guess, these methods are not guaranteed to find a solution that is globally optimal, in the sense of giving the best objective value among all solutions that satisfy the constraints. In general, finding a global optimum is much harder than finding a local one.

Fortunately, there are many cases in which a local optimum is entirely satisfactory. When the objective and constraints satisfy certain properties, any local optimum is also global; the model considered at the beginning of this section is one example, where the convexity of the objective, together with the linearity of the constraints, guarantees that the solver will find a global optimum. (Linear programming is an even more special case with this property; that's why in previous chapters we never encountered local optima that were not global.)

Even when there is more than one local optimum, a knowledge of the situation being modeled may help you to identify the global one. Perhaps you can choose an initial solution near to the global optimum, or you can add some constraints that rule out regions known to contain local optima.

Finally, you may be content to find a very good local optimum, even if you don't have a guarantee that it is global. One straightforward approach is to try a series of starting points systematically, and take the best among the solutions. As a simple illustration, suppose that we declare the variables in our example as follows:
```

param alpha >=0, <= 1;
var Trans {i in ORIG, j in DEST}
>= 1e-10, <= .9999 * limit[i,j], := alpha * limit[i,j];

```

For each choice of alpha we get a different starting guess, and potentially a different solution. Here are some resulting objective values for alpha ranging from 0 to 1 :
\begin{tabular}{cc} 
alpha & Total_Cost \\
0.0 & 427568.1 \\
0.1 & 366791.2 \\
0.2 & 366791.2 \\
0.3 & 366791.2 \\
0.4 & 366791.2 \\
0.5 & 355438.2 \\
0.6 & 356531.5 \\
0.7 & 376043.3 \\
0.8 & 367014.4 \\
0.9 & 402795.3 \\
1.0 & 365827.2
\end{tabular}

The solution that we previously found for an alpha of 0.5 is still the best, but in light of these results we are now more inclined to believe that it is a very good solution. We might also observe that, although the reported objective value varies somewhat erratically with the choice of starting point - a feature of nonlinear programs generally - the second-best value of Total_Cost was found by setting alpha to 0.6 . This suggests that a closer search of alpha values around 0.5 might be worthwhile.

Some of the more sophisticated methods for global optimization attempt to search through starting points in this way, but with a more elaborate and systematic procedure for deciding which starting points to try next. Others treat global optimization as more of a combinatorial problem, and apply solution methods motivated by those for integer pro-
gramming (Chapter 20). Global optimization methods are still at a relatively early stage of development, and are likely to improve as experience accumulates, new ideas are tried, and available computing power further increases.

\section*{Other pitfalls}

Many other factors can influence the efficiency and success of a nonlinear solver, including the way that the model is formulated and the choice of units (or scaling) for the variables. As a rule, nonlinearities are more easily handled when they appear in the objective function rather than in the constraints. AMPL's option to substitute variables automatically, described earlier in this chapter, may help in this regard. Another rule of thumb is that the values of the variables should differ by at most a few orders of magnitude; solvers can be misled when some variables are, say, in millions and others are in thousandths. Some solvers automatically scale a problem to try to avoid such a situation, but you can help them considerably by judiciously picking the units in which the variables are expressed.

Nonlinear solvers also have many modes of failure besides the ones we have discussed. Some methods of nonlinear optimization can get stuck at "stationary" points that are not optimal in any sense, can identify a maximum when a minimum is desired (or vice-versa), and can falsely give an indication that there is no feasible solution to the constraints. In these cases your only recourse may be to try a different starting guess; it can sometimes help to specify a start that is feasible for many of the nonlinear constraints. You may also improve the solver's chances of success by placing realistic bounds on the variables. If you know, for instance, that an optimal value of 80 is plausible for some variables, but a value of 800 is not, you may want to give them a bound of 400 . (Once an indicated optimum is at hand, you should be sure to check whether these "safety" bounds have been reached by any of the variables; if so, the bounds should be relaxed and the problem re-solved.)

The intent of this section has been to illustrate that extra caution is advisable in working with nonlinear models. If you encounter a difficulty that cannot be resolved by any of the simple devices described here, you may need to consult a textbook in nonlinear programming, the documentation for the particular solver that you are using, or a numerical analyst versed in nonlinear optimization techniques.

\section*{Bibliography}

Roger Fletcher, Practical Methods of Optimization. John Wiley \& Sons (New York, NY, 1987). A concise survey of theory and methods.
Philip E. Gill, Walter Murray and Margaret H. Wright, Practical Optimization. Academic Press (New York, NY, 1981). Theory, algorithms and practical advice.
Jorge Nocedal and Stephen J. Wright, Numerical Optimization. Springer Verlag (Heidelberg, 1999). A text on methods for optimization of smooth functions.

Richard P. O’Neill, Mark Williard, Bert Wilkins and Ralph Pike, 'A Mathematical Programming Model for Allocation of Natural Gas." Operations Research 27, 5 (1979) pp. 857-873. A source for the nonlinear relationships in natural gas pipeline networks described in Section 18.1.

\section*{Exercises}

18-1. In the last example of Section 18.4 , try some more starting points to see if you can find an even better locally optimal solution. What is the best solution you can find?
18-2. The following little model fence.mod determines the dimensions of a rectangular field of maximum area that can be surrounded by a fence of given length:
```

param fence > 0;
var xfield >= 0;
var Yfield >= 0;
maximize Area: Xfield * Yfield;
subject to Enclose: 2*Xfield + 2*Yfield <= fence;

```

It's well known that the optimum field is a square.
(a) When we tried to solve this problem for a fence of 40 meters, with the default initial guess of zero for the variables, we got the following result:
```

ampl: solve;
MINOS 5.5: optimal solution found.
O iterations, objective 0
ampl: display Xfield, Yfield;
Xfield = 0
Yfield = 0

```

What could explain this unexpected outcome? Try the same problem on any nonlinear solver available to you, and report the behavior that you observe.
(b) Using a different starting point if necessary, run your solver to confirm that the optimal dimensions for 40 meters of fence are indeed \(10 \times 10\).
(c) Experiment with an analogous model for determining the dimensions of a box of maximum volume that can be wrapped by paper of a given area.
(d) Solve the same problem as in (c), but for wrapping a cylinder rather than a box.

18-3. A falling object on a nameless planet has been observed to have approximately the following heights \(h_{j}\) at (mostly) one-second intervals \(t_{j}\) :
\begin{tabular}{c|cccccccccccc}
\(t_{j}\) & 0.0 & 0.5 & 1.5 & 2.5 & 3.5 & 4.5 & 5.5 & 6.5 & 7.5 & 8.5 & 9.5 & 10.0 \\
\hline\(h_{j}\) & 100 & 95 & 87 & 76 & 66 & 56 & 47 & 38 & 26 & 15 & 6 & 0
\end{tabular}

According to the laws of physics on this planet, the height of the object at any time should be given by the formula
\[
h_{j}=a_{0}-a_{1} t_{j}-1 / 2 a_{2} t_{j}^{2}
\]
where \(a_{0}\) is the initial height, \(a_{1}\) is the initial velocity, and \(a_{2}\) is the acceleration due to gravity. But since the observations were not made exactly, there exists no choice of \(a_{0}, a_{1}\), and \(a_{2}\) that will
cause all of the data to fit this formula exactly. Instead, we wish to estimate these three values by choosing them so as to minimize the "sum of squares",
\[
\sum_{j=1}^{n}\left[h_{j}-\left(a_{0}-a_{1} t_{j}-1 / 2 a_{2} t_{j}^{2}\right)\right]^{2}
\]
where \(t_{j}\) and \(h_{j}\) are the observations from the \(j\) th entry of the table, and \(n\) is the number of observations. This expression measures the error between the ideal formula and the observed behavior.
(a) Create an AMPL model that minimizes the sum of squares for any number \(n\) of observations \(t_{j}\) and \(h_{j}\). This model should have three variables and an objective function, but no constraints.
(b) Use AMPL data statements to represent the sample observations given above, and solve the resulting nonlinear program to determine the estimates of \(a_{0}, a_{1}\), and \(a_{2}\).

18-4. This problem involves a very simple 'traffic flow'' network:


Traffic proceeds in the direction of the arrows, entering at intersection \(a\), exiting at \(d\), and passing through \(b\) or \(c\) or both. These data values are given for the roads connecting the intersections:
\begin{tabular}{ccccc} 
From & To & Time & Capacity & Sensitivity \\
\(a\) & \(b\) & 5.0 & 10 & 0.1 \\
\(a\) & \(c\) & 1.0 & 30 & 0.9 \\
\(c\) & \(b\) & 2.0 & 10 & 0.9 \\
\(b\) & \(d\) & 1.0 & 30 & 0.9 \\
\(c\) & \(d\) & 5.0 & 10 & 0.1
\end{tabular}

To be specific, we imagine that the times are in minutes, the capacities are in cars per minute, and the sensitivities are in minutes per (car per minute).
The following AMPL statements can be used to represent networks of this kind:
```

set inters; \# road intersections
param EN symbolic in inters; \# entrance to network
param EX symbolic in inters; \# exit from network
set roads within {i in inters, j in inters: i <> EX and j <> EN};
param time {roads} > 0;
param cap {roads} > 0;
param sens {roads} > 0;

```
(a) What is the shortest path, in minutes, from the entrance to the exit of this network? Construct a shortest path model, along the lines of Figure 15-7, that verifies your answer.
(b) What is the maximum traffic flow from entrance to exit, in cars per minute, that the network can sustain? Construct a maximum flow model, along the lines of Figure 15-6, that verifies your answer.
(c) Question (a) above was concerned only with the speed of traffic, and question (b) only with the volume of traffic. In reality, these quantities are interrelated. As the traffic volume on a road increases from zero, the time required to travel the road also increases.
Travel time increases only moderately when there are just a few cars, but it increases very rapidly as the traffic approaches capacity. Thus a nonlinear function is needed to model this phenomenon. Let us define \(T[i, j]\), the travel time on road ( \(i, j\) ), by the following constraints:
```

var X {roads} >= 0; \# cars per minute entering road (i,j)
var T {roads}; \# travel time for road (i,j)
subject to Travel_Time {(i,j) in roads}:
T[i,j] = time[i,j] + (sens[i,j]*X[i,j]) / (1-X[i,j]/cap[i,j]);

```

You can confirm that the travel time on ( \(i, j\) ) is close to time \([i, j]\) when the road is lightly used, but goes to infinity as the use approaches cap \([i, j]\) cars per minute. The magnitude of sens [ \(i, j\) ] controls the rate at which travel time increases, as more cars try to enter the road.
Suppose that we want to analyze how the network can best handle some number of cars per minute. The objective is to minimize average travel time from entrance to exit:
```

param through > 0; \# cars per minute using the network
minimize Avg_Time:
(sum {(i,j) in roads} T[i,j] * X[i,j]) / through;

```

The nonlinear expression \(T[i, j]\) * \(X[i, j]\) is travel minutes on \(\operatorname{road}(i, j)\) times cars per minute entering the road - hence, the number of cars on road \((i, j)\). The summation in the objective thus gives the total cars in the entire system. Dividing by the number of cars per minute getting through, we have the average number of minutes for each car.
Complete the model by adding the following:
- A constraint that total cars per minute in equals total cars per minute out at each intersection, except the entrance and exit.
- A constraint that total cars per minute leaving the entrance equals the total per minute (represented by through) that are using the network.
- Appropriate bounds on the variables. (The example in Section 18.4 should suggest what bounds are needed.)
Use AMPL to show that, for the example given above, a throughput of 4.0 cars per minute is optimally managed by sending half the cars along \(a \rightarrow b \rightarrow d\) and half along \(a \rightarrow c \rightarrow d\), giving an average travel time of about 8.18 minutes.
(d) By trying values of parameter through both greater than and less than 4.0, develop a graph of minimum average travel time as a function of throughput. Also, keep a record of which travel routes are used in the optimal solutions for different throughputs, and summarize this information on your graph.
What is the relationship between the information in your graph and the solutions from parts (a) and (b)?
(e) The model in (c) assumes that you can make the cars' drivers take certain routes. For example, in the optimal solution for a throughput of 4.0 , no drivers are allowed to "cut through" from \(c\) to \(b\).
What would happen if instead all drivers could take whatever route they pleased? Observation has shown that, in such a case, the traffic tends to reach a stable solution in which no route has a travel time less than the average. The optimal solution for a throughput of 4.0 is not stable, since - as
you can verify - the travel time on \(a \rightarrow c \rightarrow b \rightarrow d\) is only about 7.86 minutes; some drivers would try to cut through if they were permitted.
To find a stable solution using AMPL, we have to add some data specifying the possible routes from entrance to exit:
```

param choices integer > 0; \# number of routes
set route {1..choices} within roads;

```

Here route is an indexed collection of sets; for each \(r\) in 1..choices, the expression route [r] denotes a different subset of roads that together form a route from EN to EX. For our network, choices should be 3 , and the route sets should be \(\{(a, b),(b, d)\}\), \(\{(a, c),(c, d)\}\) and \(\{(a, c),(c, b),(b, d)\}\). Using these data values, the stability conditions may be ensured by one additional collection of constraints, which say that the time to travel any route is no less than the average travel time for all routes:
```

subject to Stability {r in 1..choices}:
sum {(i,j) in route[r]} T[i,j] >=
(sum {(i,j) in roads} T[i,j] * X[i,j]) / through;

```

Show that, in the stable solution for a throughput of 4.0 , a little more than \(5 \%\) of the drivers cut through, and the average travel time increases to about 8.27 minutes. Thus traffic would have been faster if the road from \(c\) to \(b\) had never been built! (This phenomenon is known as Braess's paradox, in honor of a traffic analyst who noticed that when a certain link was added to Munich's road system, traffic seemed to get worse.)
(f) By trying throughput values both greater than and less than 4.0, develop a graph of the stable travel time as a function of throughput. Indicate, on the graph, for which throughputs the stable time is greater than the optimal time.
(g) Suppose now that you have been hired to analyze the possibility of opening an additional winding road, directly from \(a\) to \(d\), with travel time 5 minutes, capacity 10 , and sensitivity 1.5 . Working with the models developed above, write an analysis of the consequences of making this change, as a function of the throughput value.

18-5. Return to the model constructed in (e) of the previous exercise. This exercise asks about reducing the number of variables by substituting some out, as explained in Section 18.2.
(a) Set the option show_stats to 1 , and solve the problem. From the extra output you get, verify that there are 10 variables.
Next repeat the session with option substout set to 1 . Verify from the resulting messages that some of the variables are eliminated by substitution. Which of the variables must these be?
(b) Rather than setting substout, you can specify that a variable is to be substituted out by placing an appropriate \(=\) phrase in its var declaration. Modify your model from (a) to use this feature, and verify that the results are the same.
(c) There is a long expression for average travel time that appears twice in this model. Define a new variable Avg to stand for this expression. Verify that AMPL also substitutes this variable out when you solve the resulting model, and that the result is the same as before.

18-6. In Modeling and Optimization with GINO, Judith Liebman, Leon Lasdon, Linus Schrage and Allan Waren describe the following problem in designing a steel tank to hold ammonia. The decision variables are
\(T\) the temperature inside the tank
\(I\) the thickness of the insulation
The pressure inside the tank is a function of the temperature,
\[
P=e^{-3950 /(T+460)+11.86}
\]

It is desired to minimize the cost of the tank, which has three components: insulation cost, which depends on the thickness; the cost of the steel vessel, which depends on the pressure; and the cost of a recondensation process for cooling the ammonia, which depends on both temperature and insulation thickness. A combination of engineering and economic considerations has yielded the following formulas:
\[
\begin{aligned}
& C_{I}=400 I^{0.9} \\
& C_{V}=1000+22(P-14.7)^{1.2} \\
& C_{R}=144(80-T) / I
\end{aligned}
\]
(a) Formulate this problem in AMPL as a two-variable problem, and alternatively as a six-variable problem in which four of the variables can be substituted out. Which formulation would you prefer to work with?
(b) Using your preferred formulation, determine the parameters of the least-cost tank.
(c) Increasing the factor 144 in \(C_{R}\) causes a proportional increase in the recondensation cost. Try several larger values, and describe in general terms how the total cost increases as a function of the increase in this factor.

18-7. A social accounting matrix is a table that shows the flows from each sector in an economy to each other sector. Here is simple five-sector example, with blank entries indicating flows known to be zero:
\begin{tabular}{lrrrlrc} 
& LAB & H1 & \multicolumn{1}{c}{ H2 } & P1 & P2 & total \\
LAB & & 15 & 3 & 130 & 80 & 220 \\
H1 & \(?\) & & & & & \(?\) \\
H2 & \(?\) & & & & & \(?\) \\
P1 & & 15 & 130 & & 20 & 190 \\
P2 & & 25 & 40 & 55 & & 105
\end{tabular}

If the matrix were estimated perfectly, it would be balanced: each row sum (the flow out of a sector) would equal the corresponding column sum (the flow in). As a practical matter, however, there are several difficulties:
- Some entries, marked ? above, have no reliable estimates.
- In the estimated table, the row sums do not necessarily equal the column sums.
- We have separate estimates of the total flows into (or out of) each sector, shown to the right of the rows in our table. These do not necessarily equal the sums of the estimated rows or columns.

Nonlinear programming can be used to adjust this matrix by finding the balanced matrix that is closest, in some sense, to the one given.
For a set \(S\) of sectors, let \(E_{T} \subseteq S\) be the subset of sectors for which we have estimated total flows, and let \(E_{A} \subseteq S \times S\) contain all sector pairs \((i, j)\) for which there are known estimates. The given data values are:
\(t_{i} \quad\) estimated row/column sums, \(i \in E_{T}\)
\(a_{i j} \quad\) estimated social accounting matrix entries, \((i, j) \in E_{A}\)
Let \(S_{A} \subseteq S \times S\) contain all row-column pairs ( \(i, j\) ) for which there should be entries in the matrix this includes entries that contain ? instead of a number. We want to determine adjusted entries \(A_{i j}\), for each \((i, j) \in S_{A}\), that are truly balanced:
\[
\sum_{j \in S:(i, j) \in S_{A}} A_{i j}=\sum_{j \in S:(j, i) \in S_{A}} A_{j i}
\]
for all \(i \in S\). You can think of these equations as the constraints on the variables \(A_{i j}\).
There is no best function for measuring 'close", but one popular choice is the sum of squared differences between the estimates and the adjusted values - for both the matrix and the row and column sums - scaled by the estimated values. For convenience, we write the adjusted sums as defined variables:
\[
T_{i}=\sum_{j \in S:(i, j) \in S_{A}} A_{i j}
\]

Then the objective is to minimize
\[
\sum_{(i, j) \in E_{A}}\left(a_{i j}-A_{i j}\right)^{2} / a_{i j}+\sum_{i \in E_{T}}\left(t_{i}-T_{i}\right)^{2} / t_{i}
\]

Formulate an AMPL model for this problem, and determine an optimal adjusted matrix.
18-8. A network of pipes has the following layout:


The circles represent joints, and the arrows are pipes. Joints 1 and 2 are sources of flow, and joint 9 is a sink or destination for flow, but flow through a pipe can be in either direction. Associated with each joint \(i\) is an amount \(w_{i}\) to be withdrawn from the flow at that joint, and an elevation \(e_{i}\) :
\begin{tabular}{rrrrrrrrrrr} 
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(w_{i}\) & 0 & 0 & 200 & 0 & 0 & 200 & 150 & 0 & 0 & 150 \\
\(e_{i}\) & 50 & 40 & 20 & 20 & 0 & 0 & 0 & 20 & 20 & 20
\end{tabular}

Our decision variables are the flows \(F_{i j}\) through the pipes from \(i\) to \(j\), with a positive value representing flow in the direction of the arrow, and a negative value representing flow in the opposite direction. Naturally, flow in must equal flow out plus the amount withdrawn at every joint, except for the sources and the sink.
The "head loss"' of a pipe is a measure of the energy required to move a flow through it. In our situation, the head loss for the pipe from \(i\) to \(j\) is proportional to the square of the flow rate:
\[
H_{i j}=K c_{i j} F_{i j}^{2} \text { if } F_{i j}>0,
\]
\[
H_{i j}=-K c_{i j} F_{i j}^{2} \text { if } F_{i j}<0
\]
where \(K=4.96407 \times 10^{-6}\) is a conversion constant, and \(c_{i j}\) is a factor computed from the diameter, friction, and length of the pipe:
\begin{tabular}{crc} 
from & to & \(c_{i j}\) \\
1 & 3 & 6.36685 \\
2 & 4 & 28.8937 \\
3 & 10 & 28.8937 \\
3 & 5 & 6.36685 \\
3 & 8 & 43.3406 \\
4 & 10 & 28.8937 \\
4 & 6 & 28.8937 \\
5 & 6 & 57.7874 \\
5 & 7 & 43.3406 \\
6 & 7 & 28.8937 \\
8 & 4 & 28.8937 \\
8 & 9 & 705.251
\end{tabular}

For two joints \(i\) and \(j\) at the same elevation, the pressure drop for flow from \(i\) to \(j\) is equal to the head loss. Both pressure and head loss are measured in feet, so that after correcting for differences in elevation between the joints we have the relation:
\[
H_{i j}=\left(P_{i}+e_{i}\right)-\left(P_{j}+e_{j}\right)
\]

Finally, we wish to maintain the pressure at both the sources and the sink at 200 feet.
(a) Formulate a general AMPL model for this situation, and put together data statements for the data given above.
(b) There is no objective function here, but you can still employ a nonlinear solver to seek a feasible solution. By setting the option show_stats to 1 , confirm that the number of variables equals the number of equations, so that there are no 'degrees of freedom'' in the solution. (This does not guarantee that there is just one solution, however.)
Check that your solver finds a solution to the equations, and display the results.

\section*{19}

\section*{Complementarity Problems}

A variety of physical and economic phenomena are most naturally modeled by saying that certain pairs of inequality constraints must be complementary, in the sense that at least one must hold with equality. These conditions may in principle be accompanied by an objective function, but are more commonly used to construct complementarity problems for which a feasible solution is sought. Indeed, optimization may be viewed as a special case of complementarity, since the standard optimality conditions for linear and smooth nonlinear optimization are complementarity problems. Other kinds of complementarity problems do not arise from optimization, however, or cannot be conveniently formulated or solved as optimization problems.

The AMPL operator complements permits complementarity conditions to be specified directly in constraint declarations. Complementarity models can thereby be formulated in a natural way, and instances of such models are easily sent to special solvers for complementarity problems.

To motivate the syntax of complements, we begin by describing how it would be used to model a few simple economic equilibrium problems, some equivalent to linear programs and some not. We then give a general definition of the complements operator for pairs of inequalities and for more general 'mixed" complementarity conditions via double inequalities. Where appropriate in these sections, we also comment on an AMPL interface to the PATH solver for "square" mixed complementarity problems. In a final section, we describe how complementarity constraints are accommodated in several of AMPL's existing features, including presolve, constraint-name suffixes, and generic synonyms for constraints.

\subsection*{19.1 Sources of complementarity}

Economic equilibria are one of the best-known applications of complementarity conditions. We begin this section by showing how a previous linear programming example in production economics has an equivalent form as a complementarity model, and how
```

set PROD; \# products
set ACT; \# activities
param cost {ACT} > 0; \# cost per unit of each activity
param demand {PROD} >= 0; \# units of demand for each product
param io {PROD,ACT} >= 0; \# units of each product from
\# 1 unit of each activity
var Level {j in ACT} >= 0;
minimize Total_Cost: sum {j in ACT} cost[j] * Level[j];
subject to Demand {i in PROD}:
sum {j in ACT} io[i,j] * Level[j] >= demand[i];

```

Figure 19-1: Production cost minimization model (econmin.mod).
bounded variables are handled though an extension to the concept of complementarity. We then describe a further extension to price-dependent demands that is not motivated by optimization or equivalent to any linear program. We conclude by briefly describing other complementarity models and applications.

\section*{A complementarity model of production economics}

In Section 2.4 we observed that the form of a diet model also applies to a model of production economics. The decision variables may be taken as the levels of production activities, so that the objective is the total production cost,
```

minimize Total_Cost: sum {j in ACT} cost[j] * Level[j];

```
where cost [j] and Level[j] are the cost per unit and the level of activity \(j\). The constraints say that the totals of the product outputs must be at least the product demands:
```

subject to Demand {i in PROD}:
sum {j in ACT} io[i,j] * Level[j] >= demand[i];

```
with io[i,j] being the amount of product \(i\) produced per unit of activity \(j\), and demand[i] being the total quantity of product \(i\) demanded. Figures 19-1 and 19-2 show this 'economic' model and some data for it.

Minimum-cost production levels are easily computed by a linear programming solver:
```

ampl: model econmin.mod;
ampl: data econ.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 6808640.553
3 dual simplex iterations (0 in phase I)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline param: & \[
\begin{gathered}
\text { ACT: } \\
\text { P1 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { cost } \\
& 2450
\end{aligned}
\] & & P1a & 1290 & & & \\
\hline & P2 & 1850 & & P2a & 3700 & & P2b & 2150 \\
\hline & P3 & 2200 & & P3c & 2370 & & & \\
\hline & P4 & 2170 & ; & & & & & \\
\hline param: & \[
\begin{aligned}
& \text { PROD: } \\
& \text { AA1 }
\end{aligned}
\] & dema &  & & & & & \\
\hline & AC1 & 800 & & & & & & \\
\hline & BC1 & 900 & & & & & & \\
\hline & BC2 & 700 & & & & & & \\
\hline & NA2 & 4000 & & & & & & \\
\hline & NA3 & 8000 & 0 & & & & & \\
\hline param & io (tr) & & & & & & & \\
\hline & AA1 & AC1 & BC1 & BC2 & NA2 & NA3 & : \(=\) & \\
\hline P1 & 60 & 20 & 10 & 15 & 938 & 295 & & \\
\hline P1a & 8 & 0 & 20 & 20 & 1180 & 770 & & \\
\hline P2 & 8 & 10 & 15 & 10 & 945 & 440 & & \\
\hline P2a & 40 & 40 & 35 & 10 & 278 & 430 & & \\
\hline P2b & 15 & 35 & 15 & 15 & 1182 & 315 & & \\
\hline P3 & 70 & 30 & 15 & 15 & 896 & 400 & & \\
\hline P3c & 25 & 40 & 30 & 30 & 1029 & 370 & & \\
\hline P4 & 60 & 20 & 15 & 10 & 1397 & 450 & ; & \\
\hline
\end{tabular}

Figure 19-2: Data for production models (econ. dat).
```

ampl: display Level;
Level [*] :=
P1 0
P1a 1555.3
P2 0
P2a 0
P2b 0
P3 147.465
P3C 1889.4

```

Recall (from Section 12.5) that there are also dual or marginal values - or "prices" associated with the constraints:
```

ampl: display Demand.dual;
Demand.dual [*] :=
AA1 16.7051
AC1 5.44585
BC1 57.818
BC2 0
NA2 0
NA3 0

```

In the conventional linear programming interpretation, the price on constraint \(i\) gives, within a sufficiently small range, the change in the total cost per unit change in the demand for product \(i\).

Consider now an alternative view of the production economics problem, in which we define variables Price[i] as well as Level[j] and seek an equilibrium rather than an optimum solution. There are two requirements that the equilibrium solution must satisfy.

First, for each product, total output must meet demand and the price must be nonnegative, and in addition there must be a complementarity between these relationships: where production exceeds demand the price must be zero, or equivalently, where the price is positive the production must equal the demand. This relationship is expressed in AMPL by means of the complements operator:
```

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j] >= demand[i];

```

When two inequalities are joined by complements, they both must hold, and at least one must hold with equality. Because our example is indexed over the set PROD, it sets up a relationship of this kind for each product.

Second, for each activity, there is another relationship that may at first be less obvious. Consider that, for each unit of activity \(j\), the value of the resulting product \(i\) output in terms of the model's prices is Price[i] * io [i,j]. The total value of all outputs from one unit of activity \(j\) is thus
```

sum {i in ACT} Price[i] * io[i,j]

```

At equilibrium prices, this total value cannot exceed the activity's cost per unit, cost[j]. Moreover, there is a complementarity between this relationship and the level of activity \(j\) : where cost exceeds total value the activity must be zero, or equivalently, where the activity is positive the total value must equal the cost. Again this relationship can be expressed in AMPL with the complements operator:
```

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements
sum {i in PROD} Price[i] * io[i,j] <= cost[j];

```

Here the constraint is indexed over ACT, so that we have a complementarity relationship for each activity.

Putting together the two collections of complementarity constraints, we have the linear complementarity problem shown in Figure 19-3. The number of variables and the number of complementarity relationships are equal (to activities plus products), making this a "square" complementarity problem that is amenable to certain solution techniques, though not the same techniques as those for linear programs.

Applying the PATH solver, for example, the complementarity problem can be seen to have the same solution as the related minimum-cost production problem:
```

set PROD; \# products
set ACT; \# activities
param cost {ACT} > 0; \# cost per unit of each activity
param demand {PROD} >= 0; \# units of demand for each product
param io {PROD,ACT} >= 0; \# units of each product from
\# 1 unit of each activity
var Price {i in PROD};
var Level {j in ACT};
subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j] >= demand[i];
subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements
sum {i in PROD} Price[i] * io[i,j] <= cost[j];

```

Figure 19-3: Production equilibrium model (econ.mod).
```

ampl: model econ.mod;
ampl: data econ.dat;
ampl: option solver path;
ampl: solve;
Path v4.5: Solution found.
7 iterations (0 for crash); 33 pivots.
20 function, 8 gradient evaluations.
ampl: display sum {j in ACT} cost[j] * Level[j];
sum{j in ACT} cost[j]*Level[j] = 6808640

```

Further application of display shows that Level is the same as in the production economics LP and that Price takes the same values that Demand. dual has in the LP.

\section*{Complementarity for bounded variables}

Suppose now that we extend our models by placing bounds on the activity levels: level_min[j] <= Level[j] <= level_max[j]. The equivalence between the optimization problem and a square complementarity problem can be maintained, provided that the complementarity relationship for the activities is generalized to a "mixed" form. Where an activity's cost is greater than its total value (per unit), the activity's level must be at its lower bound (much as before). Where an activity's level is between its bounds, its cost must equal its total value. And an activity's cost may also be less than its total value, provided that its level is at its upper bound. These three relationships are summarized by another form of the complements operator:
```

subject to Lev_Compl {j in ACT}:
level_min[j] <= Level[j] <= level_max[j] complements
cost[j] - sum {i in PROD} Price[i] * io[i,j];

```
```

set PROD; \# products
set ACT; \# activities
param cost {ACT} > 0; \# cost per unit of each activity
param demand {PROD} >= 0; \# units of demand for each product
param io {PROD,ACT} >= 0; \# units of each product from
\# 1 unit of each activity
param level_min {ACT} > 0; \# min allowed level for each activity
param level_max {ACT} > 0; \# max allowed level for each activity
var Price {i in PROD};
var Level {j in ACT};
subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j] >= demand[i];
subject to Lev_Compl {j in ACT}:
level_min[j] <= Level[j] <= level_max[j] complements
cost[j] - sum {i in PROD} Price[i] * io[i,j];

```

Figure 19-4: Bounded version of production equilibrium model (econ2 .mod).

When a double inequality is joined to an expression by complements, the inequalities must hold, and either the expression must be zero, or the lower inequality must hold with equality and the expression must be nonnegative, or the upper inequality must hold with equality and the expression must be nonpositive.

A bounded version of our complementarity examples is shown in Figure 19-4. The PATH solver can be applied to this model as well:
```

ampl: model econ2.mod;
ampl: data econ2.dat;
ampl: option solver path;
ampl: solve;
Path v4.5: Solution found.
9 iterations (4 for crash); 8 pivots.
22 function, 10 gradient evaluations.
ampl: display level_min, Level, level_max;
: level_min Level level_max :=
P1 240 240 1000
P1a 270 1000 1000
P2 220 220 1000
P2a 260 680 1000
P2b 200 200 1000
P3 260 260 1000
P3C 220 1000 1000
P4 240 240 1000

```

The results are the same as for the LP that is derived from our previous example (Figure 19-1) by adding the bounds above to the variables.
```

set PROD; \# products
set ACT; \# activities
param cost {ACT} > 0; \# cost per unit of each activity
param io {PROD,ACT} >= 0; \# units of each product from
\# 1 unit of each activity
param demzero {PROD} > 0; \# intercept and slope of the demand
param demrate {PROD} >= 0; \# as a function of price
var Price {i in PROD};
var Level {j in ACT};
subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j]
>= demzero[i] - demrate[i] * Price[i];
subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements
sum {i in PROD} Price[i] * io[i,j] <= cost[j];

```

Figure 19-5: Price-dependent demands (econnl.mod).

\section*{Complementarity for price-dependent demands}

If complementarity problems only arose from linear programs, they would be of very limited interest. The idea of an economic equilibrium can be generalized, however, to problems that have no LP equivalents. Rather than taking the demands to be fixed, for example, it makes sense to view the demand for each product as a decreasing function of its price.

The simplest case is a decreasing linear demand, which could be expressed in AMPL as
```

demzero[i] - demrate[i] * Price[i]

```
where demzero[i] and demrate[i] are nonnegative parameters. The resulting complementarity problem simply substitutes this expression for demand [i], as seen in Figure 19-5. The complementarity problem remains square, and can still be solved by PATH, but with clearly different results:
```

ampl: model econnl.mod;
ampl: data econnl.dat;
ampl: option solver path;
ampl: solve;
Path v4.5: Solution found.
1 1 iterations (3 for crash); 11 pivots.
12 function, 12 gradient evaluations.

```
```

ampl: display Level;
Level [*] :=
P1 240
P1a 710.156
P2 220
P2a 260
P2b 200
P3 260
P3C 939.063
P4 240
;

```

The balance between demands and prices now tends to push down the equilibrium production levels.

Because the Price [i] variables appear on both sides of the complements operator in this model, there is no equivalent linear program. There does exist an equivalent nonlinear optimization model, but it is not as easy to derive and may be harder to solve as well.

\section*{Other complementarity models and applications}

This basic example can be extended to considerably more complex models of economic equilibrium. The activity and price variables and their corresponding complementarity constraints can be comprised of several indexed collections each, and both the cost and price functions can be nonlinear. A solver such as PATH handles all of these extensions, so long as the problem remains square in the sense of having equal numbers of variables and complementarity constraints (or being easily converted to such a form as explained in the next section).

More ambitious models may add an objective function and may mix equality, inequality and complementarity constraints in arbitrary numbers. Solution techniques for these so-called MPECs - mathematical programs with equilibrium constraints - are at a relatively experimental stage, however.

Complementarity problems also arise in physical systems, where they can serve as models of equilibrium conditions between forces. A complementarity constraint may represent a discretization of the relationship between two objects, for example. The relationship on one side of the complements operator may hold with equality at points where the objects are in contact, while the relationship on the other side holds with equality where they do not touch.

Game theory provides another class of examples. The Nash equilibrium for a bimatrix game is characterized by complementarity conditions, for example, in which the variables are the probabilities with which the two players make their available moves. For each move, either its probability is zero, or a related equality holds to insure there is nothing to be gained by increasing or decreasing its probability.

Surveys that describe a variety of complementarity problems in detail are cited in the references at the end of this chapter.

\subsection*{19.2 Forms of complementarity constraints}

An AMPL complementarity constraint consists of two expressions or constraints separated by the complements operator. There are always two inequalities, whose position determines how the constraint is interpreted.

If there is one inequality on either side of complements, the constraint has the general form
single-inequality complements single-inequality ;
where a single-inequality is any valid ordinary constraint - linear or nonlinear - containing one \(>=\) or \(<=\) operator. A constraint of this type is satisfied if both of the singleinequality relations are satisfied, and at least one is satisfied with equality.

If both inequalities are on the same side of the complements operator, the constraint has instead one of the forms
double-inequality complements expression ;
expression complements double-inequality ;
where double-inequality is any ordinary AMPL constraint containing two >= or two <= operators, and expression is any numerical expression. Variables may appear nonlinearly in either the double-inequality or the expression (or both). The conditions for a constraint of this type to be satisfied are as follows:
- if the left side \(<=\) or the right side \(>=\) of the double-inequality holds with equality, then the expression is greater than or equal to 0 ;
- if the right side <= or the left side >= of the double-inequality holds with equality, then the expression is less than or equal to 0 ;
- if neither side of the double-inequality holds with equality, then the expression equals 0 .

In the special case where the double-inequality has the form \(0<=\) body <= Infinity, these conditions reduce to those for complementarity of a pair of single inequalities.

For completeness, the special case in which the left-hand side equals the right-hand side of the double inequality may be written using one of the forms
```

equality complements expression ;
expression complements equality ;

```

A constraint of this kind is equivalent to an ordinary constraint consisting only of the equality; it places no restrictions on the expression.

For the use of solvers that require "square" complementarity systems, AMPL converts to square any model instance in which the number of variables equals the number of complementarity constraints plus the number of equality constraints. There may be any number of additional inequality constraints, but there must not be any objective. Each equality is trivially turned into a complementarity condition, as observed above; each
added inequality is made complementary to a new, otherwise unused variable, preserving the squareness of the problem overall.

\subsection*{19.3 Working with complementarity constraints}

All of AMPL's features for ordinary equalities and inequalities extend in a straightforward way to complementarity constraints. This section covers extensions in three areas: expressions for related solution values, effects of presolve and related displays of problem statistics, and generic synonyms for constraints.

\section*{Related solution values}

AMPL's built-in suffixes for values related to a problem and its solution extend to complementarity constraints, but with two collections of suffixes - of the form cname. Lsuf and cname.Rsuf - corresponding to the left and right operands of complements, respectively. Thus after econ2.mod (Figure 19-4) has been solved, for example, we can use the following display command to look at values associated with the constraint Lev_Compl:
```

ampl: display Lev_Compl.Llb, Lev_Compl.Lbody,
ampl? Lev_Compl.Rbody, Lev_Compl.Rslack;
: Lev_Compl.Llb Lev_Compl.Lbody Lev_Compl.Rbody Lev_Compl.Rslack :=
P1 240 140 1392.86 Infinity
P1a 270 1000 -824.286 Infinity
P2 220 220 264.286 Infinity
P2a 260 680 5.00222e-12 Infinity
P2b 200 200 564.286 Infinity
P3 260 260 614.286 Infinity
P3C 220 1000 -801.429 Infinity
P4 240 240 584.286 Infinity
;

```

Because the right operand of Lev_Compl is an expression, it is treated as a "constraint" with infinite lower and upper bounds, and hence infinite slack.

A suffix of the form cname.slack is also defined for complementarity constraints. For complementary pairs of single inequalities, it is equal to the lesser of cname.Lslack and cname.Rslack. Hence it is nonnegative if and only if both inequalities are satisfied and is zero if the complementarity constraint holds exactly. For complementary double inequalities of the form
```

expr complements lbound <= body <= ubound
lbound <= body <= ubound complements expr

```
cname. slack is defined to be
```

min(expr, body - lbound) if body <= lbound
min(-expr, ubound - body) if body >= ubound
-abs (expr)
otherwise

```

Hence in this case it is always nonpositive, and is zero when the complementarity constraint is satisfied exactly.

If cname for a complementarity constraint appears unsuffixed in an expression, it is interpreted as representing cname. slack.

\section*{Presolve}

As explained in Section 14.1, AMPL incorporates a presolve phase that can substantially simplify some linear programs. In the presence of complementarity constraints, several new kinds of simplifications become possible.

As an example, given a constraint of the form
```

expr }\mp@subsup{1}{}{>=}0\mathrm{ complements expr }\mp@subsup{\mp@code{ev}}{2}{}>=

```
if presolve can deduce that expr \(_{1}\) is strictly positive for all feasible points - in other words, that it has a positive lower bound - it can replace the constraint by expr\(r_{2}=0\).

Similarly, in a constraint of the form
```

lbound <= body <= ubound complements expr

```
there are various possibilities, including the following:
If presolve can deduce for all Then the constraint can be replaced by feasible points that
```

body < ubound lbound <= body complements expr >= 0
lbound < body < ubound expr $=0$
expr $<0 \quad$ body $=$ ubound

```

Transformations of these kinds are carried out automatically, unless option presolve 0 is used to turn off the presolve phase. As with ordinary constraints, results are reported in terms of the original model.

By displaying a few predefined parameters:
\begin{tabular}{ll} 
_ncons & the number of ordinary constraints before presolve \\
_nccons & the number of complementarity conditions before presolve \\
_sncons & the number of ordinary constraints after presolve \\
_snccons & the number of complementarity conditions after presolve
\end{tabular}
or by setting option show_stats 1, you can get some information on the number of simplifying transformations that presolve has made:
```

ampl: model econ2.mod; data econ2.dat;
ampl: option solver path;
ampl: option show_stats 1;
ampl: solve;

```
```

Presolve eliminates 16 constraints and 2 variables.
Presolve resolves 2 of }14\mathrm{ complementarity conditions.
Adjusted problem:
12 variables, all linear
1 2 ~ c o n s t r a i n t s , ~ a l l ~ l i n e a r ; ~ 6 2 ~ n o n z e r o s
1 2 ~ c o m p l e m e n t a r i t y ~ c o n d i t i o n s ~ a m o n g ~ t h e ~ c o n s t r a i n t s :
12 linear, 0 nonlinear.
0 objectives.
Path v4.5: Solution found.
7 iterations (1 for crash); 30 pivots.
function, 8 gradient evaluations.
ampl: display _ncons, _nccons, _sncons, _snccons;
_ncons = 28
_nccons = 14
_sncons = 12
_snccons = 12

```

When first instantiating the problem, AMPL counts each complementarity constraint as two ordinary constraints (the two arguments to complements) and also as a complementarity condition. Thus _nccons equals the number of complementarity constraints before presolve, and _ncons equals twice _nccons plus the number of any noncomplementarity constraints before presolve. The presolve messages at the beginning of the show_stats output indicate how much presolve was able to reduce these numbers.

In this case the reason for the reduction can be seen by comparing each product's demand to the minimum possible output of that product - the amount that results from setting each Level[j] to level_min[j]:
```

ampl: display {i in PROD}
ampl? (sum{j in ACT} io[i,j]*level_min[j], demand[i]);
: sum{j in ACT} io[i,j]*level_min[j] demand[i] :=
AA1 69820 70000
AC1 45800 80000
BC1 37300 90000
BC2 29700 70000
NA2 1854920 4e+05
NA3 843700 8e+05
;

```

We see that for products NA2 and NA3, the total output exceeds demand even at the lowest activity levels. Hence in the constraint
```

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements
sum {j in ACT} io[i,j] * Level[j] >= demand[i];

```
the right-hand argument to complements never holds with equality for NA2 or NA3. Presolve thus concludes that Price["NA2"] and Price["NA3"] can be fixed at zero, removing them from the resulting problem.

\section*{Generic synonyms}

AMPL's generic synonyms for constraints (Section 12.6) extend to complementarity conditions, mainly through the substitution of ccon for con in the synonym names.

From the modeler's view (before presolve), the ordinary constraint synonyms remain:
\begin{tabular}{ll} 
_ncons & number of ordinary constraints before presolve \\
_conname & \begin{tabular}{l} 
names of the ordinary constraints before presolve \\
_con
\end{tabular} \\
synonyms for the ordinary constraints before presolve
\end{tabular}

The complementarity constraint synonyms are:
\begin{tabular}{ll} 
_nccons & number of complementarity constraints before presolve \\
_cconname & \begin{tabular}{l} 
names of the complementarity constraints before presolve \\
_ccon
\end{tabular} \\
synonyms for the complementarity constraints before presolve
\end{tabular}

Because each complementarity constraint also gives rise to two ordinary constraints, as explained in the preceding discussion of presolve, there are two entries in _conname corresponding to each entry in _cconname:
```

ampl: display \{i in 1..6\} (_conname[i], _cconname[i]);
_conname[i] _cconname[i] :=
"Pri_Compl['AA1'].L" "Prí_Compl['AA1']"
"Pri_Compl['AA1'].R" "Pri_Compl['AC1']"
"Pri_Compl['AC1'].L" "Pri_Compl['BC1']"
"Pri_Compl['AC1'].R" "Pri_Compl['BC2']"
"Pri_Compl['BC1'].L" "Pri_Compl['NA2']"
"Pri_Compl['BC1'].R" "Pri_Compl['NA3']"

```

For each complementarity constraint cname, the left and right arguments to the complements operator are the ordinary constraints named cname. L and cname. R. This is confirmed by using the synonym terminology to expand the complementarity constraint Pri_Compl ['AA1'] and the corresponding two ordinary constraints from the example above:
```

ampl: expand Pri_Compl['AA1'];
subject to Pri_Compl['AA1']:
Price['AA1'] >= 0
complements
60*Level['P1'] + 8*Level['P1a'] + 8*Level['P2'] +
40*Level['P2a'] + 15*Level['P2b'] + 70*Level['P3'] +
25*Level['P3c'] + 60*Level['P4'] >= 70000;
ampl: expand _con[1], _con[2];
subject to Pri_Compl.L['AA1']:
Price['AA1'] >= 0;
subject to Pri_Compl.R['AA1']:
60*Level['P1'] + 8*Level['P1a'] + 8*Level['P2'] +
40*Level['P2a'] + 15*Level['P2b'] + 70*Level['P3'] +
25*Level['P3c'] + 60*Level['P4'] >= 70000;

```

From the solver's view (after presolve), a more limited collection of synonyms is defined:
```

_sncons number of all constraints after presolve
_snccons number of complementarity constraints after presolve
_sconname
_scon
number of all constraints after presolve
number of complementarity constraints after presolve
names of all constraints after presolve synonyms for all constraints after presolve

```

Necessarily _snccons is less than or equal to _sncons, with equality only when all constraints are complementarity constraints.

To simplify the problem description that is sent to the solver, AMPL converts every complementarity constraint into one of the following canonical forms:
```

expr complements lbound <= var <= ubound
expr <= 0 complements var <= ubound
expr >= 0 complements lbound <= var

```
where var is the name of a different variable for each constraint. (Where an expression more complicated than a single variable appears on both sides of complements, this involves the introduction of an auxiliary variable and an equality constraint defining the variable to equal one of the expressions.) By using solexpand in place of expand, you can see the form in which AMPL has sent a complementarity constraint to the solver:
```

ampl: solexpand Pri_Compl['AA1'];
subject to Pri_Compl['AA1']:
-70000 + 60*Level['P1'] + 8*Level['P1a'] + 8*Level['P2'] +
40*Level['P2a'] + 15*Level['P2b'] + 70*Level['P3'] +
25*Level['P3c'] + 60*Level['P4'] >= 0
complements
0 <= Price['AA1'];

```

A predefined array of integers, _scvar, gives the indices of the complementing variables in the generic variable arrays _var and _varname. This terminology can be used to display a list of names of such variables:
```

ampl: display {i in 1..3} (_sconname[i],_svarname[_scvar[i]]);
_sconname[i] __svarname[_scvar[i]] :=
"Pri_Compl['AA1'].R" "Price['AA1']"
"Pri_Compl['AC1'].R" "Price['AC1']"
"Pri_Compl['BC1'].R" "Price['BC1']"

```

When constraint \(i\) is an ordinary equality or inequality, _scvar [i] is 0 . The names of complementarity constraints in _sconname are suffixed with .L or .R according to whether the expr in the constraint sent to the solver was derived from the left or right argument to complements in the original constraint.

\section*{Bibliography}

Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone, The Linear Complementarity Problem, Academic Press (San Diego, CA, 1992). An encyclopedic account of linear complementarity problems with a nice overview of how these problems arise.

Steven P. Dirkse and Michael C. Ferris, '"MCPLIB: A Collection of Nonlinear Mixed Complementarity Problems." Optimization Methods and Software 5, 4 (1995) pp. 319-345. An extensive survey of nonlinear complementarity, including problem descriptions and mathematical formulations.
Michael C. Ferris and Jong-Shi Pang, "Engineering and Economic Applications of Complementarity Problems." SIAM Review 39, 4 (1997) pp. 669-713. A variety of complementarity test problems, originally written in the GAMS modeling language but now in many cases translated to AMPL.

\section*{Exercises}

19-1. The economics example in Section 19.1 used a demand function that was linear in the price. Construct a nonlinear demand function that has each of the characteristics described below. Define a corresponding complementarity problem, using the data from Figure 19-2 as much as possible.
Use a solver such as PATH to compute an equilibrium solution. Compare this solution to those for the constant-demand and linear-demand alternatives shown in Section 19.1.
(a) For price \(i\) near zero the demand is near demzero[i] and is decreasing at a rate near demrate[i]. After price i has increased substantially, however, both the demand and the rate of decrease of the demand approach zero.
(b) For price i near zero the demand is approximately constant at demzero[i], but as price i approaches demlim [i] the demand drops quickly to zero.
(c) Demand for i actually rises with price, until it reaches a value demmax[i] at a price of demarg[i]. Then demand falls with price.

19-2. For each scenario in the previous problem, experiment with different starting points for the Level and Price values. Determine whether there appears a unique equilibrium point.

19-3. A bimatrix game between players A and B is defined by two \(m\) by \(n\) 'payoff" matrices, whose elements we denote by \(a_{i j}\) and \(b_{i j}\). In one round of the game, player A has a choice of \(m\) alternatives and player B a choice of \(n\) alternatives. If A plays (chooses) \(i\) and B plays \(j\), then A and B win amounts \(a_{i j}\) and \(b_{i j}\), respectively; negative winnings are interpreted as losses.
We can allow for "mixed" strategies in which A plays \(i\) with probability \(p_{i}^{A}\) and B plays \(j\) with probability \(p_{j}^{B}\). Then the expected value of player A's winnings is:
\[
\sum_{j=1}^{n} a_{i j} \times p_{j}^{B}, \text { if A plays } i
\]
and the expected value of player B's winnings is:
\[
\sum_{i=1}^{m} b_{i j} \times p_{i}^{A}, \text { if B plays } j
\]

A "pure" strategy is the special case in which each player has one probability equal to 1 and the rest equal to 0 .
A pair of strategies is said to represent a Nash equilibrium if neither player can improve his expected payoff by changing only his own strategy.
(a) Show that the requirement for a Nash equilibrium is equivalent to the following complementarity-like conditions:
for all \(i\) such that \(p_{i}^{A}>0\), A's expected return when playing \(i\) equals A's maximum expected return over all possible plays
for all \(j\) such that \(p_{j}^{B}>0\), B's expected return when playing \(j\) equals B's maximum expected return over all possible plays
(b) To build a complementarity problem in AMPL whose solution is a Nash equilibrium, the parameters representing the payoff matrices can be defined by the following param declarations:
```

param nA > 0; \# actions available to player A
param nB > 0; \# actions available to player B
param payoffA {1..nA, 1..nB}; \# payoffs to player A
param payoffB {1..nA, 1..nB}; \# payoffs to player B

```

The probabilities that define the mixed strategies are necessarily variables. In addition it is convenient to define a variable to represent the maximum expected payoff for each player:
```

var PlayA {i in 1..nA}; \# player A's mixed strategy
var PlayB {j in 1..nB}; \# player B's mixed strategy
var MaxExpA; \# maximum expected payoff to player A
var MaxExpB; \# maximum expected payoff to player B

```

Write AMPL declarations for the following constraints:
- The probabilities in any mixed strategy must be nonnegative.
- The probabilities in each player's mixed strategy must sum to 1 .
- Player A's expected return when playing any particular \(i\)
must not exceed A's maximum expected return over all possible plays
- Player B's expected return when playing any particular \(j\)
must not exceed B's maximum expected return over all possible plays
(c) Write an AMPL model for a square complementarity system that enforces the constraints in (b) and the conditions in (a).
(d) Test your model by applying it to the "rock-scissors-paper" game in which both players have the payoff matrix
\begin{tabular}{rrr}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{tabular}

Confirm that an equilibrium is found where each player chooses between all three plays with equal probability.
(e) Show that the game for which both players have the payoff matrix
\[
\begin{array}{rrrr}
-3 & 1 & 3 & -1 \\
2 & 3 & -1 & -5
\end{array}
\]
has several equilibria, at least one of which uses mixed strategies and one of which uses pure strategies.
Running a solver such as PATH will only return one equilibrium solution. To find more, experiment with changing the initial solution or fixing some of the variables to 0 or 1 .

19-4. Two companies have to decide now whether to adopt standard 1 or standard 2 for future introduction in their products. If they decide on the same standard, company A has the greater payoff because its technology is superior. If they decide on different standards, company B has the greater payoff because its market share is greater. These considerations lead to a bimatrix game whose payoff matrices are
\[
\begin{array}{rlll}
A=10 & 3 & B=4 & 6 \\
2 & 9 & & 7
\end{array}
\]
(a) Use a solver such as PATH to find a Nash equilibrium. Verify that it is a mixed strategy, with A's probabilities being \(1 / 2\) for both standards and B's probabilities being \(3 / 7\) and \(4 / 7\) for standards 1 and 2 , respectively.
Why is a mixed strategy not appropriate for this application?
(b) You can see what happens when company A decides on standard 1 by issuing the following commands:
```

ampl: fix PlayA[1] := 1;
ampl: solve;
presolve, constraint ComplA[1].L:
all variables eliminated, but upper bound = -1 < 0

```

Explain how AMPL's presolve phase could deduce that the complementarity problem has no feasible solution in this case.
(c) Through further experimentation, show that there are no Nash equilibria for this situation that involve only pure strategies.

\section*{20}

\section*{Integer Linear Programs}

Many linear programming problems require certain variables to have whole number, or integer, values. Such a requirement arises naturally when the variables represent entities like packages or people that can not be fractionally divided - at least, not in a meaningful way for the situation being modeled. Integer variables also play a role in formulating equation systems that model logical conditions, as we will show later in this chapter.

In some situations, the optimization techniques described in previous chapters are sufficient to find an integer solution. An integer optimal solution is guaranteed for certain network linear programs, as explained in Section 15.5. Even where there is no guarantee, a linear programming solver may happen to find an integer optimal solution for the particular instances of a model in which you are interested. This happened in the solution of the multicommodity transportation model (Figure 4-1) for the particular data that we specified (Figure 4-2).

Even if you do not obtain an integer solution from the solver, chances are good that you'll get a solution in which most of the variables lie at integer values. Specifically, many solvers are able to return an "extreme" solution in which the number of variables not lying at their bounds is at most the number of constraints. If the bounds are integral, all of the variables at their bounds will have integer values; and if the rest of the data is integral, many of the remaining variables may turn out to be integers, too. You may then be able to adjust the relatively few non-integer variables to produce a completely integer solution that is close enough to feasible and optimal for practical purposes.

An example is provided by the scheduling linear program of Figures 16-4 and 16-5. Since the number of variables greatly exceeds the number of constraints, most of the variables end up at their bound of 0 in the optimal solution, and some other variables come out at integer values as well. The remaining variables can be rounded up to a nearby integer solution that is a little more costly but still satisfies the constraints.

Despite all these possibilities, there remain many circumstances in which the restriction to integrality must be enforced explicitly by the solver. Integer programming solvers face a much more difficult problem than their linear programming counterparts, however; they generally require more computer time and memory, and often demand more help
from the user in formulation and in choice of options. As a result, the size of problem that you can solve will be more limited for integer programs than for linear ones.

This chapter first describes AMPL declarations of ordinary integer variables, and then introduces the use of zero-one (or binary) variables for modeling logical conditions. A concluding section offers some advice on formulating and solving integer programs effectively.

\subsection*{20.1 Integer variables}

By adding the keyword integer to the qualifying phrases of a var declaration, you restrict the declared variables to integer values.

As an example, in analyzing the diet model in Section 2.3, we arrived at the following optimal solution:
```

ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
1 3 iterations, objective 118.0594032
ampl: display Buy;
Buy [*] :=
BEEF 5.36061
CHK 2
FISH 2
HAM 10
MCH 10
MTL 10
SPG 9.30605
TUR 2
;

```

If we want the foods to be purchased in integral amounts, we add integer to the model's var declaration (Figure 2-1) as follows:
```

var Buy {j in FOOD} integer >= f_min[j], <= f_max[j];

```

We can then try to re-solve:
```

ampl: model dieti.mod; data diet2a.dat;
ampl: solve;
MINOS 5.5: ignoring integrality of 8 variables
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032

```

As you can see, the MINOS solver does not handle integrality constraints. It has ignored them and returned the same optimal value as before.

To get the integer optimum, we switch to a solver that does accommodate integrality:
```

ampl: option solver cplex;
ampl: solve;
CPLEX 8.0.0: optimal integer solution; objective 119.3
11 MIP simplex iterations
1 branch-and-bound nodes
ampl: display Buy;
Buy [*] :=
BEEF 9
CHK 2
FISH 2
HAM 8
MCH 10
MTL 10
SPG 7
TUR 2
;

```

Comparing this solution to the previous one, we see a few features typical of integer programming. The minimum cost has increased from \(\$ 118.06\) to \(\$ 119.30\); because integrality is an additional constraint on the values of the variables, it can only make the objective less favorable. The amounts of the different foods in the diet have also changed, but in unpredictable ways. The two foods that had fractional amounts in the original optimum, BEEF and SPG, have increased from 5.36061 to 9 and decreased from 9.30605 to 7, respectively; also, HAM has dropped from the upper limit of 10 to 8. Clearly, you cannot always deduce the integer optimum by rounding the non-integer optimum to the closest integer values.

\subsection*{20.2 Zero-one variables and logical conditions}

Variables that can take only the values zero and one are a special case of integer variables. By cleverly incorporating these "zero-one" or "binary" variables into objectives and constraints, integer linear programs can specify a variety of logical conditions that cannot be described in any practical way by linear constraints alone.

To introduce the use of zero-one variables in AMPL, we return to the multicommodity transportation model of Figure 4-1. The decision variables Trans [i,j,p] in this model represent the tons of product p in set PROD to be shipped from originating city \(i\) in ORIG to destination city \(j\) in DEST. In the small example of data given by Figure 4-2, the products are bands, coils and plate; the origins are GARY, CLEV and PITT, and there are seven destinations.

The cost that this model associates with shipment of product \(p\) from \(i\) to \(j\) is cost [i,j,p] * Trans[i,j,p], regardless of the amount shipped. This "variable" cost is typical of purely linear programs, and in this case allows small shipments between many origin-destination pairs. In the following examples we describe ways to use zero-
one variables to discourage shipments of small amounts; the same techniques can be adapted to many other logical conditions as well.

To provide a convenient basis for comparison, we focus on the tons shipped from each origin to each destination, summed over all products. The optimal values of these total shipments are determined by a linear programming solver as follows:
```

ampl: model multi.mod;
ampl: data multi.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
41 iterations, objective 199500
ampl: option display_eps .000001;
ampl: option display_transpose -10;
ampl: display {i in ORIG, j in DEST}
ampl? sum {p in PROD} Trans[i,j,p];
sum{p in PROD} Trans[i,j,p] [*,*]
: DET FRA FRE LAF LAN STL WIN :=

| CLEV | 625 | 275 | 325 | 225 | 400 | 550 | 200 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| GARY | 0 | 0 | 625 | 150 | 0 | 625 | 0 |

| PITT | 525 | 625 | 225 | 625 | 100 | 625 | 175 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

The quantity 625 appears often in this solution, as a consequence of the multicommodity constraints:
```

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j];

```

In the data for our example, limit [ \(i, j\) ] is 625 for all \(i\) and \(j\); its six appearances in the solution correspond to the six routes on which the multicommodity limit constraint is tight. Other routes have positive shipments as low as 100 ; the four instances of 0 indicate routes that are not used.

Even though all of the shipment amounts happen to be integers in this solution, we would be willing to ship fractional amounts. Thus we will not declare the Trans variables to be integer, but will instead extend the model by using zero-one integer variables.

\section*{Fixed costs}

One way to discourage small shipments is to add a "fixed" cost for each origindestination route that is actually used. For this purpose we rename the cost parameter vcost, and declare another parameter fcost to represent the fixed assessment for using the route from \(i\) to \(j\) :
```

param vcost {ORIG,DEST,PROD} >= 0; \# variable cost on routes
param fcost {ORIG,DEST} > 0; \# fixed cost on routes

```

We want \(\mathrm{fcost}[i, j]\) to be added to the objective function if the total shipment of products from \(i\) to \(j\) - that is, sum \{p in PROD\} Trans [i,j,p] - is positive; we
want nothing to be added if the total shipment is zero. Using AMPL expressions, we could write the objective function most directly as follows:
```

minimize Total_Cost: \# NOT PRACTICAL
sum {i in ORIG, j in DEST, p in PROD}
vcost[i,j,p] * Trans[i,j,p]

+ sum {i in ORIG, j in DEST}
if sum {p in PROD} Trans[i,j,p] > 0 then fcost[i,j];

```

AMPL accepts this objective, but treats it as merely "not linear"' in the sense of Chapter 18 , so that you are unlikely to get acceptable results trying to minimize it.

As a more practical alternative, we may associate a new variable Use [i,j] with each route from \(i\) to \(j\), as follows: Use \([i, j]\) takes the value 1 if
```

sum {p in PROD} Trans[i,j,p]

```
is positive, and is 0 otherwise. Then the fixed cost associated with the route from \(i\) to \(j\) is \(f\) cost [i,j] * Use[i,j], a linear term. To declare these new variables in AMPL, we can say that they are integer with bounds \(>=0\) and \(<=1\); equivalently we can use the keyword binary:
```

var Use {ORIG,DEST} binary;

```

The objective function can then be written as a linear expression:
```

minimize Total_Cost:
sum {i in ORIG, j in DEST, p in PROD}
vcost[i,j,p] * Trans[i,j,p]

+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];

```

Since the model has a combination of continuous (non-integer) and integer variables, it yields what is known as a ' \(m i x e d-i n t e g e r\) '' program.

To complete the model, we need to add constraints to assure that Trans and Use are related in the intended way. This is the "clever" part of the formulation; we simply modify the Multi constraints cited above so that they incorporate the Use variables:
```

subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

```

If Use [ \(i, j\) ] is 0 , this constraint says that
```

sum {p in PROD} Trans[i,j,p] <= 0

```

Since this total of shipments from \(i\) to \(j\) is a sum of nonnegative variables, it must equal 0 . On the other hand, when Use \([i, j]\) is 1 , the constraint reduces to
```

sum {p in PROD} Trans[i,j,p] <= limit[i,j]

```
which is the multicommodity limit as before. Although there is nothing in the constraint to directly prevent sum \{p in PROD\} Trans [i,j,p] from being 0 when Use [i,j] is 1 , so long as \(f \operatorname{cost}[i, j]\) is positive this combination can never occur in an optimal solution. Thus Use [ \(i, j\) ] will be 1 if and only if sum \{p in PROD\} Trans [i,j, p] is positive, which is what we want. The complete model is shown in Figure 20-1a.
```

set ORIG; \# origins
set DEST; \# destinations
set PROD; \# products
param supply {ORIG,PROD} >= 0; \# amounts available at origins
param demand {DEST,PROD} >= 0; \# amounts required at destinations
check {p in PROD}:
sum {i in ORIG} supply[i,p] = sum {j in DEST} demand[j,p];
param limit {ORIG,DEST} >= 0; \# maximum shipments on routes
param vcost {ORIG,DEST,PROD} >= 0; \# variable shipment cost on routes
var Trans {ORIG,DEST,PROD} >= 0; \# units to be shipped
param fcost {ORIG,DEST} >= 0; \# fixed cost for using a route
var Use {ORIG,DEST} binary; \# = 1 only for routes used
minimize Total_Cost:
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]
+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];
subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];
subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p];
subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];

```

Figure 20-1a: Multicommodity model with fixed costs (multmip1.mod).

To show how this model might be solved, we add a table of fixed costs to the sample data (Figure 20-1b):
```

param fcost: FRA DET LAN WIN STL FRE LAF :=
GARY 3000 1200 1200 1200 2500 3500 2500
CLEV 2000 1000 1500 1200 2500 3000 2200
PITT 2000 1200 1500 1500 2500 3500 2200;

```

If we apply the same solver as before, the integrality restrictions on the Use variables are ignored:
```

ampl: model multmip1.mod;
ampl: data multmip1.dat;
ampl: solve;
MINOS 5.5: ignoring integrality of 21 variables
MINOS 5.5: optimal solution found.
43 iterations, objective 223504
ampl: option display_eps .000001;
ampl: option display_transpose -10;

```
```

set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;
set PROD := bands coils plate ;
param supply (tr): GARY CLEV PITT :=

| bands | 400 | 700 | 800 |
| :--- | ---: | ---: | ---: |
| coils | 800 | 1600 | 1800 |
| plate | 200 | 300 | 300 ; |

```
param demand (tr):
\begin{tabular}{lrrrrrrr} 
& FRA & DET & LAN & WIN & STL & FRE & LAF \(:=\) \\
bands & 300 & 300 & 100 & 75 & 650 & 225 & 250 \\
coils & 500 & 750 & 400 & 250 & 950 & 850 & 500 \\
plate & 100 & 100 & 0 & 50 & 200 & 100 & 250
\end{tabular}
param limit default 625 ;
param vcost :=
\begin{tabular}{rrrrrrrrl} 
[*,*, bands]: & FRA & DET & LAN & WIN & STL & FRE & LAF & \(:=\) \\
GARY & 30 & 10 & 8 & 10 & 11 & 71 & 6 & \\
CLEV & 22 & 7 & 10 & 7 & 21 & 82 & 13 & \\
PITT & 19 & 11 & 12 & 10 & 25 & 83 & 15 & \\
[*,*, coils]: & FRA & DET & LAN & WIN & STL & FRE & LAF & : \(=\) \\
GARY & 39 & 14 & 11 & 14 & 16 & 82 & 8 & \\
CLEV & 27 & 9 & 12 & 9 & 26 & 95 & 17 & \\
PITT & 24 & 14 & 17 & 13 & 28 & 99 & 20 & \\
[*,*, plate]: & FRA & DET & LAN & WIN & STL & FRE & LAF & \(:=\) \\
GARY & 41 & 15 & 12 & 16 & 17 & 86 & 8 & \\
CLEV & 29 & 9 & 13 & 9 & 28 & 99 & 18 & \\
PITT & 26 & 14 & 17 & 13 & 31 & 104 & 20 & \(;\) \\
& & & & & & & & \\
param fcost: & FRA & DET & LAN & WIN & STL & FRE & LAF & \(:=\) \\
GARY & 3000 & 1200 & 1200 & 1200 & 2500 & 3500 & 2500 & \\
CLEV & 2000 & 1000 & 1500 & 1200 & 2500 & 3000 & 2200 & \\
PITT & 2000 & 1200 & 1500 & 1500 & 2500 & 3500 & 2200 & \(;\)
\end{tabular}

Figure 20-1b: Data for Figure 20-1a (multmip1 . dat).
```

ampl: display sum {i in ORIG, j in DEST, p in PROD}
ampl? vcost[i,j,p] * Trans[i,j,p];
sum{i in ORIG, j in DEST, p in PROD}
vcost[i,j,p]*Trans[i,j,p] = 199500

```
ampl: display Use;
Use [*,*]
\begin{tabular}{lllllllll}
\(:\) & DET & FRA & FRE & LAF & LAN & STL & WIN & \(:=\) \\
CLEV & 1 & 0.44 & 0.52 & 0.36 & 0.64 & 0.88 & 0.32 & \\
GARY & 0 & 0 & 1 & 0.24 & 0 & 1 & 0 \\
PITT & 0.84 & 1 & 0.36 & 1 & 0.16 & 1 & 0.28 \\
\(:\) & & & & & & &
\end{tabular}

As you can see, the total variable cost is the same as before, and Use assumes a variety of fractional values. This solution tells us nothing new, and there is no simple way to convert it into a good integer solution. An integer programming solver is essential to get any practical results in this situation.

Switching to an appropriate solver, we find that the true optimum with fixed costs is as follows:
```

ampl: option solver cplex; solve;
CPLEX 8.0.0: optimal integer solution; objective 229850
295 MIP simplex iterations
1 9 branch-and-bound nodes
ampl: display {i in ORIG, j in DEST}
ampl? sum {p in PROD} Trans[i,j,p];
sum{p in PROD} Trans[i,j,p] [*,*]
: DET FRA FRE LAF LAN STL WIN :=
CLEV
GARY
;
ampl: display Use;
Use [*,*]

| $:$ | DET | FRA | FRE | LAF | LAN | STL WIN | $:=$ | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| CLEV | 1 | 1 | 0 | 1 | 1 | 1 | 1 | |
| GARY | 0 | 0 | 1 | 0 | 1 | 1 | 0 | |
| PITT | 1 | 1 | 1 | 1 | 0 | 1 | 0 | |

```

Imposing the integer constraints has increased the total cost from \(\$ 223,504\) to \(\$ 229,850\); but the number of unused routes has increased, to seven, as we had hoped.

\section*{Zero-or-minimum restrictions}

Although the fixed-cost solution uses fewer routes, there are still some on which the amounts shipped are relatively low. As a practical matter, it may be that even the variable costs are not applicable unless some minimum number of tons is shipped. Suppose, therefore, that we declare a parameter minload to represent the minimum number of tons that may be shipped on a route. We could add a constraint to say that the shipments on each route, summed over all products, must be at least minload:
```

subject to Min_Ship {i in ORIG, j in DEST}: \# WRONG
sum {p in PROD} Trans[i,j,p] >= minload;

```

But this would force the shipments on every route to be at least minload, which is not what we have in mind. We want the tons shipped to be either zero, or at least minload. To say this directly, we might write:
```

subject to Min_Ship {i in ORIG, j in DEST}: \# NOT ALLOWED
sum {p in PROD} Trans[i,j,p] = 0 or
sum {p in PROD} Trans[i,j,p] >= minload;

```

But the current version of AMPL does not accept logical operators in constraints.
The desired zero-or-minimum restrictions can be imposed by employing the variables Use [ \(i, j]\), much as in the previous example:
```

subject to Min_Ship {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];

```

When total shipments from \(i\) to \(j\) are positive, Use[i,j] is 1 , and Min_Ship [i, \(j\) ] becomes the desired minimum-shipment constraint. On the other hand, when there are no shipments from \(i\) to \(j\), Use \([i, j]\) is zero; the constraint reduces to \(0>=0\) and has no effect.

With these new restrictions and a minload of 375 , the solution is found to be as follows:
```

ampl: model multmip2.mod;
ampl: data multmip2.dat;
ampl: solve;
CPLEX 8.0.0: optimal integer solution; objective 233150
279 MIP simplex iterations
1 7 branch-and-bound nodes
ampl: display {i in ORIG, j in DEST}
ampl? sum {p in PROD} Trans[i,j,p];
sum{p in PROD} Trans[i,j,p] [*,*]
: DET FRA FRE LAF LAN STL WIN :=

| CLEV | 625 | 425 | 425 | 0 | 500 | 625 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| GARY | 0 | 0 | 375 | 425 | 0 | 600 | 0 |

| PITT | 525 | 475 | 375 | 575 | 0 | 575 | 375 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

;

```

Comparing this to the previous solution, we see that although there are still seven unused routes, they are not the same ones; a substantial rearrangement of the solution has been necessary to meet the minimum-shipment requirement. The total cost has gone up by about \(1.4 \%\) as a result.

\section*{Cardinality restrictions}

Despite the constraints we have added so far, origin PITT still serves 6 destinations, while CLEV serves 5 and GARY serves 3 . We would like to explicitly add a further restriction that each origin can ship to at most maxserve destinations, where maxserve is a parameter to the model. This can be viewed as a restriction on the size, or cardinality, of a certain set. Indeed, it could in principle be written in the form of an AMPL constraint as follows:
```

subject to Max_Serve {i in ORIG}: \# NOT ALLOWED
card {j in DEST:
sum {p in PROD} Trans[i,j,p] > 0} <= maxserve;

```

Such a declaration will be rejected, however, because AMPL currently does not allow constraints to use sets that are defined in terms of variables.
```

set ORIG; \# origins
set DEST; \# destinations
set PROD; \# products
param supply {ORIG,PROD} >= 0; \# amounts available at origins
param demand {DEST,PROD} >= 0; \# amounts required at destinations
check {p in PROD}:
sum {i in ORIG} supply[i,p] = sum {j in DEST} demand[j,p];
param limit {ORIG,DEST} >= 0; \# maximum shipments on routes
param minload >= 0; \# minimum nonzero shipment
param maxserve integer > 0; \# maximum destinations served
param vcost {ORIG,DEST,PROD} >= 0; \# variable shipment cost on routes
var Trans {ORIG,DEST,PROD} >= 0; \# units to be shipped
param fcost {ORIG,DEST} >= 0; \# fixed cost for using a route
var Use {ORIG,DEST} binary; \# = 1 only for routes used
minimize Total_Cost:
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]
+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];
subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];
subject to Max_Serve {i in ORIG}:
sum {j in DEST} Use[i,j] <= maxserve;
subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p];
subject to Multi {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use[i,j];
subject to Min_Ship {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];

```

Figure 20-2a: Multicommodity model with further restrictions (multmip3.mod).

Zero-one variables again offer a convenient alternative. Since the variables Use [ \(i, j\) ] are 1 precisely for those destinations \(j\) served by origin \(i\), and are zero otherwise, we can write sum \(\{j\) in \(\operatorname{DEST}\}\) Use \([i, j]\) for the number of destinations served by i. The desired constraint becomes:
```

subject to Max_Serve {i in ORIG}:
sum {j in DEST} Use[i,j] <= maxserve;

```

Adding this constraint to the previous model, and setting maxserve to 5 , we arrive at the mixed integer model shown in Figure 20-2a, with data shown in Figure 20-2b. It is optimized as follows:
```

set ORIG := GARY CLEV PITT ;
set DEST := FRA DET LAN WIN STL FRE LAF ;
set PROD := bands coils plate ;
param supply (tr): GARY CLEV PITT :=
bands 400 700 800
coils 800 1600 1800
plate 200 300 300 ;
param demand (tr):

| | FRA | DET | LAN | WIN | STL | FRE | LAF $:=$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| bands | 300 | 300 | 100 | 75 | 650 | 225 | 250 |
| coils | 500 | 750 | 400 | 250 | 950 | 850 | 500 |
| plate | 100 | 100 | 0 | 50 | 200 | 100 | 250 |

param limit default 625 ;
param vcost :=

| [*, *, bands] : | FRA | DET | LAN | WIN | STL | FRE | LAF |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| GARY | 30 | 10 | 8 | 10 | 11 | 71 | 6 |
| CLEV | 22 | 7 | 10 | 7 | 21 | 82 | 13 |
| PITT | 19 | 11 | 12 | 10 | 25 | 83 | 15 |

[*,*,coils]: FRA DET LAN WIN STL FRE LAF :=
GARY }\begin{array}{llllllll}{39}\&{14}\&{11}\&{14}\&{16}\&{82}\&{8}
CLEV
PITT
[*,*,plate]: FRA DET LAN WIN STL FRE LAF :=
GARY }4
CLEV 29
param fcost: FRA DET LAN WIN STL FRE LAF :=
GARY 3000 1200 1200 1200 2500 3500 2500
CLEV 2000 1000 1500 1200 2500 3000 2200
PITT 2000 1200 1500 1500 2500 3500 2200;
param minload := 375 ;
param maxserve := 5 ;

```

Figure 20-2b: Data for Figure 20-2a (multmip3 . dat).
ampl: model multmip3.mod;
ampl: data multmip3.dat;
ampl: solve;
CPLEX 8.0.0: optimal integer solution; objective 235625
392 MIP simplex iterations
36 branch-and-bound nodes


At the cost of a further \(1.1 \%\) increase in the objective, rearrangements have been made so that GARY can serve WIN, bringing the number of destinations served by PITT down to five.

Notice that this section's three integer solutions have served WIN from each of the three different origins - a good example of how solutions to integer programs can jump around in response to small changes in the restrictions.

\subsection*{20.3 Practical considerations in integer programming}

As a rule, any integer program is much harder to solve than a linear program of the same size and structure. A rough idea of the difference in the previous examples is given by the number of iterations reported by the solvers; it is 41 for solving the original linear multicommodity transportation problem, but ranges from about 280 to 400 for the mixed integer versions. The computation times vary similarly; the linear programs are solved almost instantly, while the mixed integer ones are noticeably slower.

As the size of the problem increases, the difficulty of an integer program also grows more quickly than the difficulty of a comparable linear program. Thus the practical limits to the size of a solvable integer program will be much more restrictive. Indeed, AMPL can easily generate integer programs that are too difficult for your computer to solve in a reasonable amount of time or memory. Before you make a commitment to use a model with integer variables, therefore, you should consider whether an alternative continuous linear or network formulation might give adequate answers. If you must use an integer formulation, try it on collections of data that increase gradually in size, so that you can get an idea of the computer resources required.

If you do encounter an integer program that is difficult to solve, you should consider reformulations that can make it easier. An integer programming solver attempts to investigate all of the different possible combinations of values of the integer variables; although it employs a sophisticated strategy that rules out the vast majority of combinations as infeasible or suboptimal, the number of combinations remaining to be checked can still be huge. Thus you should try to use as few integer variables as possible. For those variables that are not zero-one, lower and upper bounds should be made as tight as possible to reduce the number of combinations that might be investigated.

Solvers derive valuable information about the solutions to an integer program by fixing or restricting some of the integer variables, then solving the linear programming
"relaxation" that results when the remaining integer restrictions are dropped. You may be able to assist in this strategy by reformulating the model so that the solution of a relaxation will be closer to the solution of the associated integer problem. In the multicommodity transportation model, for example, if Use \([i, j]\) is 0 then each of the individual variables Trans [ \(i, j, p]\) must be 0 , while if Use[i,j] is 1 then Trans [i,j,p] cannot be larger than either supply[i,p] or demand[j,p]. This suggests that we add the following constraints:
```

subject to Avail {i in ORIG, j in DEST, p in PROD}:
Trans[i,j,p] <= min(supply[i,p],demand[j,p]) * Use[i,j];

```

Although these constraints do not rule out any previously admissible integer solutions, they tend to force Use [ \(i, j\) ] to be closer to 1 for any solution of the relaxation that uses the route from \(i\) to \(j\). As a result, the relaxation is more accurate, and may help the solver to find the optimum integer solution more quickly; this advantage may outweigh the extra cost of handling more constraints. Tradeoffs of this kind are most often observed for problems substantially larger than the examples in this section, however.

As this example suggests, the choice of a formulation is much more critical in integer than in linear programming. For large problems, solution times can change dramatically in response to simple reformulations. The effect of a reformulation can be hard to predict, however; it depends on the structure of your model and data, and on the details of the strategy used by your solver. Generally you will need to do some experimentation to see what works best.

You can also try to help a solver by changing some of the default settings that determine how it initially processes a problem and how it searches for integer solutions. Many of these settings can be manipulated from within AMPL, as explained in the separate instructions for using particular solvers.

Finally, a solver may provide options for stopping prematurely, returning an integer solution that has been determined to bring the objective value to within a small percentage of optimality. In some cases, such a solution is found relatively early in the solution process; you may save a great deal of computation time by not insisting that the solver go on to find a provably optimal integer solution.

In summary, experimentation is usually necessary to solve integer or mixed-integer linear programs. Your chances of success are greatest if you approach the use of integer variables with caution, and if you are willing to keep trying alternative formulations, settings and strategies until you get an acceptable result.

\section*{Bibliography}

Ellis L. Johnson, Michael M. Kostreva and Uwe H. Suhl, '‘Solving 0-1 Integer Programming Problems Arising from Large-Scale Planning Models." Operations Research 33 (1985) pp. 803-819. A case study in which preprocessing, reformulation, and algorithmic strategies were brought to bear on the solution of a difficult class of integer linear programs.

George L. Nemhauser and Laurence A. Wolsey, Integer and Combinatorial Optimization. John Wiley \& Sons (New York, NY, 1988). A survey of integer programming problems, theory and algorithms.
Alexander Schrijver, Theory of Linear and Integer Programming. John Wiley \& Sons (New York, NY, 1986). A guide to the fundamentals of the subject, with a particularly thorough collection of references.

Laurence A. Wolsey, Integer Programming. Wiley-Interscience (New York, NY, 1998). A practical , intermediate-level guide for readers familiar with linear programming.

\section*{Exercises}

20-1. Exercise \(1-1\) optimizes an advertising campaign that permits arbitrary combinations of various media. Suppose that instead you must allocate a \(\$ 1\) million advertising campaign among several media, but for each, your only choice is whether to use that medium or not. The following table shows, for each medium, the cost and audience in thousands if you use that medium, and the creative time in three categories that will have to be committed if you use that medium. The final column shows your limits on cost and on hours of creative time.
\begin{tabular}{lcccccrr} 
& TV & Magazine & Radio & Newspaper & Mail & Phone & Limits \\
Audience & 300 & 200 & 100 & 150 & 100 & 50 & \\
Cost & 600 & 250 & 100 & 120 & 200 & 250 & 1000 \\
Writers & 120 & 50 & 20 & 40 & 30 & 5 & 200 \\
Artists & 120 & 80 & 0 & 60 & 40 & 0 & 300 \\
Others & 20 & 20 & 20 & 20 & 20 & 200 & 200
\end{tabular}

Your goal is to maximize the audience, subject to the limits.
(a) Formulate an AMPL model for this situation, using a zero-one integer variable for each medium.
(b) Use an integer programming solver to find the optimal solution.

Also solve the problem with the integrality restrictions relaxed and compare the resulting solution. Could you have guessed the integer optimum from looking at the non-integer one?

20-2. Return to the multicommodity transportation problem of Figures 4-1 and 4-2. Use appropriate integer variables to impose each of the restrictions described below. (Treat each part separately; don't try to put all the restrictions in one model.) Solve the resulting integer program, and comment in general terms on how the solution changes as a result of the restrictions. Also solve the corresponding linear program with the integrality restrictions relaxed, and compare the LP solution to the integer one.
(a) Require the amount shipped on each origin-destination link to be a multiple of 100 tons. To accommodate this restriction, allow demand to be satisfied only to the nearest 100 - for example, since demand for bands at FRE is 225 tons, allow either 200 or 300 tons to be shipped to FRE.
(b) Require each destination except STL to be served by at most two origins.
(c) Require the number of origin-destination links used to be as small as possible, regardless of cost.
(d) Require each origin that supplies product p to destination j to ship either nothing, or at least the lesser of demand [ \(j, p\) ] and 150 tons.

20-3. Employee scheduling problems are a common source of integer programs, because it may not make sense to schedule a fraction of a person.
(a) Solve the problem of Exercise 4-4(b) with the requirement that the variables \(Y_{s t}\), representing the numbers of crews employed on shift \(s\) in period \(t\), must all be integer. Confirm that the optimal integer solution just 'rounds up" the linear programming solution to the next highest integer.
(b) Similarly attempt to find an integer solution for the problem of Exercise 4-4(c), where inventories have been added to the formulation. Compare the difficulty of this problem to the one in (a). Is the optimal integer solution the same as the rounded-up linear programming solution in this case?
(c) Solve the scheduling problem of Figures \(16-4\) and 16-5 with the requirement that an integer number of employees be assigned to each shift. Show that this solution is better than the one obtained by rounding up.
(d) Suppose that the number of supervisors required is \(1 / 10\) the number of employees, rounded to the nearest whole number. Solve the scheduling problem again for supervisors. Does the integer program appear to be harder or easier to solve in this case? Is the improvement over the roundedup solution more or less pronounced?

20-4. The so-called knapsack problem arises in many contexts. In its simplest form, you start with a set of objects, each having a known weight and a known value. The problem is to decide which items to put into your knapsack. You want these items to have as great a total value as possible, but their weight cannot exceed a certain preset limit.
(a) The data for the simple knapsack problem could be written in AMPL as follows:
```

set OBJECTS;
param weight {OBJECTS} > 0;
param value {OBJECTS} > 0;

```

Using these declarations, formulate an AMPL model for the knapsack problem.
Use your model to solve the knapsack problem for objects of the following weights and values, subject to a weight limit of 100 :
\begin{tabular}{lrrrrrrrrrr} 
object & a & b & c & d & \(e\) & \(f\) & \(g\) & \(h\) & \(i\) & \(j\) \\
weight & 55 & 50 & 40 & 35 & 30 & 30 & 15 & 15 & 10 & 5 \\
value & 1000 & 800 & 750 & 700 & 600 & 550 & 250 & 200 & 200 & 150
\end{tabular}
(b) Suppose instead that you want to fill several identical knapsacks, as specified by this extra parameter:
```

param knapsacks > 0 integer; \# number of knapsacks

```

Formulate an AMPL model for this situation. Don't forget to add a constraint that each object can only go into one knapsack!

Using the data from (a), solve for 2 knapsacks of weight limit 50. How does the solution differ from your previous one?
(c) Superficially, the preceding knapsack problem resembles an assignment problem; we have a collection of objects and a collection of knapsacks, and we want to make an optimal assignment from members of the former to members of the latter. What is the essential difference between the kinds of assignment problems described in Section 15.2, and the knapsack problem described in (b)?
(d) Modify the formulation from (a) so that it accommodates a volume limit for the knapsack as well as a weight limit. Solve again using the following volumes:
\begin{tabular}{lllllllllll} 
object & a & b & c & d & e & f & g & h & i & j \\
volume & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 1
\end{tabular}

How do the total weight, volume and value of this solution compare to those of the solution you found in (a)?
(e) How can the media selection problem of Exercise 20-1 be viewed as a knapsack problem like the one in (d)?
(f) Suppose that you can put up to 3 of each object in the knapsack, instead of just 1. Revise the model of (a) to accommodate this possibility, and re-solve with the same data. How does the optimal solution change?
(g) Review the roll-cutting problem described in Exercise 2-6. Given a supply of wide rolls, orders for narrower rolls, and a collection of cutting patterns, we seek a combination of patterns that fills all orders using the least material.
When this problem is solved, the algorithm returns a "dual value" corresponding to each ordered roll width. It is possible to interpret the dual value as the saving in wide rolls that you might achieve for each extra narrow roll that you obtain; for example, a value of 0.5 for a 50 " roll would indicate that you might save 5 wide rolls if you could obtain 10 extra 50 r rolls.
It is natural to ask: Of all the patterns of narrow rolls that fit within one wide roll, which has the greatest total (dual) value? Explain how this can be regarded as a knapsack problem.
For the problem of Exercise 2-6(a), the wide rolls are 110"; in the solution using the six patterns given, the dual values for the ordered widths are:
\begin{tabular}{ll}
\(20 "\) & 0.0 \\
\(40^{\prime \prime}\) & 0.5 \\
\(50 "\) & 1.0 \\
\(55{ }^{\prime \prime}\) & 0.0 \\
\(75^{\prime \prime}\) & 1.0
\end{tabular}

What is the maximum-value pattern? Show that it is not one of the ones given, and that adding it allows you to get a better solution.
20-5. Recall the multiperiod model of production that was introduced in Section 4.2. Add zeroone variables and appropriate constraints to the formulation from Figure 4-4 to impose each of the restrictions described below. (Treat each part separately.) Solve with the data of Figure 4-5, and confirm that the solution properly obeys the restrictions.
(a) Require for each product p and week t , that either none of the product is made that week, or at least 2500 tons are made.
(b) Require that only one product be made in any one week.
(c) Require that each product be made in at most two weeks out of any three-week period. Assume that only bands were made in "week -1 " and that both bands and coils were made in "week 0 ".

\section*{A}

\section*{AMPL Reference Manual}

AMPL is a language for algebraic modeling and mathematical programming: a computerreadable language for expressing optimization problems such as linear programming in algebraic notation. This appendix summarizes the features of AMPL, with particular emphasis on technical details not fully covered in the preceding chapters. Nevertheless, not every feature, construct, and option is listed; the AMPL web site www.ampl.com contains the most up to date and complete information.

The following notational conventions are used. Literal text is printed in constant width font, while syntactic categories are printed in italic font. Phrases or subphrases enclosed in slanted square brackets [ and ] are optional, as are constructs with the subscript opt.

\section*{A. 1 Lexical rules}

AMPL models involve variables, constraints, and objectives, expressed with the help of sets and parameters. These are called model entities. Each model entity has an alphanumeric name: a string of one or more Unicode UTF-8 letters, digits, and underscores, in a pattern that cannot be mistaken for a numeric constant. Upper-case letters are distinct from lower-case letters.

Numeric constants are written in standard scientific notation: an optional sign, a sequence of digits that may contain a decimal point, and an optional exponent field that begins with one of the letters \(\mathrm{d}, \mathrm{D}\), e or E , as in \(1.23 \mathrm{D}-45\). All arithmetic in AMPL is in the same precision (double precision on most machines), so all exponent notations are synonymous.

Literals are strings delimited either by single quotes ' or by double quotes "; the delimiting character must be doubled if it appears within the literal, as in ' \(\mathrm{x}^{\prime}\) ' \(\mathrm{y}^{\prime}\), which is a literal containing the three characters \(x^{\prime} y\). Newline characters may appear within a literal only if preceded by \(\backslash\). The choice of delimiter is arbitrary; ' \(\mathrm{abc}^{\prime}\) and " abc " denote the same literal.

Literals are distinct from numeric constants: 1 and ' 1 ' are unrelated.
Input is free form; white space (any sequence of space, tab or newline characters) may appear between any tokens. Each statement ends with a semicolon.

Comments begin with \# and extend to the end of the current line, or are delimited by /* and */, in which case they may extend across several lines and do not nest. Comments may appear anywhere in declarations, commands, and data.

These words are reserved, and may not be used in other contexts:
\begin{tabular}{llll} 
Current & complements & integer & solve_result_num \\
IN & contains & less & suffix \\
INOUT & default & logical & sum \\
Infinity & dimen & max & symbolic \\
Initial & div & min & table \\
LOCAL & else & option & then \\
OUT & environ & setof & union \\
all & exists & shell_exitcode & until \\
binary & forall & solve_exitcode & while \\
by & if & solve_message & within \\
check & in & solve_result &
\end{tabular}

Words beginning with underscore are also reserved. The other keywords, function names, etc., are predefined, but their meanings can be redefined. For example, the word prod is predefined as a product operator analogous to sum, but it can be redefined in a declaration, such as
```

set prod; \# products

```

Once a word has been redefined, the original meaning is inaccessible.
AMPL provides synonyms for several keywords and operators; the preferred forms are on the left.
\begin{tabular}{ll} 
a & \(* *\) \\
\(=\) & \(==\) \\
<> & \(!=\) \\
and & \(\& \&\) \\
not & \(!\) \\
or & \(\|\) \\
prod & product
\end{tabular}

\section*{A. 2 Set members}

A set contains zero or more elements or members, each of which is an ordered list of one or more components. Each member of a set must be distinct. All members must have the same number of components; this common number is called the set's dimension.

A literal set is written as a comma-separated list of members, between braces \(\{\) and \(\}\). If the set is one-dimensional, the members are simply numeric constants or literal strings, or any expressions that evaluate to numbers or strings:
```

{"a","b","c"}
{1,2,3,4,5,6,7,8,9}
{t,t+1,t+2}

```

For a multidimensional set, each member must be written as a parenthesized comma-separated list of the above:
```

{("a",2),("a", 3),("b",5)}
{(1,2,3),(1,2,4),(1,2,5),(1,3,7),(1,4,6)}

```

The value of a numeric member is the result of rounding its decimal representation to a floatingpoint number. Numeric members that appear different but round to the same floating-point number, such as 1 and 0.01 E 2 , are considered the same.

\section*{A. 3 Indexing expressions and subscripts}

Most entities in AMPL can be defined in collections indexed over a set; individual items are selected by appending a bracketed subscript to the name of the entity. The range of possible subscripts is indicated by an indexing expression in the entity's declaration. Reduction operators, such as sum, also use indexing expressions to specify sets over which operations are iterated.

A subscript is a list of symbolic or numeric expressions, separated by commas and enclosed in square brackets, as in supply[i] and cost \([\mathrm{j}, \mathrm{p}[\mathrm{k}]+1\), " \(\mathrm{O}+\mathrm{"}]\). Each subscripting expression must evaluate to a number or a literal. The resulting value or sequence of values must give a member of a relevant one-dimensional or multidimensional indexing set.

An indexing expression is a comma-separated list of set expressions, followed optionally by a colon and a logical "such that" expression, all enclosed in braces:
```

indexing:
{ sexpr-list }
{ sexpr-list : lexpr }
sexpr-list:
sexpr
dummy-member in sexpr
sexpr-list, sexpr

```

Each set expression may be preceded by a dummy member and the keyword in. A dummy member for a one-dimensional set is an unbound name, that is, a name not currently defined. A dummy member for a multidimensional set is a comma-separated list, enclosed in parentheses, of expressions or unbound names; the list must include at least one unbound name.

A dummy member introduces one or more dummy indices (the unbound names in its components), whose scopes, or ranges of definition, begin just after the following sexpr; an index's scope runs through the rest of the indexing expression, to the end of the declaration using the indexing expression, or to the end of the operand that uses the indexing expression. When a dummy member has one or more expression components, the dummy indices in the dummy member range over a slice of the set, i.e., they assume all values for which the dummy member is in the set.
```

{A} \# a set
{A, B} \# all pairs, one from A, one from B
{i in A, j in B} \# the same
{i in A, B} \# the same
{i in A, C[i]} \# all pairs, one from A, one from C[i]
{i in A, (j,k) in D} \# 1 from A and 1 (itself a pair) from D
{i in A: p[i] > 0} \# all i in A such that p[i] is positive
{i in A, j in C[i]: i <= j} \# i and j must be numeric
{i in A, (i,j) in D: i <= j} \# all pairs with i in A and i,j in D

(same value of i) and i <= j

```

The optional : lexpr in an indexing expression selects only the members that satisfy the logical expression and excludes the others. The lexpr typically involves one or more dummy indices of the indexing expression.

\section*{A. 4 Expressions}

Various items can be combined in AMPL's arithmetic and logical expressions. An expression that may not contain variables is denoted cexpr and is sometimes called a "constant expression",
\begin{tabular}{|c|c|c|c|}
\hline Precedence & Name & Type & Remarks \\
\hline 1 & if-then-else & A, S & A: if no else, then "else 0 ' assumed S: '"else sexpr'' required \\
\hline 2 & or || & L & \\
\hline 3 & exists forall & L & logical reduction operators \\
\hline 4 & and \&\& & L & \\
\hline 5 & \ll= = == <> ! = >= > & L & \\
\hline 6 & in notin & L & membership in set \\
\hline 6 & within not within & L & S within \(T\) means set \(\mathrm{S} \subseteq\) set \(T\) \\
\hline 7 & not ! & L & logical negation \\
\hline 8 & union diff symdiff & S & symdiff \(\equiv\) symmetric difference \\
\hline 9 & inter & S & set intersection \\
\hline 10 & cross & S & cross or Cartesian product \\
\hline 11 & setof .. by & S & set constructors \\
\hline 12 & + - less & A & \(a\) less \(b \equiv \max (a-b, 0)\) \\
\hline 13 & sum prod min max & A & arithmetic reduction operators \\
\hline 14 & * / div mod & A & div \(\equiv\) truncated quotient of integers \\
\hline 15 & + - & A & unary plus, unary minus \\
\hline 16 & ** & A & exponentiation \\
\hline
\end{tabular}

Operators are listed in increasing precedence order. Exponentiation and if-thenelse are right-associative; the other operators are left-associative. The 'Type' column indicates result types: A for arithmetic, L for logical, S for set.

Table A-1: Arithmetic, logical and set operators.
even though it may involve dummy indices. A logical expression, denoted lexpr, may not contain variables when it is part of a cexpr. Set expressions are denoted sexpr.

Table A-1 summarizes the arithmetic, logical and set operators; the type column indicates whether the operator produces an arithmetic value (A), a logical value (L), or a set value (S).

Arithmetic expressions are formed from the usual arithmetic operators, built-in functions, and arithmetic reduction operators like sum:
```

expr:
number
variable
expr arith-op expr arith-op is + - less * / mod div ^ **
unary-op expr unary-op is + -
built-in(exprlist)
if lexpr then expr [else expr]
reduction-op indexing expr reduction-op is sum prod max min
(expr)

```

Built-in functions are listed in Table A-2.
The arithmetic reduction operators are used in expressions like
```

sum {i in Prod} cost[i] * Make[i]

```

The scope of the indexing expression extends to the end of the expr. If the operation is over an empty set, the result is the identity value for the operation: 0 for sum, 1 for prod, Infinity for min, and -Infinity for max.

Logical expressions appear where a value of "true" or "false" is required: in check statements, the "such that" parts of indexing expressions (following the colon), and in if lexpr then ... else ... expressions. Numeric values that appear in any of these contexts are implicitly coerced to logical values: 0 is interpreted as false, and all other numeric values as true.

\section*{lexpr:}
expr
expr compare-op expr compare-op is \ll= = == != <\ggg=
lexpr logic-op lexpr
not lexpr
member in sexpr
member not in sexpr
sexpr within sexpr
sexpr not within sexpr
opname indexing lexpr opname is exists or forall ( lexpr )
logic-op is or || and \&\&

The in operator tests set membership. Its left operand is a potential set member, i.e., an expression or comma-separated list of expressions enclosed in parentheses, with the number of expressions equal to the dimension of the right operand, which must be a set expression. The within operator tests whether one set is contained in another. The two set operands must have the same dimension.

The logical reduction operators exists and forall are the iterated counterparts of or and and. When applied over an empty set, exists returns false and forall returns true.

Set expressions yield sets.
```

sexpr:
{ [member [, member...]] }
sexpr set-op sexpr set-op is union diff symdiff inter cross
opname indexing sexpr opname is union or inter
expr . . expr [by expr]
setof indexing member
if lexpr then sexpr else sexpr
(sexpr)
interval
infinite-set
indexing

```

Components of members can be arbitrary constant expressions. Section A.6.3 describes intervals and infinite-sets.

When used as binary operators, union and inter denote the binary set operations of union and intersection. These keywords may also be used as reduction operators.

The \(\ldots\) operator constructs sets. The default by clause is by 1 . In general, \(e_{1} \ldots e_{2}\) by \(e_{3}\) means the numbers
\[
e_{1}, e_{1}+e_{3}, e_{1}+2 e_{3}, \ldots, e_{1}+\left\lfloor\frac{e_{2}-e_{1}}{e_{3}}\right\rfloor e_{3}
\]
rounded to set members. (The notation \(\lfloor x\rfloor\) denotes the floor of \(x\), that is, the largest integer \(\leq x\).)
The setof operator is a set construction operator; member is either an expression or a comma-separated list of expressions enclosed in parentheses. The resulting set consists of all the members obtained by iterating over the indexing expression; the dimension of the resulting expression is the number of components in member.
```

abs (x)
acos(x)
acosh(x)
alias(v)
asin(x)
asinh(x)
atan(x)
atan2 (y,x)
atanh (x)
ceil(x)
ctime()
ctime(t)
cos(x)
exp (x)
floor(x)
log}(x
log10(x)
max (x,y,···) maximum (2 or more arguments)
min}(x,y,···)\quad\mathrm{ minimum (2 or more arguments)
precision (x,n) x rounded to }n\mathrm{ significant decimal digits
round (x,n) x
round (x)
sin(x)
sinh (x) hyperbolic sine
sqrt (x) square root
tan(x) tangent
tanh (x)
time() current time in seconds
trunc (x,n) x truncated to }n\mathrm{ digits past decimal point
trunc (x) x truncated to an integer
absolute value |x|
inverse cosine, }\mp@subsup{\operatorname{cos}}{}{-1}(x
inverse hyperbolic cosine, }\mp@subsup{\operatorname{cosh}}{}{-1}(x
alias of model entity v
inverse sine, }\mp@subsup{\operatorname{sin}}{}{-1}(x
inverse hyperbolic sine, }\mp@subsup{\operatorname{sinh}}{}{-1}(x
inverse tangent, }\mp@subsup{\operatorname{tan}}{}{-1}(x
inverse tangent, }\mp@subsup{\operatorname{tan}}{}{-1}(y/x
inverse hyperbolic tangent, tanh }\mp@subsup{}{}{-1}(x
ceiling of }x\mathrm{ (next higher integer)
current time as a string
time t as a string
cosine
e
floor of x (next lower integer)
\mp@subsup{\operatorname{log}}{e}{(x)}
log
\mp@subsup{\operatorname{log}}{10}{}(x)
hyperbolic tangent

```

Table A-2: Built-in arithmetic functions.
```

ampl: set y = setof {i in 1..5} (i,i^2);
ampl: display y;
set y := (1,1) (2,4) (3,9) (4,16) (5,25);

```

\section*{A.4.1 Built-in functions}

The built-in arithmetic functions are listed in Table A-2. The function alias takes as its argument the name of a model entity and returns its alias, a literal value described in Section A.5. The functions round \((x, n)\) and \(\operatorname{trunc}(x, n)\) convert \(x\) to a decimal string and round or truncate it to \(n\) places past the decimal point (or to \(-n\) places before the decimal point if \(n<0\) ); similarly, precision \((x, n)\) rounds \(x\) to \(n\) significant decimal digits. For round and trunc, a missing \(n\) is taken as 0 , thus providing the usual rounding or truncation to an integer.

Several built-in random number generation functions are available, as listed in Table A-3. All are based on a uniform random number generator with a very long period. An initial seed \(n\) can be specified with the \(-\mathrm{s} n\) command-line argument (A.23) or option randseed, while -s or
```

Beta (a,b) density(x) = \mp@subsup{x}{}{a-1}(1-x\mp@subsup{)}{}{b-1}/(\Gamma(a)\Gamma(b)/\Gamma(a+b)),x\mathrm{ in [0, 1]}]
Cauchy() density(x)=1/(\pi(1+\mp@subsup{x}{}{2}))
Exponential() density(x) = \mp@subsup{e}{}{-x},x>0
Gamma (a) density (x) = \mp@subsup{x}{}{a-1}\mp@subsup{e}{}{-x}/\Gamma(a),x\geq0,a>0
Irand224() integer uniform on [0, 24)
Normal (}\mu,\sigma)\quad\mathrm{ normal distribution with mean }\mu\mathrm{ , variance }
Normal01() normal distribution with mean 0, variance 1
Poisson(\mu) probability(k) = e er }\mp@subsup{\mu}{}{k}/k!,k=0,1,
Uniform(m,n) uniform on [m,n)
Uniform01() uniform on [0,1)

```

Table A-3: Built-in random number generation functions.
option randseed' ' instructs AMPL to choose and print a seed. Giving no -s argument is the same as specifying \(-s 1\).

Irand224 () returns an integer in the range [0, \(2^{24}\) ). Given the same seed, an expression of the form floor ( \(m * \operatorname{Irand} 224() / n\) ) will yield the same value on most computers when \(m\) and \(n\) are integer expressions of reasonable magnitude, i.e., \(|n|<2^{k-24}\) and \(|m|<2^{k}\), for machines that correctly compute \(k\)-bit floating-point integer products and quotients; \(k \geq 47\) for most machines of current interest.

Functions that operate on sets are described in Section A.6.

\section*{A.4.2 Strings and regular expressions}

In almost all contexts in a model or command where a literal string could be used, it is also possible to use a string expression, enclosed in parentheses. Strings are created by concatenation and from the built-in string and regular expression functions listed in Table A-4.

The string concatenation operator \& concatenates its arguments into a single string; it has precedence below all arithmetic operators. Numeric operands are converted to full-precision decimal strings as though by print \(f\) format \(\% . g\) (A.16).
num (s)
num0 (s)
ichar(s)
char(n)
length(s)
substr ( }s,m,n
sprintf(f,exprlist opt )
match (s,re)
sub(s,re,repl)
gsub (s,re,repl)
```

```
```

s\& t

```
```

```
s& t
```

concatenate strings s and t
convert string s to number; error if stripping leading and trailing white space does not yield a valid decimal number
strip leading white space, and interpret as much as possible of s as a number, but do not raise error
Unicode value of the first character in string s
string representation of character n; inverse of ichar length of string s
n character substring of s starting at position m; if n omitted, rest of string format arguments according to format string fmt
starting position of regular expression $r e$ in s, or 0 if not found substitute repl for the first occurrence of regular expression re in s substitute repl for all occurrences of regular expression re in s

Table A-4: Built-in string and regular expression functions.

There is no implicit conversion of strings to numbers, but num (s) and num $0(s)$ perform explicit conversions. Both ignore leading and trailing white space; num complains if what remains is not a valid number, whereas num 0 converts as much as it can, returning 0 if it sees no numeric prefix.

The match, sub, and gsub functions accept strings representing regular expressions as their second arguments. AMPL regular expressions are similar to standard Unix regular expressions. Aside from certain metacharacters, any literal character c is a regular expression that matches an occurrence of itself in the target string. The metacharacter "." is a regular expression that matches any character. A list of characters enclosed in brackets is a regular expression that matches any character in the list, and lists may be abbreviated: [a-zo-9] matches any lower case letter or digit. A list of characters that begins with the character ${ }^{\wedge}$ and is enclosed in brackets is a regular expression that matches any character not in the list: [^0-9] matches any non-digit. If r is a regular expression, then r * matches 0 or more occurrences of $r, r+$ matches 1 or more occurrences, and r ? matches 0 or 1 occurrence. ${ }^{\wedge} r$ matches r only if r occurs at the beginning of the string, and $r \$$ matches r only at the end of the string. Parentheses are used for grouping and | means "or"; $r_{1} \mid r_{2}$ matches r_{1} or r_{2}. The special meaning of a metacharacter can be turned off by preceding it by a backslash.

In the replacement pattern (third argument) for sub and gsub, \& stands for the whole matched string, as does $\backslash 0$, while $\backslash 1, \backslash 2, \ldots, \backslash 9$ stand for the string matched by the first, second, ..., ninth parenthesized expression in the pattern.

Options (A.14.1) are named string values, some of which affect various AMPL commands (A.14). The current value of option opname is denoted \$opname.

A.4.3 Piecewise-linear terms

In variable, constraint and objective declarations, piecewise-linear terms have one of the following forms:

```
<< breakpoints ; slopes >> var
<< breakpoints ; slopes >> (cexpr)
<< breakpoints ; slopes >> (var, cexpr)
<< breakpoints ; slopes >> (cexpr, cexpr)
```

where breakpoints is a list of breakpoints and slopes a list of slopes. Each such list is a commaseparated list of cexpr's, each optionally preceded by an indexing expression (whose scope covers just the cexpr). The indexing expression must specify a set that is manifestly ordered (see A.6.2), or it can be of the special form
\{if lexpr\}
which causes the expr to be omitted if the lexpr is false. In commands, the more general forms

```
<< breakpoints ; slopes >> (expr)
<< breakpoints ; slopes >> (expr, expr)
```

are also allowed, and variables may appear in expressions in the breakpoints and slopes.
After the lists of slopes and breakpoints are extended (by indexing over any indexing expressions), the number of slopes must be one more than the number of breakpoints, and the breakpoints must be in non-decreasing numeric order. (There is no requirement on the order of the slopes.) AMPL interprets the result as the piecewise-linear function $f(x)$ defined as follows. Let s_{j}, $1 \leq j \leq n$, and $b_{i}, 1 \leq i \leq n-1$, denote the slopes and breakpoints, respectively, and let
$b_{0}=-\infty$ and $b_{n}=+\infty$. Then $f(0)=0$, and for $b_{i-1} \leq x \leq b_{i}, f$ has slope s_{i}, i.e., $f^{\prime}(x)=s_{i}$. For the forms having just one argument (either a variable var or a constant expression expr), the result is $f(\mathrm{var})$ or $f($ expr $)$. The form with two operands is interpreted as $f(v a r)-f($ expr $)$. This adds a constant that makes the result vanish when the var equals the expr.

When piecewise-linear terms appear in an otherwise linear constraint or objective, AMPL collects two or more piecewise-linear terms involving the same variable into a single term.

A. 5 Declarations of model entities

Declarations of model entities have the following common form:
where name is an alphanumeric name that has not previously been assigned to an entity by a declaration, alias is an optional literal, indexing is an optional indexing expression, and entity is one of the keywords

```
set
param
var
arc
minimize
maximize
subject to
node
```

In addition, several other constructs are technically entity declarations, but are described later; these include environ, problem, suffix and table.

The entity may be omitted, in which case subject to is assumed. The body of various declarations consists of other, mostly optional, phrases that follow the initial part. Each declaration ends with a semicolon.

Declarations may appear in any order, except that each name must be declared before it is used.
As with piecewise-linear terms, a special form of indexing expression is allowed for variable, constraint, and objective declarations:

```
{if lexpr}
```

If the logical expression lexpr is true, then a simple (unsubscripted) entity results; otherwise the entity is excluded from the model, and subsequent attempts to reference it cause an error message. For example, this declaration includes the variable Test in the model if the parameter testing has been given a value greater than 100 :

```
param testing;
var Test {if testing > 100} >= 0;
```


A. 6 Set declarations

A set declaration has the form

set declaration :

$$
\text { set name } \text { alias }_{\text {opt }} \text { indexing }_{\text {opt }} \text { attributes }_{\text {opt }} ;
$$

in which attributes is a list of attributes optionally separated by commas:

```
attribute:
    dimen n
    within sexpr
    = sexpr
    default sexpr
```

The dimension of the set is either the constant positive integer n, or the dimension of sexpr, or 1 by default. The phrase within sexpr requires the set being declared to be a subset of sexpr. Several within phrases may be given. The = phrase specifies a value for the set; it implies that the set will not be given a value later in a data section (A.12.1) or a command such as let (A.18.9). The default phrase specifies a default value for the set, to be used if no value is given in a data section. The $=$ and default phrases are mutually exclusive. If neither is given and the set is not defined by a data statement, references to the set during model generation cause an error message. For historical reasons, : = is currently a synonym for $=$ in declarations of sets and parameters, but this use of $:=$ is deprecated.

The sexpr in $\mathrm{a}=$ or default phrase can be \{\}, the empty set, which then has the dimension implied by any dimen or within phrases in the declaration, or 1 if none is present. In other contexts, \{ \} denotes the empty set.

Recursive definitions of indexed sets are allowed, so long as the assigned values can be computed in a sequence that only references previously computed values. For example,

```
set nodes;
set arcs within nodes cross nodes;
param max_iter = card(nodes)-1; # card(s) = number of elements in s
set step {s in 1..max_iter} dimen 2 =
    if }s==
        then arcs
        else step[s-1] union setof {k in nodes,
            (i,k) in step[s-1], (k,j) in step[s-1]} (i,j);
set reach = step[max_iter];
```

computes in set reach the transitive closure of the graph represented by nodes and arcs.

A.6.1 Cardinality and arity functions

The function card operates on any finite set: card (sexpr) returns the number of members in sexpr. If sexpr is an indexing expression, the parentheses may be omitted. For example,

```
card({i in A: x[i] >= 4})
```

may also be written

```
card {i in A: x[i] >= 4}
```

The function arity returns the arity of its set argument; the function indexarity returns the arity of its argument's indexing set.

A.6.2 Ordered sets

A named one-dimensional set may have an order associated with it. Declarations for ordered sets include one of the phrases

```
ordered [ by [ reversed ] sexpr ]
circular [ by [ reversed ] sexpr ]
```

The keyword circular indicates that the set is ordered and wraps around, i.e., its first member is the successor of its last, and its last member is the predecessor of its first.

Sets of dimension two or higher may not currently be ordered or circular.
If set S is ordered by T or circular by T, then set T must itself be an ordered set that contains S, and S inherits the order of T. If the ordering phrase is by reversed T, then S still inherits its order from T, but in reverse order.

If S is ordered or circular and no ordering by sexpr is specified, then one of two cases applies. If the members of S are explicitly specified by $a=\{$ member-list $\}$ expression in the model or by a list of members in a data section, S adopts the ordering of this list. If S is otherwise computed from an assigned or default sexpr in the model, AMPL will retain the order of manifestly ordered sets (explained below) and is otherwise free to pick an arbitrary order.

Functions of ordered sets are summarized in Table A-5.
If S is an expression for an ordered set of n members, e is the j th member of S, and k is an integer expression, then next (e, S, k) is member $j+k$ of S if $1 \leq j+k \leq n$, and an error otherwise. If S is circular, then next (e, S, k) is member $1+((j+k-1) \bmod n)$ of S. The function nextw (next with wraparound) is the same as next, except that it treats all ordered sets as circular; prev $(e, S, k) \equiv \operatorname{next}(e, S,-k)$, and prevw $(e, S, k) \equiv \operatorname{nextw}(e, S,-k)$.

Several abbreviations are allowed. If k is not given, it is taken as 1 . If both k and S are omitted, then e must be a dummy index in the scope of an indexing expression that runs over S, for example as in $\{e$ in $S\}$.

Five other functions apply to ordered sets: first (S) returns the first member of S, last (S) the last, member (j, S) returns the j th member of S, ord (e, S) and ord0 (e, S) the ordinal position of member e in S. If e is not in S, then ord0 returns 0 , whereas ord complains of an error. Again, ord $(e)=\operatorname{ord}(e, S)$ and $\operatorname{ordO}(e)=\operatorname{ord} 0(e, S)$ if e is a dummy index in the scope of an indexing expression for S.

Some sets are manifestly ordered, such as arithmetic progressions, intervals, subsets of ordered sets, if expressions whose then and else clauses are both ordered sets, and set differences (but not symmetric differences) whose left operands are ordered.

A.6.3 Intervals and other infinite sets

For convenience in specifying ordered sets and prototypes for imported functions (A.22), there are several kinds of infinite sets. Iterating over infinite sets is forbidden, but one can check membership in them and use them to specify set orderings. The most natural infinite set is the interval, which may be closed, open, or half-open and which follows standard mathematical notation. There are intervals of real (floating-point) numbers and of integers, introduced by the keywords interval and integer respectively:

```
next (e, S,k)
next (e,S)
next (e)
nextw (e, S, k)
nextw (e,S)
nextw(e)
prev (e,S,k)
prev (e,S)
prev(e)
prevw(e, S,k)
prevw(e,S)
prevw(e)
first(S) first member of S
last (S) last member of S
member (j,S) jth member of S;1\leqj\leq card(S),jinteger
ord(e,S) ordinal position of member e in S
ord(e) ordinal position of member e in set for which it is dummy index
ord0 (e,S) ordinal position of member e in S;0 if not present
ordo (e) same as ord(e)
card(S) number of members in set S
arity(S)
indexarity(E)
member \(k\) positions after member \(e\) in set \(S\)
same, with \(k=1\)
next member of set for which \(e\) is dummy index
member \(k\) positions after member \(e\) in set \(S\), wrapping around
wrapping version of next \((e, S)\)
wrapping version of next (e)
member \(k\) positions before member \(e\) in set \(S\)
same, with \(k=1\)
previous member of set for which \(e\) is dummy index
member \(k\) positions before member \(e\) in set \(S\), wrapping around
wrapping version of \(\operatorname{prev}(e, S)\)
wrapping version of \(\operatorname{prev}(e)\)
first member of \(S\)
last member of \(S\)
\(j\) th member of \(S ; 1 \leq j \leq \operatorname{card}(S), j\) integer
ordinal position of member \(e\) in \(S\)
ordinal position of member \(e\) in set for which it is dummy index
ordinal position of member \(e\) in \(S\); 0 if not present
same as ord ( \(e\) )
number of members in set \(S\)
arity of \(S\) if \(S\) is a set, else 0 ; for use with _SETS
indexarity \((E) \quad\) arity of entity \(E\) 's indexing set
card, arity, and indexarity also apply to unordered sets
```

Table A-5: Functions of ordered sets.

```
interval:
    interval [a, b] \equiv{x: a \leqx \leq b },
    interval (a, b] \equiv{x: a < x \leq b },
    interval [a, b) \equiv{x: a \leqx< b },
    interval (a, b) \equiv{x: a < x< b },
    integer [a, b] \equiv{x: a \leqx \leq b and x fi},
    integer (a, b] \equiv{x: a < x \leq b and x\inI},
    integer [a, b) \equiv{x: a 
    integer (a, b) }\equiv{x: \textrm{a}<x<\textrm{b}\mathrm{ and }x\inI
```

where a and b denote arbitrary arithmetic expressions, and I denotes the set of integers. In function prototypes (A.22) and the declaration phrases

```
in interval
within interval
ordered by [ reversed ] interval
circular by [ reversed ] interval
```

the keyword interval may be omitted.
The predefined infinite sets Reals and Integers are the sets of all floating-point numbers and integers, respectively, in numeric order. The predefined infinite sets ASCII, EBCDIC, and Display all represent the universal set of strings and numbers from which members of any onedimensional set are drawn; ASCII is ordered by the ASCII collating sequence, EBCDIC by the

EBCDIC collating sequence, and Display by the ordering used in the display command (Section A.16). Numbers precede literals in Display and are ordered numerically; literals are sorted by the ASCII collating sequence.

A. 7 Parameter declarations

Parameter declarations have a list of optional attributes, optionally separated by commas:

```
parameter declaration:
    param name alias opt indexing opt attributes opt ;
```

The attributes may be any of the following:

```
attribute:
```

 binary
 integer
 symbolic
 relop expr
 in sexpr
 \(=\operatorname{expr}\)
 default expr
 relop:
$\ll==$! $=<\ggg=$

The keyword integer restricts the parameter to be an integer; binary restricts it to 0 or 1 . If symbolic is specified, then the parameter may assume any literal or numeric value (rounded as for set membership), and the attributes involving $<,<=,>=$ and $>$ are disallowed; otherwise the parameter is numeric and can only assume a numeric value.

The attributes involving comparison operators specify that the parameter must obey the given relation. The in attribute specifies a check that the parameter lies in the given set.

The = and default attributes are analogous to the corresponding ones in set declarations, and are mutually exclusive.

Recursive definitions of indexed parameters are allowed, so long as the assigned values can be computed in a sequence that only references previously computed values. For example,

```
param comb 'n choose k' {n in 0..N, k in 0..n}
    = if k = 0 or k = n then 1 else comb[n-1,k-1] + comb[n-1,k];
```

computes the number of ways of choosing n things k at a time.
In a recursive definition of a symbolic parameter, the keyword symbolic must precede all references to the parameter.

A.7.1 Check statements

Check statements supply assertions to help verify that correct data have been read or generated; they have the syntax

```
check [ indexing opt : ] lexpr ;
```

Each check statement is evaluated when one of the commands solve, write, solution, or check is executed.

A.7.2 Infinity

Infinity is a predefined parameter; it is the threshold above which upper bounds are considered absent (i.e., infinite), and -Infinity is the threshold below which lower bounds are considered absent. Thus given

```
set A;
param Ub{A} default Infinity;
param Lb{A} default -Infinity;
var V {i in A} >= Lb[i], <= Ub[i];
```

components of V for which no Lb value is given in a data section are unbounded below and components for which no Ub value is given are unbounded above. One can similarly arrange for optional lower and upper constraint bounds. On computers with IEEE arithmetic (most modern systems) Infinity is the IEEE ∞ value.

A. 8 Variable declarations

Variable declarations begin with the keyword var:

```
variable declaration:
    var name alias opt indexing opt attributes opt ;
```

Optional attributes of variable declarations may be separated by commas; these attributes include

```
attribute:
    binary
    integer
    symbolic
    >= expr
    <= expr
    := expr
    default expr
    = expr
    coeff indexing opt constraint expr
    cover indexing opt constraint
    obj indexing opt objective expr
    in sexpr
    suffix sufname expr
```

As with parameters, integer restricts the variable to integer values, and binary restricts it to 0 or 1 . The $>=$ and $<=$ phrases specify bounds, and the $:=$ phrase an initial value. The default phrase specifies a default for initial values that may be provided in a data section (A.12.2); default and $:=$ are mutually exclusive. The $=\operatorname{expr}$ phrase is allowed only if none of the previous attributes appears; it makes the variable a defined variable (A.8.1). Each suffix sufname expr phrase specifies an initial value for a previously declared suffix sufname.

If symbolic is specified, in sexpr must also appear and attributes requiring a numeric value, such as >=expr, are excluded. If in sexpr appears without symbolic, the set expression sexpr must be the union of intervals and discrete sets of numbers. Either way, in sexpr restricts the variable to lie in sexpr.

The coeff and obj phrases are for columnwise coefficient generation; they specify coefficients to be placed in the named constraint or objective, which must have been previously declared
using the placeholder to_come (see A. 9 and A.10). The scope of indexing is limited to the phrase, and may have the special form

$$
\{\text { if lexpr\} }
$$

which contributes the coefficient only if the lexpr is true. A cover phrase is equivalent to a coeff phrase in which the expr is 1 .

Arcs are special network variables, declared with the keyword arc instead of var. They may contribute coefficients to node constraints (A.9) via optional attribute phrases of the form

```
from indexing opt node expr opt
to indexing opt node expropt
```

These phrases are analogous in syntax to the coeff phrase, except that the final expr is optional; omitting it is the same as specifying 1 .

A.8.1 Defined variables

In some nonlinear models, it is convenient to define named values that contribute somehow to the constraints or objectives. For example,

```
set A;
var v {A};
var w {A};
subject to C {i in A}: w[i] = vexpr;
```

where vexpr is an expression involving the variables v .
As things stand, the members of C are constraints, and we have turned an unconstrained problem into a constrained one, which may not be a good idea. Setting option substout to 1 instructs AMPL to eliminate the collection of constraints C. AMPL does so by telling solvers that the constraints define the variables on their left-hand sides, so that, in effect, these defined variables become named common subexpressions.

When option substout is 1 , a constraint such as C that provides a definition for a defined variable is called a defining constraint. AMPL decides which variables are defined variables by scanning the constraints once, in order of their appearance in the model. A variable is eligible to become a defined variable only if its declaration imposes no constraints on it, such as integrality or bounds. Once a variable has appeared on the right-hand side of a defining constraint, it is no longer eligible to be a defined variable - without this restriction, AMPL might have to solve implicit equations. Once a variable has been recognized as a defined variable, its subsequent appearance on the left-hand side of what would otherwise be a defining constraint results in the constraint being treated as an ordinary constraint.

Some solvers give special treatment to linear variables because their higher derivatives vanish. For such solvers, it may be helpful to treat linear defined variables specially. Otherwise, variables involved in the right-hand side of the equation for a defined variable appear to solvers as nonlinear variables, even if they are used only linearly in the right-hand side. By doing Gaussian elimination rather than conveying linear variable definitions explicitly, AMPL can arrange for solvers to see such right-hand variables as linear variables. This often causes fill-in, i.e., makes the problem less sparse, but it may give the solvers a more accurate view of the problem. When option linelim has its default value 1, AMPL treats linear defined variables in this special way; when option linelim is 0 , AMPL treats all defined variables alike.

A variable declaration may have a phrase of the form = expr, where expr is an expression involving variables. Such a phrase indicates that the variable is to be defined with the value expr. Such defining declarations allow some models to be written more compactly.

Recognizing defined variables is not always a good idea - it leads to a problem in fewer variables, but one that may be more nonlinear and that may be more expensive to solve because of loss of sparsity. By using defining constraints (instead of using defining variable declarations) and translating and solving a problem both with \$substout = 0 and with $\$$ substout $=1$, one can see whether recognizing defined variables is worthwhile. On the other hand, if recognizing a defined variable seems clearly worthwhile, defining it in its declaration is often more convenient than providing a separate defining constraint; in particular, if all defined variables are defined in their declarations, one need not worry about \$substout.

One restriction on defining declarations is that subscripted variables must be defined before they are used.

A. 9 Constraint declarations

The form of a constraint declaration is

```
constraint declaration:
```

 [subject to] name alias opt indexing opt
 [:= initial_dual] [default initial_dual]
 [: constraint expression] [suffix-initīalizations] ;
 The keyword subject to in a constraint declaration may be omitted but is usually best retained for clarity. The optional := initial_dual specifies an initial guess for the dual variable (Lagrange multiplier) associated with the constraint. Again, default and := clauses are mutually exclusive, and default is for initial values not given in a data section. Constraint declarations must specify a constraint in one of the following forms:

```
constraint expression:
    expr <= expr
    expr = expr
    expr>= expr
    cexpr <= expr <= cexpr
    cexpr >= expr >= cexpr
```

To enable columnwise coefficient generation for the constraint, one of the exprs may have one of the following forms:

```
to_come + expr
expr + to_come
to_come
```

Terms for this constraint that are specified in a var declaration (A.8) are placed at the location of to_come.

Nodes are special constraints that may send flow to or receive flow from arcs. Their declarations begin with the keyword node instead of subject to. Pure transshipment nodes do not have a constraint body; they must have "flow in'" equal to "flow out'". Other nodes are sources or sinks; they specify constraints in one of the forms above, except that they may not mention to_come, and exactly one expr must have one of the following forms:

```
net_in + expr
net_out + expr
expr + net_in
expr + net_out
net_in
net_out
```

The keyword net_in is replaced by an expression representing the net flow into the node: the terms contributed to the node constraint by to phrases of arc declarations (A.8), minus the terms contributed by from phrases. The treatment of net_out is analogous; it is the negative of net_in.

The optional suffix-initialization phrases each have the form

```
suffix-initialization:
    suffix sufname expr
```

optionally preceded by a comma, where sufname is a previously declared suffix.

A.9.1 Complementarity constraints

For expressing complementarity constraints, in addition to the forms above, constraint declarations may have the form

$$
\text { name } \text { alias }_{\text {opt }} \text { indexing }_{\text {opt }}: \text { constr }_{1} \text { complements } \text { constr }_{2} ;
$$

in which constr r_{1} and constr r_{2} consist of 1,2 , or 3 expressions separated by the operators $<=,>=$ or $=$. In constr r_{1} and constr ${ }_{2}$ together, there must be a total of two explicit inequality operators, with $=$ counting as two. A complementarity constraint is satisfied if both constr ${ }_{1}$ and constr ${ }_{2}$ hold and at least one inequality is tight, i.e., satisfied as an equality. If one of constr $_{1}$ or constr $_{2}$ involves two inequalities, then the constraint must have one of the forms

```
expr }\mp@subsup{\mp@code{l}}{<==\mp@subsup{expr}{2}{<= expr complements expr }}{4
```



```
expr }\mp@subsup{4}{4}{complements expr 
expr }\mp@subsup{4}{4}{complements expr }\mp@subsup{\mp@code{B}}{3}{>=}\mp@subsup{\mathrm{ expr }}{2}{}>=\mp@subsup{e}{\mathrm{ expr }}{1
```

In all of these cases, the constraint requires the inequalities to hold, with

```
\mp@subsup{expr}{4}{}\geq0 if expr }\mp@subsup{\mp@code{en}}{1}{= \mp@subsup{\mathrm{ expr }}{2}{}
```



```
expr }\mp@subsup{\mp@code{*}}{4}{=0 if expr 
```

For expressing mathematical programs with equilibrium constraints, complementarity constraints may coexist with other constraints and objectives.

Solvers see complementarity constraints in the standard form

```
expr complements lower bound <= variable <= upper bound
```

A synonym (A.19.4), _scvar\{i in 1.._sncons \}, indicates which variable, if any, complements each constraint the solver sees. If _scvar[i] in 1.._snvars, then variable _svar[_scvar[i]] complements constraint _scon[i]; otherwise _scvar[i] ==0, and _con[i] is an ordinary constraint. The synonyms _cconname\{1.._nccons\} are the names of the complementarity constraints as the modeler sees them.

A. 10 Objective declarations

The declaration of an objective is one of

```
objective declaration:
    maximize name alias opt indexing opt [ : expression ] [ suffix-initializations ] ;
    minimize name alias opt indexing opt [ : expression ] [ suffix-initializations ] ;
```

and may specify an expression in one of the following forms:

```
expression:
    expr
    to_come + expr
    expr + to_come
    to_come
```

The to_come forms permit columnwise coefficient generation, as for constraints (A.9). Specifying none of the above expressions is the same as specifying ": to_come". Suffix-initializations may appear as in constraint declarations.

If there are multiple objectives, the one sent to a solver can be set by the objective command; see section A.18.6. By default, all objectives are sent.

A. 11 Suffix notation for auxiliary values

Variables, constraints, objectives and problems have a variety of associated auxiliary values. For example, variables have bounds and reduced costs, and constraints have dual values and slacks. Such values are accessed as name . suffix, where name is a simple or subscripted variable, constraint, objective or problem name, and . suffix is one of the possibilities listed in Tables A-6, A-7, and A-8.

For a constraint, the . body, . 1b, and . ub values correspond to a modified form of the constraint. If the constraint involves a single inequality, subtract the right-hand side from the left, then move any constant terms to the right-hand side; if the constraint involves a double inequality, similarly subtract any constant terms in the middle from all three expressions (left, middle, right). Then the constraint has the form $l b \leq b o d y \leq u b$, where $l b$ and $u b$ are (possibly infinite) constants.

The following rules determine lower and upper dual values (c.ldual and c. udual) for a constraint c. The solver returns a single dual value, c. dual, which might apply either to $b o d y \geq l b$ or to $b o d y \leq u b$. For an equality constraint $(l b=u b)$, AMPL uses the sign of c. dual to decide. For a minimization problem, c. dual >0 implies that the same optimum would be found if the constraint were body $\geq l b$, so AMPL sets c. ldual $=c$. dual and c. udual $=0$; similarly, c. dual <0 implies that c.ldual $=0$ and c. udual $=c$. dual. For a maximization problem, the inequalities are reversed.

For inequality constraints $(l b<u b)$, AMPL uses nearness to bound to decide whether c. ldual or c. udual equals c. dual. If body $-l b<u b-b o d y$, then c. ldual $=c$. dual and c. udual $=0$; otherwise, c. ldual $=0$ and c. udual $=c$. dual.

Model declarations may reference any of the suffixed values described in Tables A-6, A-7 and A-8. This is most often useful in new declarations that are introduced after one model has already been translated and solved. In particular, the suffixes .val and .dual are provided so that new constraints can refer to current optimal values of the primal and dual variables and of the objective.

| .astatus | AMPL status (A.11.2) |
| :--- | :--- |
| .init | current initial guess |
| .init0 | initial initial guess (set by :=, data, or default) |
| .lb | current lower bound |
| .lb0 | initial lower bound |
| .lb1 | weaker lower bound from presolve |
| .lb2 | stronger lower bound from presolve |
| .lrc | lower reduced cost (for var >= 1b) |
| .lslack | lower slack (val - lb) |
| .rc | reduced cost |
| .relax | ignore integrality restriction if positive |
| .slack | min(lslack, uslack) |
| .sstatus | solver status (A.11.2) |
| .status | status (A.11.2) |
| .ub | current upper bound |
| .ub0 | initial upper bound |
| .ub1 | weaker upper bound from presolve |
| .ub2 | stronger upper bound from presolve |
| .urc | upper reduced cost (for var <= ub) |
| .uslack | upper slack (ub - val) |
| .val | current value of variable |

Table A-6: Dot suffixes for variables.

For a complementarity constraint, suffix notations like constraint . 1b, constraint . body, etc., are extended so that constraint. Lsuffix and constraint. Rsuffix correspond to constr ${ }_{1}$. suffix and constr ${ }_{2}$.suffix, respectively, and complementarity-constraint.slack (or the unadorned name) stands for a measure of the extent to which the complementarity constraint is satisfied: if constr ${ }_{1}$ and constr ${ }_{2}$ each involve one inequality, the new measure is

```
min(constr }\mp@subsup{1}{1}{.slack, constr 2.slack),
```

which is positive if both are satisfied as strict inequalities, 0 if the complementarity constraint is satisfied exactly, and negative if at least one of constr $_{1}$ or constr ${ }_{2}$ is violated. For constraints of the form $\operatorname{expr}_{1}<=$ expr $_{2}<=$ expr $_{3}$ complements expr $_{4}$, the . slack value is


```
-abs (expr}4) if expr < < expr < < expr 3
```

so in all cases, the .slack value is 0 if the complementarity constraint holds exactly and is negative if one of the requisite inequalities is violated.

A.11.1 Suffix declarations

Suffix declarations introduce new suffixes, which may be assigned values in subsequent declarations, let commands and function invocations (with OUT arguments, A.22). Suffix declarations begin with the keyword suffix:

```
.astatus
.body
.dinit
.dinit0
.dual
.1b
.1bs
.ldual
.lslack
.slack
.sstatus
.status
.ub
.ubs
.udual
.uslack
```

.val
suffix declaration:
suffix name alias $_{\text {opt }}$ attributes $_{\text {opt }}$;

Optional attributes of suffix declarations may be separated by commas; these attributes include
attribute:
binary
integer
symbolic
$>=\operatorname{expr}$
<= expr
direction
direction:
IN
OUT
INOUT
LOCAL

At most one direction may be specified; AMPL assumes INOUT if no direction is given. These directions are from a solver's perspective: IN suffix values are input to the solver; OUT suffix values are assigned by the solver; INOUT values are both IN and OUT; and LOCAL values are not seen by the solver.

Symbolic suffixes are declared with the symbolic attribute; appending _num to the name of a symbolic suffix gives the name of an associated numeric suffix; solvers see the associated numeric value. If symsuf is a symbolic suffix, option symsuf_table connects symsuf with symsuf _num as follows. Each line of \$symsuf _table should begin with a numeric limit value,
followed by a string value and optional comments, all separated by white space. The numeric limit values must increase with each line. The string value with the greatest numeric limit value less than or equal to the . sufname _num value is the associated string value. If the . sufname_num value is less than the limit value in the first line of \$ symsuf_table, then the .symsuf _num value is used as the . symsuf value.

A.11.2 Statuses

Some solvers maintain a basis and distinguish among basic and various kinds of nonbasic variables and constraints. AMPL's built-in symbolic suffix . sstatus permits solvers to return basis information to AMPL and, in a subsequent solve (A.18.1), to be given the previously optimal basis, which sometimes leads to solving the updated problem faster.

AMPL's drop/restore status (A.18.6) of constraints and its fix/unfix status (A.18.7) of variables is reflected in the built-in symbolic suffix .astatus. The built-in symbolic suffix . status is derived from .astatus and .sstatus: if the variable or constraint, say x, is in the current problem, x. status $=x$.sstatus; otherwise x.status $=x$.astatus. AMPL assigns x. astatus_num $=0$ if x is in the current problem, so the rule for determining. status is
x.status $=$ if x.astatus_num $==0$ then x.sstatus else x.astatus.
When option astatus_table has its default value, x.astatus $=$ 'in' when x.astatus_num $=0$.

A. 12 Standard data format

AMPL supports a standard format to describe the sets and parameter values that it combines with a model to yield a specific optimization problem.

A data section consists of a sequence of tokens (literals and strings of printing characters) separated by white space (spaces, tabs, and newlines). Tokens include keywords, literals, numbers, and the delimiters () [] : , ; := *. A statement is a sequence of tokens terminated by a semicolon. Comments may appear as in declarations. In all cases, arrangement of data into neat rows and columns is for human readability; AMPL ignores formatting.

A data section begins with a data command and ends with end-of-input or with a command that returns to model mode (A.14).

In a data section, model entities may be assigned values in any convenient order, independent of their order of declaration.

A.12.1 Set data

Statements defining sets consist of the keyword set, the set name, an optional :=, and the members. A one-dimensional set is most easily specified by listing its members, optionally separated by commas. The single or double quotes of a literal string may be omitted if the string is alphanumeric but does not specify a number.

An object in a data section may be a number or a character string. As in a model, a character string may be specified by surrounding it with quotes (' or "). Since so many strings appear in data, however, AMPL allows data statements to drop the quotes around any string that consists only
of characters that may occur in a name or number, unless quotes are needed to distinguish a string from a number.

The general form of a set data statement is

```
set-data-statement:
    set set-name := set-spec set-spec ... ;
set-spec:
    set-template opt member-list
    set-template opt member-table member-table ...
```

The set-name must be the name of an individually declared set, or the subscripted name of a set from an indexed collection. The optional template has the form

```
set-template:
    ( templ-item, templ-item, ... )
templ-item:
    object
    *
    :
```

where the number of templ-items must equal the dimension of the named set. If no template is given, a template of all *'s is assumed.

There are two forms of set-spec, list format and table format. The list format of set-spec is

```
member-list:
    member-item member-item ...
member-item:
    object object ...
```

The number of objects in a member-item must match the number of *'s in the preceding template, which may not have : as a templ-item; the objects are substituted for the *'s, from left to right, to produce a member that is added to the set being specified. In the special case that the template contains no *'s, the member-list should be empty, while the template itself specifies one member to be added.

The table format of set-spec looks like this:

```
member-table:
    (tr) opt t-header t-header ... :=
    row-label }\pm\quad\pm\quad
    row-label }\pm\quad\pm\quad
t-header:
    : object object ...
row-label:
    object object ...
```

There must be at least one t-header, at least one object in each row-label, and as many t-header's and row-label's as *'s and :'s in the preceding template. If the preceding template involves any :'s, there must be as many :'s as t-headers; otherwise if the optional (tr) appears, the initial *'s are treated as :'s, and if (tr) does not appear, the final *'s are treated as :'s. Each table entry shown as \pm must be either a + or a - symbol. Each - entry is ignored, while each + entry's row-labels are substituted for the template's ${ }^{\prime \prime} \mathrm{s}$ in sequence, and the objects in the t-headers corresponding to the + are substituted for the :'s to produce a set member.

To define a compound set, one can list all members. Each member is a parenthesized, comma-separated list of components, and successive members have an optional comma between them. Alternatively, one can describe the members of a two-dimensional set by a table or sequence of tables. In such a table, the row labels are for the first subscript, the columns for the second; " + " stands for a pair that occurs in the set, and " - " for a pair that does not. The colon introduces a table, and is mandatory in this context. If (tr) precedes the colon, the table is transposed, interchanging the roles of rows and columns.

In general, a set statement involves a sequence of 1D and 2D set tables. 1D tables start with either a new template (after which $\mathrm{a}:=$ is optional) or with $:=$ alone, in which case the previous template is retained. The default (initial) template is $(*, \ldots, *)$, that is, as many *'s as the set's dimension. 2D tables start with an optional new template, followed by : or (tr) and an optional colon, followed by a list of column labels and a $:=$. Templates containing no *'s stand for themselves. The effect of (tr) persists until a new template appears.

For indexed sets, each component set must be given in a separate data statement. It is not necessary to specify subset members in the same order as in their parent set.

A.12.2 Parameter data

There are two forms of the statement that specifies parameter data or variable initial values. The first form is analogous to the set data statement:

```
param-data-statement:
    param param-name param-default opt := param-spec param-spec ... ;
param-spec:
    param-template opt value-list
    param-template opt value-table value-table ...
```

with the addition of an optional param-default that will be described below. The param-name is usually the name of a parameter declared in the model, but may also be the name of a variable or constraint; the keyword var may be used instead of param to make the distinction clear.

The param statement's templates have the same content as in the set data statement, but are given in brackets (like subscripts) rather than parentheses:

```
param-template:
    [ templ-item, templ-item, ... ]
templ-item:
    object
    *
    :
```

The value-list is like the previously defined member-list, except that it also specifies a parameter or variable value:

```
value-list:
    value-item value-item ...
value-item:
    object object ... entry
```

The objects are substituted for *'s in the template to define a set member, and the parameter or variable indexed by this set member is assigned the value associated with the entry (see below).

The value-table is like the previously defined member-table, except that its entrys are values rather than + or - :

```
value-table:
    (tr) opt : t-header t-header t-header ... :=
    row-label entry entry entry
    row-label entry entry entry
t-header:
    : object object ...
row-label:
    object object ...
entry:
    number
    string
    default-symbol
```

As in set statements, the notation (tr) means transpose; it implies a 2D table, and a : after it is optional. It remains in effect until a new template appears.

A table may be given in several chunks of columns.
Each entry's row-label and t-header entries are substituted for *'s and :'s in the template to define a set member, and the parameter or variable indexed by this set member is assigned the value specified by the entry. The entry may be a number for variables and for parameters that take numerical values, or a string for variables and parameters declared with the attribute symbolic. An entry that is the default symbol (see below) is ignored.

The second form of parameter data statement provides for the definition of multiple parameters, and also optionally the set over which they are indexed:

```
param-data-alternate:
    param param-default opt:
    param-name param-name ... := value-item value-item ... ;
    param param-default opt : set-name:
    param-name param-name ... := value-item value-item ... ;
```

The named parameters must all have the same dimension. If the optional set-name is specified, its membership is also defined by this statement. Each value-item consists of an optional template followed by a list of objects and a list of values:

```
value-item:
    template opt object ... entry entry ...
```

An initial template of all *'s (as many as the common dimension of the named parameters) is assumed, and a template remains in effect until a new one appears. The objects must be equal in number to the number of $*$'s in the current template; when substituted for the $*$'s in the current template, they define a set member. If a set is being defined, this member is added to it. The parameters indexed by this member are assigned the values associated with the subsequent entrys, which obey the same rules as the table entrys previously described. Values are assigned in the order in which the parameters' names appeared at the beginning of the statement; the number of entrys must equal the number of named parameters.

A param data statement's optional default phrase has the form
param-default:
default number
If this phrase is present, any parameter named but not explicitly assigned a value in the statement is given the value of number.

A data item may be specified as "." rather than an explicit value. This is normally taken as a missing value, and a reference to it in the model would cause an error message. If there is a default value, however, each missing value is determined from that default. A default value may be specified either through a default phrase in a parameter's declaration in the model (A.7), or from an optional phrase

```
default r
```

that follows the parameter's name in the data statement. In the latter case, r must be a numeric constant.

Default-value symbols may appear in both 1D and 2D tables. The default-symbol is initially a dot (.). A stack of default-value symbols is maintained, with the current symbol at the top. The defaultsym statement (which is recognized only in a data section) pushes a new symbol onto the stack, and nodefaultsym pushes a "no symbol'" indicator onto the stack. The statement

```
defaultsym;
```

(without a symbol) pops the stack.
Parameters having three or more indices may be given values by a sequence of 1 D and 2D tables, one or more for each slice of nondefault values.

In summary, a param statement defining one indexed parameter starts with the keyword param and the name of the parameter, followed by an optional default value and an optional :=. Then comes a sequence of 1D and 2D param tables, which are similar to 1D and 2D set tables, except that templates involve square brackets rather than parentheses, 2D tables contain numbers (or, for a symbolic parameter, literals) rather than +'s and -'s, and 1D tables corresponding to a template of $k *$'s contain $k+1$ rather than k columns, the last being a column of numbers or default symbols (.'s). A special form, the keyword param, an optional default value, and a single (untransposed) 2D table, defines several parameters indexed by a common set, and another special form, param followed by the parameter name, an optional : =, and a numeric value, defines a scalar parameter.

Variable and constraint names may appear in data sections anywhere that a parameter name may appear, to specify initial values for variables and for the dual variables associated with constraints. The rules for default values are the same as for parameters. The keyword var is a synonym for param in data statements.

A. 13 Database access and tables

AMPL's table facility permits obtaining data from and returning data to an external medium, such as a database, file, or spreadsheet. A table declaration establishes connections between columns of an external relational table and sets, parameters, variables and expressions in AMPL. The read table and write table commands use these connections to read data values into AMPL from tables and write them back. AMPL uses table handlers to implement these connections. Built-in table handlers permit reading and writing ". tab" and ". bit" files to save and restore values and experiment with AMPL's table facilities; to access databases and spreadsheets, at
least one other handler must be installed or loaded (A.22). The built-in set _HANDLERS names the currently available handlers, and the symbolic parameter _handler_lib\{_HANDLERS \} tells which shared library each handler came from.

Table declarations have the form

```
table-declaration:
    table table-name indexing opt in-out opt string-list opt :
        key-spec, data-spec, data-spec, ... ;
```

in-out is one of IN, OUT, or INOUT; IN means into AMPL, OUT means out of AMPL, and INOUT means both. INOUT is assumed if in-out is not given. The optional string-list gives the names of drivers, files, and driver-specific options that are used to access external data; the contents depend on the handler used for the table and perhaps on the operating system.

The key-spec in a table declaration specifies key columns that uniquely identify the data to be accessed:

$$
\text { set-io opt }[k e y-c o l-s p e c, ~ k e y-c o l-s p e c, ~ . . .] ~] ~
$$

The optional set-io phrase has the form

set-name arrow

in which arrow is one of $\langle-,->$, or $\langle-\rangle$; it points in the direction that the information is moved, from the key columns to the AMPL set (by read table), from the set to the columns (by write table), or both, depending on in-out. Each key-col-spec names a column in the external table and associates a dummy index with it. A key-col-spec of the form

> key-name
uses key-name for both purposes, and a key-col-spec of the form

```
key-name ~ data-col-name
```

introduces key-name as the dummy index and data-col-name as the name of the column in the external medium; data-col-name may be a name, quoted string, or parenthesized string expression.

Each data-spec names a data column in the external table. In the simplest case, the external name and the AMPL name are the same. If not, however, an external name can be associated with an internal name with the syntax

```
data-spec:
    param-name ~ data-col-name
```

Each data-spec optionally ends with one of IN, OUT, or INOUT, which overrides the default table direction and indicates whether read table should read the column into AMPL (IN or INOUT), and whether write table should write the column to the external medium (OUT or INOUT).

Special syntax permits use of an indexing expression to describe one or more columns of data:

```
indexing expr-col-desc
indexing ( expr-col-desc , expr-col-desc , ... )
```

in which expr-col-desc has the form

```
expr [ ~ colname ] in-out opt
```

Another special syntax permits iterating data columns:

```
indexing < data-spec , data-spec , ... >
```

The latter may not be nested, but may contain the former.
After a table declaration, data access is done with

```
read table table-name subscript opt ;
write table table-name subscript opt ;
```

which refer back to the information given in the table declaration.

A. 14 Command language overview

AMPL recognizes the commands listed in Table A-9. Commands are not part of a model, but cause AMPL to act as described below.

The command environment recognizes two modes. In model mode, where AMPL starts upon invocation, it recognizes model declarations (A.5) and all of the commands described below. Upon seeing a data statement, it switches to data mode, where only data-mode statements (A.12) are recognized. It returns to model mode upon encountering a keyword that cannot begin a data-mode statement, or the end of the file. Commands other than data, end, include, quit and shell also cause AMPL to enter model mode.

A phrase of the form
include filename
causes the indicated file to be interpolated. Here, and in subsequent contexts where a filename appears, if filename involves semicolons, quotes, white space, or non-printing characters, it must be given as a literal, i.e., 'filename' or "filename". In contexts other than include, filename may also be a parenthesized string expression (A.4.2). include commands may be nested; they are recognized in both model and data mode. The sequences

```
model; include filename
data; include filename
```

may be abbreviated

```
model filename
data filename
```

The commands command is analogous to include, but is a statement and must be terminated by a semicolon. When a data or commands command appears in a compound command (i.e., the body of a loop or the then or else part of an if command (A.20.1), or simply in a sequence of commands enclosed in braces), it is executed when the flow of control reaches it, instead of when the compound command is being read. In this case, if the data or commands command does not specify a file, AMPL reads commands or data from the current input file until it encounters either an end command or the end of the current file.

For include phrases as well as model, data, and commands commands, files with simple names, e.g., not involving a slash (/), are sought in directories (folders) specified by option ampl_include (A.14.1): each nonblank line of \$ampl_include specifies a directory; if $\$ a m p 1 _$include is empty or entirely blank, files are sought in the current directory.

The option insertprompt (default ${ }^{\prime}<\% d>^{\prime}$) specifies an insertion prompt that immediately precedes the usual prompt for input from the standard input. If present, \%a is the current insert

```
call invoke imported function
cd change current directory
check perform all check commands
close close file
commands read and interpret commands from a file
data switch to data mode; optionally include file contents
delete delete model entities
display
drop
end
environ
exit
expand
freeze a variable at its current value
include
let
load
load dynamic function library
model
objective
option
print print model entities and expressions unformatted
printf print model entities and expressions formatted
problem define or switch to a named problem
purge remove model entities
quit terminate AMPL
read take input from a file
read table take input from a data table
redeclare change declaration of entity
reload reload dynamic function library
remove remove file
reset reset specified entities to their initial state
restore undo a drop command
shell temporary escape to operating system to run commands
show show names of model entities
solexpand show expansion as seen by solver
solution import variable values as if from a solver
solve send current instance to a solver and retrieve solution
update allow updating data
unfix undo a fix command
unload unload dynamic function library
write write out a problem instance
write table write data to a data table
xref show dependencies among entities
```

Table A-9: Commands.
level, i.e., nesting of data and commands commands specifying files and appearing within a compound command.

A.14.1 Options and environment variables

AMPL maintains the values of a variety of options that influence the behavior of commands and solvers. Options resemble the "environment variables" of the Windows and Unix operating systems; in fact AMPL inherits its initial options from the environments of these systems. AMPL supplies its own defaults for many options, however, if they are not inherited in this way.

The option command provides a way to examine and change options. It has one of the forms

```
option redirection opt ;
option opname [ evalue ] [ , opname [ evalue ] ... ] redirection opt ;
```

The first form prints all options that have been changed or whose default may be provided by AMPL. In the second form, if an evalue is present, it is assigned to opname; otherwise the value (a character string) currently associated with opname is printed. An opname is an option name optionally preceded by an environment name (A.18.8) and a period. The option name also may be a name-pattern, which is a name containing one or more *'s. In a name-pattern, a * stands for an arbitrary sequence, possibly empty, of name characters, and thus may match multiple names; for example
option *col*;
lists all options whose names contain the string "col', Specific environment or option names may also be given by parenthesized string expressions.

An evalue is a white-space-separated sequence of one or more literals, numbers, parenthesized string expressions, and references to options of the form \$opname or \$ \$opname, in which opname contains no *'s; in general, \$opname means the current value of option opname, and \$ \$opname means the default value, i.e., the value inherited from the operating system, if any, or provided by AMPL. The quotes around a literal may be omitted if what remains is a name or number. The displayed option values are in a format that could be read as an option command.

A. 15 Redirection of input and output

An optional redirection phrase can be used with a variety of AMPL commands to capture their output in a file for subsequent processing. It applies to all forms of display and print and also to most other commands that can produce output, such as solve, objective, fix, drop, restore, and expand.

A redirection has one of the forms

> > filename
> \gg filename
> < filename (for read command)
in which filename may have any of the forms that can appear in data and commands commands (A.14). The file is opened the first time a command specifies filename in a redirection; the first form of redirection causes the file to be overwritten upon first being opened, while the second form causes output to be appended to the current contents. The form < filename is used only for input from the read command (A.17). Once open, filename remains open until a reset or unless explicitly closed by a close command:

```
close filenames opt ;
```

As long as filename remains open, output forms of redirection causes output to be appended to the file's current contents. A close command without a filename closes all open files and pipes. A close command may specify a comma-separated list of filenames. The variant

```
remove filename ;
```

closes and deletes filename.

A. 16 Printing and display commands

The display, print, and printf commands print arbitrary expressions. They have the forms

```
display [ indexing: ] disparglist redirection opt ;
print [ indexing: ] arglist redirection opt ;
printf [ indexing: ] fmt , arglist redirection opt ;
```

If indexing is present, its scope extends to the end of the command, and it causes one execution of the command for each member in the indexing set. The format string fmt is like a printf format string in the C programming language and is explained more fully below.

An arglist is a (possibly empty, comma-separated) list of expressions and iterated-arglists; an iterated-arglist has one of the forms

```
indexing expr
indexing ( nonempty-arglist )
```

where expr is an arbitrary expression. The exprs can also involve simple or subscripted variable, constraint, and objective names; a constraint name represents the constraint's current dual value. A disparglist is described below.

The optional redirection (A.15) causes output to be sent to a file instead of appearing on the standard output.

The print command prints the items in its arglist on one line, separated by spaces and terminated by a newline; the separator may be changed with option print_separator. Literals are quoted only if they would have to be quoted in data mode. By default, numeric expressions are printed to full precision, but this can be changed with option print_precision or option print_round, as described below.

The printf command prints the items in its arglist as dictated by its format string fmt. It behaves like the printf function in C. Most characters in the format string are printed verbatim. Conversion specifications are an exception. They start with a \% and end with a format letter, as summarized in Table A-10. Between the \% and the format letter there may be any of - , for leftjustification; + , which forces a sign; 0 , to pad with leading zeros; a minimum field width; a period; and a precision giving the maximum number of characters to be printed from a string or digits to be printed after the decimal point for $\% f$ and $\% e$ or significant digits for $\% g$ or minimum number of digits for \% α. Field widths and precisions are either decimal numbers or a *, which is replaced by the value of the next item in the arglist. Each conversion specification consumes one or (when *'s are involved) more items from the arglist and formats the last item it consumes. With \% g , a precision of $0(\% .0 \mathrm{~g}$ or $\% . \mathrm{g})$ specifies the shortest decimal string that rounds to the value being formatted. The standard C escape sequences are allowed: $\backslash \mathrm{a}$ (alert or bell), $\backslash \mathrm{b}$ (backspace), $\backslash \mathrm{f}$ (formfeed), \ln (newline), $\backslash r$ (carriage return), $\backslash t$ (horizontal tab), $\mathrm{Vv}^{(\text {vertical tab }), ~} \backslash \mathrm{x} d$ and $\backslash \mathrm{x} d d$,

| $\% \mathrm{~d}$ | signed decimal notation |
| :--- | :--- |
| $\% \mathrm{i}$ | signed decimal notation (same as \%d) |
| $\% \mathrm{u}$ | unsigned decimal notation |
| $\% \mathrm{O}$ | unsigned octal notation, without leading 0 |
| $\% \mathrm{x}$ | unsigned hexadecimal, using abcdef, without leading 0x |
| $\% \mathrm{X}$ | unsigned hexadecimal, using ABCDEF, without leading 0X |
| $\% \mathrm{C}$ | single character |
| $\% \mathrm{~S}$ | string |
| $\% \mathrm{G}$ | quote string appropriately for data values |
| $\% \mathrm{Q}$ | always quote string |
| $\% \mathrm{f}$ | double-precision floating-point |
| $\% \mathrm{e}$ | double-precision floating-point, exponential notation using e |
| $\% \mathrm{E}$ | double-precision floating-point, exponential notation using E |
| $\% \mathrm{~g}$ | double-precision floating-point, using $\% \mathrm{f}$ or \%e |
| $\% \mathrm{G}$ | double-precision floating-point, using $\% \mathrm{f}$ or $\% \mathrm{E}$ |
| $\% \%$ | literal $\%$ |

Table A-10: Conversion specifications in print f formats.
where d denotes a hexadecimal digit, and $\backslash d$, $\backslash d d$ and $\backslash d d d$, where d denotes an octal digit. Format \%q prints a string value with data-section quoting rules; format $\% Q$ always quotes the string.

The sprintf function (A.4.2) formats its argument list according to a format string that uses the same conversion specifications.

The display command formats various entities in tables or lists, as appropriate. Its disparglist is similar to an arglist for print or printf, except that an item to be displayed can also be a set expression or the unsubscripted name of an indexed parameter, variable, constraint, or set; furthermore iterated arglists cannot be nested, i.e., they are restricted to the forms

```
indexing expr
indexing ( exprlist )
```

where exprlist is a nonempty, comma-separated list of expressions. The display command prints scalar expressions and sets individually, and partitions indexed entities into groups having the same number of subscripts, then prints each group in its own table or sequence of tables.

By default, the display command rounds numeric expressions to six significant figures, but this can be changed with the options display_precision or display_round, as described below.

Several options whose names end with _precision control the precision with which floating-point numbers are converted to printable values; positive values imply rounding to that many significant figures, and 0 or other values imply rounding to the shortest decimal string that, when properly rounded to a machine number, would yield the number in question. If set to integral values, \$display_round and \$print_round override \$display_precision and \$print_precision, respectively, and similarly for the analogous options in Table A-11. For example, \$display_round n causes the display command to round numeric values to n places past the decimal point (or to $-n$ places before the decimal point if $n<0$). A negative precision with $\% \mathrm{f}$ formats as for the print command with print_round negative. Options that affect printing include those shown in Table A-11.
csvdisplay_round
display_1col
display_eps
display_max_2d_cols
display_precision
display_round
display_transpose
display_width
expand_precision
expand_round
gutter_width
objective_precision
omit_zero_cols
omit_zero_rows
output_precision
print_precision
print_round
print_separator
solution_precision
solution_round

```
```

```
csvdisplay_precision
```

```
```

csvdisplay_precision

```
precision for _display and csvdisplay ( 0 is full precision) rounding for_display and csvdisplay (' ' is full precision) maximum elements for a 1D table to be displayed one element per line display absolute numeric values < \$display_eps as zero if \(>0\), maximum data columns in a 2D display
 places past decimal for display command to round transpose tables if rows - columns < \$display_transpose maximum line length for print and display commands precision for expand command when \$expand_round is not numeric places past decimal for expand command to round separation between columns for display command
precision for objective value displayed by solver if nonzero, omit all-zero columns from displays if nonzero, omit all-zero rows from displays precision used in nonlinear expression (.n1) files precision for print command when \$print_round is not numeric places past decimal for print command to round separator for values printed by print command precision for solve or solution command when \$solution_round is not numeric
places past decimal for solve or solution command to round

Table A-11: Options that control printing.

Commands _display and csvdisplay are variants that emit tables in a more regular format than does display: each line of a table starts with \(s\) subscripts and ends with \(k\) items, all separated by commas. _display and csvdisplay differ in the table headers they emit. The header for _display consists of a line starting with _display and followed by three integers \(s\), \(k\), and \(n\) (the number of table lines that follow the header), each preceded by a space. If \$csvdisplay_header is 1, csvdisplay precedes the data values by a header line listing the \(k\) indices and \(n\) expressions by name. If \$csvdisplay_header is 0 , this header line is omitted.

\section*{A. 17 Reading data}

The read command provides a way of reading unformatted data into AMPL parameters and other components, with syntax similar to the print command:
```

read [indexing :] arglist redirection opt ;

```

As with print, the optional indexing causes the read command to be executed separately for each member of the specified indexing set.

The read command treats its input as an unformatted series of data values, separated by white space. The arglist is a comma-separated list of arguments that specifies a series of components to which these values are assigned. As with print, the arglist is a comma-separated list of args, which may be any of
```

arg:
component-ref
indexing-expr component-ref
indexing-expr (arglist)

```

The component-ref must be a reference to a possibly suffixed parameter, variable, or constraint, or a suffixed problem name; it is meaningless to read a value into a set member or any more general expression. All indexing must be explicit, for example read \(\{j\) in DEST \} demand [j] rather than read demand. Values are assigned to args in the order that they are read, so later arguments can use values read earlier in the same read command.

If no redirection is specified, values are read from the current input stream. Thus if the read command was issued at an AMPL prompt, one types the values at subsequent prompts until all of the arglist entries have been assigned values. The prompt changes from ampl? back to ampl: when all the needed input has been read. If instead read is inside a script file that is read with include or commands, then the input is read from the same file, beginning directly after the ; that ends the read command.

Most often the input to read lies in a separate file, specified by the optional redirection; its form is <filename, where filename is a string or parenthesized string expression that identifies a file. Multiple read's can access the same file, in which case each read starts reading the file where the previous one left off. To force reading to start at the beginning again, close filename before re-reading.

If a script is to contain a read command that reads values typed interactively, the source of the values must be redirected to the standard input; specifying a - (minus sign) as the filename does so. This is most often used to read interactive responses from a user.

\section*{A. 18 Modeling commands}

\section*{A.18.1 The solve command}

The solve command has the form
\[
\text { solve redirection }_{\text {opt }} ;
\]

It causes AMPL to write the current translated problem to temporary files in directory \(\$\) TMPDIR (unless the current optimization problem has not changed since a previous write command), to invoke a solver, and to attempt to read optimal primal and dual variables from the solver. If this succeeds, the optimal variable values become available for printing and other uses. The optional redirection is for the solver's standard output.

The current value of the solver option determines the solver that is invoked. Appending '_oopt' to \$solver gives the name of an option which, if defined with a nonempty string, determines (by the first letter of the string) the style of temporary problem files written; otherwise, AMPL uses its generic binary output format (style b). For example, if \$solver is supersol, then \$supersol_oopt, if nonempty, determines the output style. The command-line option '-o?' (A.23) shows a summary of the currently supported output styles.

AMPL passes two command-line arguments to the solver: the stub of the temporary files, and the literal string -AMPL. AMPL expects the solver to write dual and primal variable values to file stub. sol, preceded by commentary that, if appropriate, reports the objective value to
\$objective_precision significant digits. In reading the solution, AMPL rounds the primal variables to \$solution_round places past the decimal point if \$solution_round is an integer, or to \$solution_precision significant figures if \$solution_precision is a positive integer; the defaults for these options imply that no rounding is performed.

A variable always has a current value. A variable declaration or data section can specify the initial value, which is otherwise 0 . The option reset_initial_guesses controls the initial guess conveyed to the solver. If option reset_initial_guesses has its default value of 0 , then the current variable values are conveyed as the initial guess. Setting option reset_initial_guesses to 1 causes the original initial values to be sent. Thus \$reset_initial_guesses affects the starting guess for a second solve command, as well as for an initial solve command that follows a solution command (described below).

A constraint always has an associated current dual variable value (Lagrange multiplier). The initial dual value is 0 unless otherwise given in a data section or specified in the constraint's declaration by a \(:=\) initial_dual or a default initial_dual phrase. Whether a dual initial guess is conveyed to solvers is governed by the option dual_initial_guesses. Its default value of 1 causes AMPL to pass the current dual variables (if \$reset_initial_guesses is 0 ) or the original initial dual variables to the solver; if \$dual_initial_guesses is set to 0 , AMPL will omit initial values for the dual variables.

AMPL's presolve phase computes two sets of bounds on variables. The first set reflects any sharpening of the declared bounds implied by eliminated constraints. The other set incorporates sharpenings of the first set that presolve deduces from constraints it cannot eliminate from the problem. The problem has the same solutions with either set of bounds, but solvers that use active-set strategies (such as the simplex method) may have more trouble with degeneracies with the sharpened bounds. Solvers often run faster with the first set, but sometimes run faster with the second. By default, AMPL passes the first set of bounds, but if option var_bounds is 2, AMPL passes the second set. The . 1 bb and .ub suffixes for variables always reflect the current setting of \$var_bounds; . lb1 and .ub1 are for the first set, . lb2 and . ub2 for the second set.

If the output style is m, AMPL writes a conventional MPS file, and the value of option integer_markers determines whether integer variables are indicated in the MPS file by 'INTORG' and 'INTEND' 'MARKER' lines. By default, \$integer_markers is 1, causing these lines to be written; specifying
```

option integer_markers 0;

```
causes AMPL to omit the 'MARKER' lines.
The option relax_integrality causes integer and binary attributes of variables to be ignored in solve and write commands. It is also possible to control this by setting the .relax suffix of a variable (A.11).

By default, values of suffixes of type IN or INOUT (A.11.1) are sent to the solver, and updated values for suffixes of type OUT or INOUT are obtained from the solver, but the sending and receiving of suffix values can be controlled by setting option send_suffixes suitably: if \$send_suffixes is 1 or 3 , suffix values are sent to the solver; and if \$send_suffixes is 2 or 3 , then updated suffix values are requested from the solver.

Whether .sstatus values (A.11.2) are sent to the solver is determined by options send_suffixes and send_statuses; setting \$send_statuses to 0 causes .sstatus values not to be sent when \$send_suffixes permits sending other suffixes.

Most solvers supply a value for AMPL's built-in symbolic parameter solve_message. AMPL prints the updated solve_message by default, but setting option solver_msg to 0
suppresses this printing. Most solvers also supply a numeric return code solve_result_num, which has a corresponding symbolic value solve_result that is derived from solve_result_num and \$solve_result_table analogously to symbolic suffix values (A.11.1).

By default AMPL permutes variables and constraints so solvers see the nonlinear ones first. Some solvers require this, but with other solvers, occasionally it is useful to suppress these permutations by setting option nl_permute suitably. It is the sum of

1 to permute constraints
2 to permute variables
4 to permute objectives
and its default value is 3 .
When complementarity constraints are present, the system of constraints is considered square if the number of "inequality complements inequality" constraints plus the number of equations equals the number of variables. Some complementarity solvers require square systems, so by default AMPL warns about nonsquare systems. This can be changed by adjusting option compl_warn, which is the sum of

1 warn about nonsquare complementarity systems
2 warn and regard nonsquare complementarity systems as infeasible
4 disregard explicit matchings of variables to equations

\section*{A.18.2 The solution command}

The solution command has the form
solution filename ;
This causes AMPL to read primal and dual variable values from filename, as though written by a solver during execution of a solve command.

\section*{A.18.3 The write command}

The write command has the form
\[
\text { write outopt-value }_{\text {opt }} \text {; }
\]
in which the optional outopt-value must adhere to the quoting rules for a filename. If outopt-value is present, write sets \$outopt to outopt-value. Whether or not outopt-value is present, write then writes the translated problem as \$outopt dictates: the first letter of \$outopt gives the output style (A.18.1), and the rest is used as a "stub" to form the names of the files that are created. For example, if \$outopt is "b/tmp/diet", the write command will create file /tmp/diet.nl, and if \$auxfiles so dictates (A.18.4), auxiliary files /tmp/diet.row, /tmp/diet.col, and so forth. The solve command's rules for initial guesses, bounds, suffixes, etc., apply.

\section*{A.18.4 Auxiliary files}

The solve and write commands may cause AMPL to write auxiliary files. For the solve command, appending _auxfiles to \$solver gives the name of an option that governs the auxiliary files written; for the write command, \$auxfiles plays this role. The auxiliary files
\begin{tabular}{cll}
\hline \hline & & \\
Key & \multicolumn{1}{c}{ File } & \multicolumn{1}{c}{ Description } \\
a & stub. adj & constant added to objective values \\
c & stub.col & AMPL names of variables the solver sees \\
e & stub.env & environment (written by a solve command) \\
f & stub. fix & variables eliminated from the problem because their values are known \\
p & stub.spc & MINOS 'specs' file for output style m \\
r & stub.row & AMPL names of constraints and objectives the solver sees \\
s & stub.slc & constraints eliminated from the problem \\
u & stub. unv & unused variables
\end{tabular}

Table A-12: Auxiliary files.
shown in Table A-12 are written only if the governing option's value contains the indicated key letter. If a key letter is capitalized, the corresponding auxiliary file is written only if the problem is nonlinear.

\section*{A.18.5 Changing a model: delete, purge, redeclare}

The command
```

delete namelist ;

```
deletes each name in namelist, restoring any previous meaning name had, provided no other entities depend on name, i.e., if xref name (A.19.2) reports no dependents.

The command
purge namelist ;
deletes each name and all its direct and indirect dependents.
The statement
```

redeclare entity-declaration ;

```
replaces any existing declaration of the specified entity with the given one, provided either that the entity has no dependents, or that the new declaration does not change the character of the entity (its kind, such as set or param, and its number of subscripts). A redeclare can be applied to statements beginning with any of the following:
\[
\begin{array}{llllll}
\text { arc function } & \text { minimize } & \text { param } & \text { set } & \text { suffix } \\
\text { check } & \text { maximize } & \text { node } & \text { problem } & \text { subject to table }
\end{array}
\]

Redeclarations that would cause circular dependencies are rejected.
The command
```

delete check n;

```
deletes the \(n\)th check, while
```

redeclare check n indexing opt : ... ;

```
redeclares the \(n\)th check.

\section*{A.18.6 The drop, restore and objective commands}

These commands have the forms
drop indexing opt constr-or-obj-name redirection \(_{\text {opt }}\);
restore indexing \({ }_{\text {opt }}\) constr-or-obj-name redirection \({ }_{\text {opt }}\);
objective objective-name redirection opt ;
where constr-or-obj-name is the possibly subscripted name of a constraint or objective. The drop command instructs AMPL not to transmit the indicated entity (in write and solve commands); the restore command cancels the effect of a corresponding drop command. If constr-or-obj-name is not subscripted but is the name of an indexed collection of constraints or objectives, drop and restore affect all members of the collection.

The objective command arranges that only the named objective is passed to the solver. Issuing an objective command is equivalent to dropping all objectives, then restoring the named objective.

\section*{A.18.7 The fix and unfix commands}

These commands have the forms
```

fix indexing opt varname [:= expr] redirection opt ;
unfix indexing opt varname [:= expr] redirection opt ;

```
where varname is the possibly subscripted name of a variable. The fix command instructs AMPL to treat the indicated variable (in write and solve commands) as though fixed at its current value, i.e., as a constant; the unfix command cancels the effect of a corresponding fix command. If varname is not subscripted but is the name of an indexed collection of variables, fix and unfix affect all members of the collection.

An optional :=expr may appear before the terminating semicolon, in which case the expression is assigned to the variable being fixed or unfixed, as though assigned by let (A.18.9).

\section*{A.18.8 Named problems and environments}

The problem declaration/command has three functions: declaring a new problem, making a previously declared problem current, and printing the name of the current problem (in the form of a problem command establishing the current problem).
```

problem name indexing opt environ opt suffix-initializations opt : itemlist ;

```
declares a new problem and specifies the variables, constraints, and objectives that are in it. Other variables appearing in the specified constraints and objectives are fixed (but can be unfixed by the unfix command). The new problem becomes the current problem. Initially the current problem is Initial. The itemlist in a problem declaration is a comma-separated list of possibly subscripted names of variables, constraints, and objectives, each optionally preceded by indexing. Suffix-initializations are analogous to those in constraint declarations, except that they appear before the colon.

The command
```

problem name ;

```
makes name (a previously declared problem) current, and
\[
\text { problem redirection opt } ;
\]
prints the current problem name. Drop/restore and fix/unfix commands apply only to the current problem. Variable values, like parameters, are global; just the fixed/unfixed status of a variable depends on the problem. Similarly, the drop/restore status of a constraint depends on the problem (as do reduced costs). The current problem does not restrict the let command (A.18.9).

When a problem is declared, it can optionally specify an environment associated with the problem: the environ phrase has the form
```

environ envname

```
to specify that the problem's initial environment is envname, which must bear a subscript if the environment is indexed. Otherwise a new unindexed environment with the same name as the problem is created, and it inherits the then current environment (set of option values).

In option commands, unadorned (conventional) option names refer to options in the current environment, and the notation envname.opname refers to \$opname in environment envname. The declaration
```

environ envname indexing opt ;

```
declares environment envname (or indexed set of environments, if indexing is present). If there is no indexing, envname becomes the current environment for the current problem.

For previously declared environments, the command
```

environ envname ;

```
makes the indicated environment current, and the command
```

environ indexing opt envname := envname

```
copies environment envname \({ }_{1}\) to envname, where envname and envname \({ }_{1}\) must be subscripted if declared with indexings. The initial environment is called Initial.

\section*{A.18.9 Modifying data: reset, update, let}

The reset command has several forms.
```

reset ;

```
causes AMPL to forget all model declarations and data and to close all files opened by redirection, while retaining the current option settings.
```

reset options ;

```
causes AMPL to restore all options to their initial state. It ignores the current \$OPTIONS_IN and \$OPTIONS_INOUT; the files they name can be included manually, if desired.
```

reset data ;

```
causes AMPL to forget all assignments read in data mode and allows reading data for a different problem instance.
```

reset data name-list ;

```
causes AMPL to forget any data read for the entities in name-list; commas between names are optional.

A reset data command forces recomputation of all = expressions, and reset data p , even when \(p\) is declared with \(a=\) expression, forces recomputation of random functions in the \(=\) expression (and of any user-defined functions in the expression).

Problems (including the current one) are adjusted when their indexing expressions change, except that previous explicit drop/restore and fix/unfix commands remain in effect. The reset problem command cancels this treatment of previous explicit drop, restore, fix, and unfix commands, and brings the problem to its declared drop/fix state. This command has the forms
```

reset problem ; applies to the current problem
reset problem probname [subscript] [pt ;

```

If the latter form mentions the current problem, it has the same effect as the first form. reset problem does not affect the problem's environment.
```

update data ;

```
permits all data to be updated once in subsequent data sections: current values may be overwritten, but no values are discarded.
```

update data name-list ;

```
grants update permission only to the entities in name-list.
The let command
```

let indexing opt name := expr ;

```
changes the value of the possibly indexed set, parameter or variable name to the value of the expression. If name is a set or parameter, its declaration must not specify \(\mathrm{a}=\) phrase.

The command
```

let indexing opt name.suffix := expr ;

```
assigns the corresponding suffix value, if permitted. Some suffix values are derived and cannot be assigned; attempting to do so causes an error message.

\section*{A. 19 Examining models}

\section*{A.19.1 The show command}

The command
```

show namelist opt redirection opt ;

```
lists all model entities if namelist is not present. It shows each name's declaration if it has one, or else lists model entities of the kind indicated by the first letters of each name:
```

ch... ==> checks
e..- =-> environments
o... ==> objectives
pr... ==> problems p... ==> parameters
su... ==> suffixes s... ==> sets
t... ==> tables

```
```

C... ==> constraints

```
C... ==> constraints
f... ==> functions
f... ==> functions
v... ==> variables
```

v... ==> variables

```

\section*{A.19.2 The xref command}

The command xref shows entities that depend directly or indirectly on specified entities:
xref itemlist redirection opt

\section*{A.19.3 The expand command}

The expand command prints generated constraints and objectives:
expand indexing opt itemlist redirection opt ;
The itemlist can assume the same forms allowed in problem declarations. If it is empty, all nondropped constraints and objectives are expanded. The variant
```

solexpand indexing opt itemlist redirection opt ;

```
shows how constraints and objectives appear to the solver. It omits constraints and variables eliminated by presolve unless they are explicitly specified in the itemlist.

Both the expand and solexpand commands permit variables to appear in the itemlist; for each, the commands show the linear coefficients of the variable in the relevant (non-dropped and, for solexpand, not eliminated by presolve) constraints and objectives, and indicates "+ nonlinear" when the variable also participates nonlinearly in a constraint or objective.

The options expand_precision and expand_round control printing of numbers by expand. By default they are printed to 6 significant figures.

\section*{A.19.4 Generic names}

AMPL provides a number of generic names that can be used to access model entities without using model-specific names. Some of these names are described in Table A-13; the complete current list is on the AMPL web site.

These synonyms and sets can be used in display and other commands. They present the modeler's view (before presolve). Similar automatically updated entities with _ changed to _s (i.e., _snvars, _svarnames, _svar, etc.) give the solver's view, i.e., the view after presolve. There are exceptions, however, due to the way complementarity constraints are handled (A.9.1): none of _cvar, _scconname, or _snccons exists.

\section*{A.19.5 The check command}

The command
check;
causes all check statements to be evaluated.

\section*{A. 20 Scripts and control flow statements}

AMPL provides statements similar to control flow statements in conventional programming languages, which make it possible to write a program of statements to be executed automatically.
_ncons
_nobjs
_varname{1.._nvars}
_conname{1.._ncons}
_objname{1.._nobjs}
_var{1.._nvars}
_con{1.._ncons}
_obj{1.._nobjs}
_PARS
_SETS
_VARS
_CONS
_OBJS
_PROBS
_ENVS
_FUNCS
_nccons
_cconname{1.._nccons}
_scvar{1.._sncons}
_snbvars
_snccons
_snivars
_snlcc
_snlnc
_snnlcc
_snnlcons
_snnlnc
_snnlobjs
_snnlv
_snzcons
_snzobjs
```

```
```

_nvars

```
```

```
_nvars
```

number of variables in current model number of constraints in current model number of objectives in current model names of variables in current model names of constraints in current model names of objectives in current model
synonyms for variables in current model synonyms for constraints in current model synonyms for objectives in current model
set of all declared parameter names set of all declared set names set of all declared variable names set of all declared constraint names set of all declared objective names set of all declared problem names set of all declared environment names set of all declared user-defined functions number of complementarity constraints before presolve names of complementarity constraints if _scvar [i] > 0, _svar [scvar [i]] complements _scon [i] number of binary $(0,1)$ variables number of complementarity constraints after presolve number of general integer variables (excluding binaries) number of linear complementarity constraints number of linear network constraints number of nonlinear compl. constrs.: _snccons=_snlcc+_snnlcc number of nonlinear constraints number of nonlinear network constraints number of nonlinear objectives number of nonlinear variables number of constraint Jacobian matrix nonzeros number of objective gradient nonzeros

Table A-13: Generic synonyms and sets.

A.20.1 The for, repeat and if-then-else statements

Several commands permit conditional execution of and looping over lists of AMPL commands:

```
if lexpr then cmd
if lexpr then cmd else cmd
for loopname opt indexing cmd
repeat loopname opt opt-while { cmds } opt-while ;
break loopname opt ;
continue loopname opt ;
```

In these statements, $c m d$ is either a single, possibly empty, command that ends with a semicolon or a sequence of zero or more commands enclosed in braces. lexpr is a logical expression. loopname is an optional loop name (which must be unbound before the syntactic start of the loop), which goes out of scope after syntactic end of the loop. If present, an opt-while condition has one of the forms

```
while lexpr
until lexpr
```

If loopname is specified, break and continue apply to the named enclosing loop; otherwise they apply to the immediately enclosing loop. A break terminates the loop, and continue causes its next iteration to begin (if permitted by the optional initial and final opt-while clauses of a repeat loop, or by the indexing of a for loop). Dummy indexes from indexing may appear in cmd in a for loop. The entire index set of a for loop is instantiated before starting execution of the loop, so the set of dummy indices for which the loop body is executed will be unaffected by assignments in the loop body.

Variants of break,

```
break commands ;
break all ;
```

terminate, respectively, the current commands command or all commands commands, if any, and otherwise act as a quit command.

Loops and if-then-else structures are treasured up until syntactically complete. Because else clauses are optional, AMPL must look ahead one token to check for their presence. At the outermost level, one must thus issue a null command (just a semicolon) or some other command or declaration to execute an outermost "else-less" if statement. (In this regard, end-of-file implies an implicit null statement.)

A semicolon is taken to appear at the end of command files that end with a compound command with optional final parts missing:

```
repeat ... { ... } # no final condition or semicolon
if ... then { ... } # no else clause
```

AMPL has three pairs of prompts whose text can be changed through option settings. The default settings are:

```
option cmdprompt1 '%s ampl: ';
option cmdprompt2 '%s ampl? ';
option dataprompt1 'ampl data: ';
option dataprompt2 'ampl data? ';
option prompt1 'ampl: ';
option prompt2 'ampl? ';
```

prompt1 appears when a new statement is expected, and prompt2 when the previous input line is not yet a complete command (for example, if the semicolon at the end is missing).

In data mode, the values of dataprompt1 and dataprompt2 are used instead. When a new line is begun in the middle of an if, for or repeat statement, the values of cmdprompt1 and cmdprompt 2 are used, with \%s replaced by the appropriate command name; for example:

```
ampl: for {t in time} {
for{...} { ? ampl: if t <= 6
for{...} { ? ampl? then let cmin[t] := 3;
if ... then {...} ? ampl: else let cmin[t] := 4;
for{...} { ? ampl: };
ampl:
```


A.20.2 Stepping through commands

It is possible to step through commands in an AMPL script one command at a time. Single-step mode is enabled by

```
option single_step n ;
```

where n is a positive integer; it specifies that if the insert level is at most n, AMPL should behave as though commands - ; were inserted before each command: it should read commands from the standard input until end or other end of file signal (control-D on Unix, control-Z on Windows). Some special commands may appear in this mode:

```
step nopt execute the next command, or }n\mathrm{ commands
skip n nopt skip the next command, or }n\mathrm{ commands
next nopt if the next command is an if-then-else or looping command, execute the entire
    compound command, or }n\mathrm{ commands, before stopping again
    (unless the compound command itself specifies commands - ;)
cont execute until the end of all currently nested compound commands
    at the current insert level
```


A. 21 Computational environment

AMPL runs in an operating system environment, most often as a standalone program, but sometimes behind the scenes in a graphical user interface or a larger system. Its behavior is influenced by values from the external environment, and it can set values that become part of that environment. The parameter_pid gives the process ID of the AMPL process (a number unique among processes running on the system).

A.21.1 The shell command

The shell command provides a temporary escape to the operating system, if such is permitted, to run commands.

```
shell 'command-line' redirection opt ;
shell redirection opt ;
```

The first version runs command-line, which is contained in a literal string. In the second version, AMPL invokes an operating-system shell, and control returns to AMPL when that shell terminates. Before invoking the shell, AMPL writes a list of current options and their values to the file (if any) named by option shell_env_file. The name of the shell program is determined by option SHELL.

A.21.2 The cd command

The cd command reports or changes AMPL's working directory.

```
cd ;
cd new-directory ;
```

The parameter _cd is set to this value.

```
_ampl_elapsed_time
_ampl_system_time
_ampl_user_time
_ampl_time
_shell_elapsed_time
_shell_system_time
_shell_user_time
_shell_time
_solve_elapsed_time
_solve_system_time
_solve_user_time
_solve_time
_total_shell_elapsed_time
_total_shell_system_time
_total_shell_user_time
_total_shell_time
_total_solve_elapsed_time
_total_solve_system_time
_total_solve_user_time
_total_solve_time
```

elapsed seconds since the start of the AMPL process system CPU seconds used by the AMPL process itself user CPU seconds used by the AMPL process itself _ampl_system_time + _ampl_user_time elapsed seconds for most recent shell command system CPU seconds used by most recent shell command user CPU seconds used by most recent shell command _shell_system_time + _shell_user_time elapsed seconds for most recent solve command system CPU seconds used by most recent solve command user CPU seconds used by most recent solve command _solve_system_time + _solve_user_time elapsed seconds used by all shell commands system CPU seconds used by all shell commands user CPU seconds used by all shell commands
_total_shell_system_time+_total_shell_user_time
elapsed seconds used by all solve commands system CPU seconds used by all solve commands user CPU seconds used by all solve commands _total_solve_system_time+_total_solve_user_time

Table A-14: Built-in timing parameters.

A.21.3 The quit, exit and end commands

The quit command causes AMPL to stop without writing any files implied by \$outopt, and the end command causes AMPL to behave as though it has reached the end of the current input file, without reverting to model mode. At the top level of command interpretation, either command terminates an AMPL session. The command exit is a synonym for quit, but it can return a status to the surrounding environment:

```
exit expression opt ;
```


A.21.4 Built-in timing parameters

AMPL has built-in parameters that record various CPU and elapsed times, as shown in Table A-14. Most current operating systems keep separate track of two kinds of CPU time: system time spent by the operating time on behalf of a process, e.g., for reading and writing files, and user time spent by the process itself outside of the operating system. Usually the system time is much smaller than the user time; when not, finding out why not sometimes suggests ways to improve performance. Because seeing separate system and user times can be helpful when performance seems poor, AMPL provides built-in parameters for both sorts of times, as well as for their sums. AMPL runs both solvers and shell commands as separate processes, so it provides separate parameters to record the times taken by each sort of process, as well as for the AMPL process itself.

A.21.5 Logging

If option log_file is a nonempty string, it is taken as the name of a file to which AMPL copies everything it reads from the standard input. If option log_model is 1 , then commands and
declarations read from other files are also copied to the log file, and if log_data is 1 , then data sections read from other files are copied to the log file as well.

A. 22 Imported functions

Sometimes it is convenient to express models with the help of functions that are not built into AMPL. AMPL has facilities for importing functions and optionally checking the consistency of their argument lists. Note: The practical details of using imported functions are highly systemdependent. This section is concerned only with syntax; specific information will be found in system-specific documentation, e.g., on the AMPL web site.

An imported function may need to be evaluated to translate the problem; for instance, if it plays a role in determining the contents of a set, AMPL must be able to evaluate the function. In this case the function must be linked, perhaps dynamically, with AMPL. On the other hand, if an imported function's only role is in computing the value of a constraint or objective, AMPL never needs to evaluate the function and can simply pass references to it on to a (nonlinear) solver.

Imported functions must be declared in a function declaration before they are referenced. This statement has the form

```
function name alias opt (domain-spec) opt type opt [ pipe litseq opt [ format fmt ] ] ;
```

in which name is the name of the function, and domain-spec amounts to a function prototype:
domain-spec:
domain-list
nonempty-domain-list , . . .
A domain-list is a (possibly empty, comma-separated) list of set expressions, asterisks (*'s), direction words (IN, OUT, or INOUT), direction words followed by set expressions, and iterated-domain-lists:
iterated-domain-list :
indexing (nonempty domain-list)
An iterated-domain-list is equivalent to one repetition of its domain-list for each member in the indexing set, and the domain of dummy variables appearing in the indexing extends over that domain-list. The direction words indicate which way information flows: into the function (IN), out of the function (OUT), or both, with IN the default. In a function invocation, OUT arguments are assigned values specified by the function at the end of the command invoking the function.

Omitting the optional (domain-spec) in the function declaration is the same as specifying (...). The function must be invoked with at least or exactly as many arguments as there are sets in the domain-spec (after iterated-domain-lists have been expanded), depending on whether or not the domain-spec ends with . . . AMPL checks that each argument corresponding to a set in the domain-list lies in that set. A * by itself in a domain-list signifies no domain checking for the corresponding argument.

A function whose return value is not of interest can be invoked with a call command:
call funcname (arglist);
Type can be symbolic or random or both; symbolic means the function returns a literal (string) value rather than a numeric value, and random indicates that the "function" may return
different values for the same arguments, i.e., AMPL should assume that each invocation of the function returns a different value.

The commands

```
load libnames opt ;
unload libnames opt ;
reload libnames opt ;
```

load, unload, or reload shared libraries (from which functions and table handlers are imported); libnames is a comma-separated list of library names. When at least one libname is mentioned in the load and unload commands, \$AMPLFUNC is modified to reflect the full pathnames of the currently loaded libraries. The reload command first unloads its arguments, then loads them. This can change the order of loaded libraries and affect the visibility of imported functions: the first name wins. With no arguments, load loads all the libraries currently in \$AMPLFUNC; unload unloads all currently loaded libraries, and reload reloads them (which is useful if some have been recompiled).

The keyword pipe indicates that this is a pipe function, which means AMPL should start a separate process for evaluating the function. Each time a function value is needed, AMPL writes a line of arguments to the function process, then reads a line containing the function value from the process. (Of course, this is only possible on systems that allow multiple processes.) A litseq is a sequence of one or more adjacent literals or parenthesized string expressions, which AMPL concatenates and passes to the operating system (i.e., to \$SHELL) as the description of the process to be invoked. In the absence of a litseq, AMPL passes a single literal, whose value is the name of the function. If the optional format fint is present, fint must be a format, suitable for printf, that tells AMPL how to format each line it sends to the function process. If no fint is specified, AMPL uses spaces to separate the arguments it passes to the pipe function.

For example:

```
ampl: function mean2 pipe "awk '{print ($1+$2)/2}'";
ampl: display mean2(1,2) + 1;
mean2(1, 2) + 1 = 2.5
```

The function mean2 is expected (by default) to return numeric values; AMPL will complain if it returns a string that does not represent a number.

The following functions are symbolic, to illustrate formatting and the passing of arguments.

```
ampl: function f1 symbolic pipe "awk '" '{printf "x%s\n", $1}' "'";
ampl: function g1 symbolic pipe 'awk 'r{printf "XX%S\n", $1}'/';
ampl: function cat symbolic pipe format ">>%s<<\n";
ampl: display f1(2/3);
f1(2/3) = x0.66666666666666667
ampl: display g1('abc');
g1('abc') = xXabc
ampl: display cat('some words');
cat('some words') = ">>'some words'<<"
```

The declaration of f 1 specifies a litseq of 3 literals, while g 1 specifies one literal; cat, having an empty litseq, is treated as though its litseq were 'cat'. The literals in each litseq are stripped of the quotes that enclose them, have one of each adjacent pair of these quotes removed, and have (backslash, newline) pairs changed to a single newline character; the results are concatenated to
produce the string passed to the operating system as the description of the process to be started. Thus for the four pipe functions above, the system sees the commands

```
awk '{print ($1+$2)/2}'
awk '{printf "x%s\n", $1}'
awk '{printf "XX%s\n", $1}'
cat
```

respectively. Function cat illustrates the optional format fmt phrase. If fmt results in a string that does not end in a newline, AMPL appends a newline character. If no fmt is given, each numeric argument is converted to the shortest decimal string that rounds to the argument value.

Caution: The line returned by a pipe function must be a complete line, i.e., must end with a newline character, and the pipe function process must flush its buffers to prevent deadlock. (Pipe functions do not work with most standard Unix programs, because they don't flush output at the end of each line.)

Imported functions may be invoked with conventional functional notation, as illustrated above. In addition, iterated arguments are allowed. More precisely, if f is an imported function, an invocation of f has the form f (arglist) in which arglist is as for the print and printf commands - a possibly empty, comma-separated list of expressions and iterated-arglists:

```
ampl: function mean pipe 'awk ''{x = 0\
    for(i = 1; i <= NF; i++) x += $i\
    printf "%.17g\n", x/NF}'M;
ampl: display mean({i in 1..100} i);
mean({i in 1 .. 100} (i)) = 50.5
ampl: display mean({i in 1..50}(i,i+50));
mean({i in 1 .. 50} (i, i + 50)) = 50.5
ampl: display mean({i in 0..90 by 10}({j in 1..10} i + j));
mean({i in 0.. 90 by 10} ({j in 1.. 10} (i + j))) = 50.5
```

The command
reset function name ${ }_{\text {opt }}$;
closes all pipe functions, causing them to be restarted if invoked again. If an function is named explicitly, only that function is closed.

A. 23 AMPL invocation

AMPL is most often invoked as a separate command in some operating system environment. When AMPL begins execution, the declarations, commands, and data sections described above (A.14) can be entered interactively. Depending on the operating system where AMPL is run, the invocation may be accompanied by one or more command-line arguments that set various properties and options and specify files to be read. These can be examined by typing the command

```
ampl '-?'
```

The initialization of some options may be determined by command-line arguments. The '- ?' argument produces a listing of these options and their command-line equivalents.

Sometimes it is convenient to have option settings remembered across AMPL sessions. Under operating systems from which AMPL can inherit environment variables as described above, the
options OPTIONS_IN, OPTIONS_INOUT, and OPTIONS_OUT provide one way to do this. If \$OPTIONS_IN is nonempty in the inherited environment, it names a file (meant to contain option commands) that AMPL reads before processing command-line arguments or entering its command environment. OPTIONS_INOUT is similar to OPTIONS_IN; AMPL reads file \$OPTIONS_INOUT (if nonempty) after \$OPTIONS_IN. At the end of execution, if \$OPTIONS_INOUT is nonempty, AMPL writes the current option settings to file \$OPTIONS_INOUT. If nonempty, \$OPTIONS_OUT is treated like \$OPTIONS_INOUT at the end of execution.

The command-line argument -v prints the version of the AMPL command being used; this is also available as option version.

The command-line option -R (recognized only as the first command-line option and not mentioned in the - ? listing of options) puts AMPL into a restricted 'server mode,' in which it declines to execute $c d$ and shell commands, forbids changes to options TMPDIR, ampl_include, and PATH (or the search path for the operating system being used), disallows pipe functions, and restricts names in option solver and file redirections to be alphanumeric (so they can only write to the current directory, which, on Unix systems at least, cannot be changed). By invoking AMPL from a shell script that suitably adjusts current directory and environment variables before it invokes ampl -R , one can control the directory in which AMPL operates and the initial environment that it sees.

On systems where imported function libraries can be used, the command-line option -ilibs specifies libraries of imported functions (A.22) and table handlers (A.13) that AMPL should load initially. If -ilibs does not appear, AMPL assumes -i\$AMPLFUNC. Here libs is a string, perhaps extending over several lines, with the name of one library or directory per line. For a directory, AMPL looks for library amplfunc. dll in that directory. If libs is empty and amplfunc. dll appears in the current directory, AMPL loads amplfunc.dll initially. If library ampltabl. all is installed in what the operating system considers to be a standard place, AMPL also tries to load this library, which can provide "standard" database handlers and functions.

Index

. . see arithmetic progression
; see semicolon statement terminator
"...", '...' see quotes
>>> <<< see error messages
\#, /*...*/ comment 10, 453
, **, exponentiation 111,456

+ , - in set data table 156-157, 475
$>, \gg$ output redirection $220,239,251,273$, 481
:= attribute 131, 398, 466, 468
= attribute see also defined variables
$=$ attribute $74,118-120,211,462,465$
\$ column name abbreviation 230
~ column name operator 177, 184-185, 188, 190, 478
- ? command-line argument 499-500
<...> data specification 196-197, 479
., default symbol 120, 153, 156-157, 228, 477
\{ \}, empty set $74,146,162,262,264,341$, 456-457, 462
* in option command 205, 481
< input redirection 163, 165, 481, 485
<<...>>, piecewise-linear expression 367, 369, 376, 380-382, 460
\% printf conversion character 239, 482
-> read/write status 189, 193, 478
<- read/write status 175, 177, 182, 193
<-> read/write status 193, 478
- standard input filename $165,283,485,495$
\& string concatenation operator 270, 459
: = versus = initial values 211
abs function $113,140,380,458$
Access database 170, 174-175, 178, 192, 194
Access filename extension, .mdb 199-200
Ackermann's function 126
acos function 113, 458
acosh function 113,458
active-set methods 279, 486
activity model 43
advertising model 21,450
aggregated model 55, 88
Ahuja, Ravindra K. 347
airline crew scheduling 362
Alatorre, Jaime 20
algebraic modeling language $x v i i$, xxi
alias function 458
ampl
command-line 203, 499
data prompt 144
ampl: prompt 5, 165, 204, 485
ampl? prompt 165, 204, 485
AMPL web page see www.ampl.com
ampl_include option 479
_ampl_time parameter 251, 496
AMPLFUNC option 498, 500
and operator 114,456
arc
declaration 334-341, 353, 467
loss along 326
argument see command-line argument arithmetic
expression 61, 76, 111-114, 456
functions, table of 113, 458
logical, set operators, table of 456
operators 456
operators, table of 112
progression 59, 75, 457
reduction operators 456
to logical conversion 123, 457
arity function 462, 464
Aronofsky, Julius S. 20
array see one-dimensional set, parameter
ASCII filename extension, . tab 201, 477
ASCII set 87,464
asin function 113,458
asinh function 113,458
assignable expression 185
assignment model 49-51, 53, 135, 330-333, 348
.astatus suffix 294-295
astatus_table option 294
atan, atan2 function 113, 458
atanh function 113, 458
attribute
$:=131,398,466,468$
$=74,118-120,211,462,465$
binary $117,122,131,441,465-466$
circular 83, 98, 146, 463
circular by 86,463
coeff 356, 362, 466
cover 361, 467
default 74, 119-120, 160-161, 462, 465-466, 468, 476-477
dimen 93, 96, 462
from 334, 336, 338, 341, 353, 361, 363, 467
integer 36, 116, 131, 438, 441, 465-466
obj $334,339,341,356,363,466$
ordered $83,98,146,463$
ordered by 86, 463
ordered, inheritance of 86,463
pipe 498
random 497
reversed 86,463
suffix 466, 469-470, 489
symbolic $123,465,476,497$
to $334,336,338,341,353,361,363,467$
verbose 200
auxiliary files, table of 488
bad_subscripts option 253
basic solution 287, 289-290, 292, 298, 473
Beale, E. M. L. xxi
Benders decomposition 301
Bentley, Jon L. xxi
Bertsekas, Dimitri P. 347
Beta function 459
bimatrix game 426, 433
binary filename extension, . bit 201, 477
binary attribute $117,122,131,441$, 465-466
bipartite graph 330
Bisschop, Johannes xxi
. bit binary filename extension 201, 477
Bixby, Robert E. xxi
blending
model 37-39
nonlinearity in 38
.body see constraint body
bounded variable complementarity 423-424
bounds on variables $10,14,17,32,35,130$, 139, 241-242, 276, 279, 466, 470-471, 486
Braess's paradox 414
break statement 266, 493
breakpoint see piecewise-linear expression built-in function see function built-in
table handler 174, 201
timing parameters, table of 496
by clause 75,457
card function 79, 98, 462, 464
cardinality restrictions 445
Cartesian product see cross product
caterer problem 347,350
Cauchy function 459
cd command 495
_cd current directory 479, 495, 500
ceil function 212, 237, 458
char function 459
check statement $46,56,117,465$
Cherry, Lorinda L. xxi
Chvátal, Vašek 20, 317
circular
attribute $83,98,146,463$
by attribute 86,463
close command 251, 481, 485
cmdprompt1, cmdprompt2 option 494
coeff attribute $356,362,466$
collections of
data columns, indexed 196
sets, indexed 100-104, 161-162
tables, indexed 193
column
key $170,172,175,178,180,183,193$
name, valid 171-172, 177, 185
column name
abbreviation, \$ 230
operator, ~ 177, 184-185, 188, 190, 478
comma separator in data 144
command see also statement
command mode see model mode
command
language 479-496
null 494
command
* in option 205, 481
cd 495
close 251, 481, 485
cont 495
csvdisplay 484
data 11, 143-144, 206, 214, 256, 473, 479
delete 213, 488
delete check 488
display $12,58,67,81,104,124$, 219-238, 482-484
drop 214, 489
end 204, 496
environ 490
exit 496
expand 13, 247-248, 492
fix 215, 489
include 255-256, 479
let 36, 210-212, 405, 491
load 402, 477, 498
model $11,206,214,256,479$
next 269, 495
objective 135-136, 206, 489
option 204, 481
print 238-239, 482-484
printf 124, 239-240, 261, 482-484
problem 301, 307, 311, 489
purge 213, 488
quit 5, 204, 214, 496
read 163, 484
read table $175,177,180,477$
redeclare 213,488
redeclare check 488
reload 498
remove 482
reset $17,214,481,490$
reset data $122,209-210,490$
reset options 205, 490
reset problem 491
restore 214,489
shell 214, 495
show 246, 491
skip 270, 495
solexpand 248, 492
solution 487
solve 206-207, 485-486
solve problem 315
step 268, 495
suffix 296, 299, 302
unfix 215, 489
unload 498
update data 209,491
write 487
write table 178, 186, 477
xref $213,247,492$
command-line
ampl 203, 499
argument, - ? 499-500
argument, -i 500
argument, -o 485
argument, -R 500
argument, -s 458
argument, -v 500
commands
stepping through 268-270, 495
table of 480
commands statement 256, 479
comment, \#, /*...*/ 10,453
comments in data 47, 453, 473
comparison operators see relational operators compl_warn option 487
complementarity
bounded variable 423-424
constraint 427-428, 469, 471, 487
constraint, suffixes for $428,431,471$
generic names and 431
presolve and 429
problem 420-423
complements operator 469
computed parameters 118-121
concatenation see string concatenation operator
concave functions 383, 393
conditional declaration see if indexing expression
conditional expression see logical expression, if-then-else
constant expression 455, 457, 461
constraint
body 35, 242, 280, 470
complementarity 427-428, 469, 471, 487
declaration $\mathrm{xv}, 2,5,9,16,137-139,340$, 461, 468-469
defining 386, 399, 467
double-inequality $32,139,470$
either/or 59
equality $21,30,130$
nonlinear 59, 140, 492
redundant 276-278
constraint declaration, to_come 356, 362, 468
cont command 495
continuation see line continuation
continue statement 266, 493
continuity assumption 38,391
control flow statements 492
conversion from
arithmetic to logical 123,457
number to string 271, 459
conversion characters, table of printf 483
convex functions $383,393,396$
cos function 113,458
cost functions, nonlinear 394
Cottle, Richard W. 432
Coullard, Collette xxi, 136, 141, 166, 287
cover attribute 361, 467
covering problem, set 362,364
CPLEX solver 36, 50, 208, 281
Cramer, Gary I. xxi
credit scoring model 386
crew scheduling, airline 362
cross product $97-98,456$
cross operator 98,456
csvdisplay command 484
ctime function 458
cut.mod, file 306
cutting-stock problem 41, 305, 364, 452

Dantzig, George B. xxi, 39, 52
. dat file see file
data reset see reset data command
data value, omitted see default symbol data
columns, indexed collections of 196
comma separator in 144
comments in 47, 453, 473
for indexed collection 101, 161
format 473-477
mode $143,206,256,479$
multidimensional list 148-151
multidimensional tabular 156-160
one-dimensional list 145-146
parameter 477
set 473-475
set and parameter 151-154
table, set and parameter 476
two-dimensional list 146-148
two-dimensional tabular 154-156
unformatted 163
validation $12,46,93,118$
value, default 160-161
data specification, <...> 196-197, 479
data command 11, 143-144, 206, 214, 256, 473, 479
database handler see table handler
data-model separation $7,11,74,143$
dataprompt1, dataprompt2 option 494
declaration see also statement
declaration
arc 334-341, 353, 467
constraint xv, 2, 5, 9, 16, 137-139, 340, 461, 468-469
node 334-340, 353, 468
objective 134-137, 470
parameter 8, 110-111, 465-466
problem 489
set $8,74,461-465$
table 174, 178, 180, 186, 477
variable 5, 8, 466-467
declaration
function 402, 497
to_come constraint 356, 362, 468
declarations, suffix 471
default read/write status see INOUT
default data value $160-161$
default symbol . 120, 153, 156-157, 228, 477
default
attribute $74,119-120,160-161,462$, 465-466, 468, 476-477
versus = initial values 119
defined variables 466-468
defining constraint $386,399,467$
delete
check command 488
command 213, 488
derivative 407
diet model 27-37, 39, 77-78, 135
integer solutions in 36, 439
diff operator 76, 98, 456-457
differentiability assumption 391
dimen attribute 93, 96, 462
directed network graph 320
. direction suffix 296
Dirkse, Steven P. 433
_display command 484
display
command $12,58,67,81,104,124$, 219-238, 482-484
formatting options 227-230
formatting options, table of 227
numeric options 232-238
numeric options, table of 232
Display set 87,464
display_1col option 63, 228, 231
display_eps option 235
display_precision option 233, 263, 406, 483
display_round option 234-235, 483
display_transpose option 229
display_width option 204, 229
displaying
indexing expression 224-227
parameters 220-224
sets 220
div operator 111, 456
double-inequality constraint $32,139,470$
drop command 214,489

Drud, Arne xxi
.dual see dual value
dual
value $17,22,40,66-67,162,243-245$, 259, 262, 266, 470, 482
variable 398
variables $162,243,468,472,485$
variables, initial values of $185,468,472$, 477, 486
dual_initial_guesses option 486
dummy index $31,47,79,92,94-95,99,138$, 184, 188, 190-191, 197, 455, 463
scope of 47,321
Dutta, Goutam 20
Dutton, John M. 20

EBCDIC set 87,464
economic
analysis 42, 415
equilibrium model 419, 422
eexit option 252
either/or constraint 59
Emlin, Grace R. xxi
empty
key specification 182
set, indexing over 82,146
string 205, 234, 252, 272
table entry 173,187
empty set $\} 74,146,162,262,264,341$, 456-457, 462
end effect 67, 379
end command 204, 496
environ command 490
environment
options 490
variables 205, 481
variables, table of 484
environment, Initial 316, 490
environments, named 316-317
equality constraint $21,30,130$
equilibrium stress model 388
Erikson, Warren 39
error messages $12,83,85,94,116,119,146$,
$160,207,211,224,252,338$
\escape sequences, printf 482
evaluation, order of $100,111,132,467,473$
Excel spreadsheet 174, 176, 196
Excel filename extension, .xls 199-200
exists operator $115,456-457$
exit command 496
exp function 113,458
expand command 13, 247-248, 492
expand_precision option 484
expand_round 484
Exponential function 459
exponentiation ${ }^{\wedge}$, ** 111,456
expression
arithmetic $61,76,111-114,456$
assignable 185
constant 455, 457, 461
indexing 9, 79-82, 99-100, 110, 138, 455
linear 132-134, 139, 383
logical 80, 99, 114-116, 455, 457
metacharacters, regular 460
nonlinear 114, 133, 400-403
regular 273, 460
set 455,457
simplification of $46,130,134,139$
string 194, 197, 273, 459
expression <<, ..>>, piecewise-linear 367, 369, 376, 380-382, 460

Fabian, Tibor 20
factorial 126
feasibility tolerance 281
feasible solutions 4, 35
Ferris, Michael C. 433
Fibonacci numbers 126
file inclusion see model, data, include, commands
file output see output redirection
file, temporary 485
file
blend.mod 38
cut2.mod 313
cut. dat 309
cut.mod 306
diet2. dat 34
diet. dat 33
diet.mod 32
dietu.dat 82
dietu. mod 78
econ2.mod 424
econ. dat 421
econmin.mod 420
econ.mod 423
econnl.mod 425
fence.mod 411
iocol1. mod 356
iocol2.mod 358
iorow.mod 355
minmax.mod 381
multic.mod 103
multi.dat 58
multi.mod 57
multmip1.dat 443
multmip1.mod 442
multmip3. dat 447
multmip3.mod 446
net1.mod, net1.dat 322
net1node.mod 335
net2. dat 325
net2.mod 324
net3. dat 327
net 3 . mod 326
net 3 node.mod 336
netasgn.mod 333
netfeeds.mod 344
netmax3.mod 339
netmax.mod 329
netmcol.mod 363
netmulti.mod 342
netshort.mod 331
netthru.mod 346
nltrans.mod, nltrans.dat 404
prod.dat 10
prod.mod 8
sched. dat 361
sched.mod 361
steel2.dat 14
steel3.mod, steel3.dat 15
steel4.dat 17
steel4.mod 16
steel.mod, steel.dat 11
steelp.dat 65
steelpl1. dat 374
steelpl1.mod 373
steelP.mod 64
steelT0.mod 59
steelT2.dat 85
steelT2.mod 84
steelT3. dat 102
steelT3.mod 101
steelT.mod, steelT.dat 62
transp2.mod 93
transp3.dat 95
transp3.mod 95
transp.dat 48
transpl1.mod 368
transpl2. dat 371
transpl2.mod 370
transp.mod 47
filename syntax $11,144,165,204,479$
filename

- standard input $165,283,485,495$
extension, . bit binary 201, 477
extension, .mdb Access 199-200
extension, .tab ASCII 201, 477
extension, . xls Excel 199-200
files, table of auxiliary 488
first function 84,463
Fisher, Marshall L. 317
fix command 215, 489
fixed
costs 440-444
variables 131, 241, 402
Fletcher, Roger 410
floating-point representation $76,87,144$, $233,235,263,271,279,453-454,483$
floor function 212, 457-458
flow see network flow
for statement 258-262, 493
forall operator 115, 456-457
Ford, Lester R. Jr. 347
formatting options
display 227-230
table of display 227
Fourer, Robert xxi, 20, 318, 384
from attribute $334,336,338,341,353,361$, 363, 467
Fulkerson, D. R. 347
function
abs $113,140,380,458$
acos 113, 458
acosh 113, 458
alias 458
arity 462, 464
asin 113, 458
asinh 113,458
atan, atan2 113, 458
atanh 113, 458
Beta 459
card 79, 98, 462, 464
Cauchy 459
ceil 212, 237, 458
char 459
cos 113, 458
ctime 458
exp 113, 458
Exponential 459
first 84, 463
floor 212,457-458
Gamma 459
gsub 273, 460
ichar 459
indexarity 462, 464
Irand224 459
last 84, 463
length 271,459
$\log , \log 10113,458$
match $271,285,460$
$\max 113,380,458$
member 463
$\min 113,140,458$
next 84-85, 463
nextw 84-85, 463
Normal, Normal01 209, 459
num, num0 460
ord, ord0 85,463
Poisson 459
precision 458
prev, prevw 83-84, 463
round 212,458
$\sin 113,458$
sinh 113,458
sprintf 271, 459, 483
sqrt 113,458
sub 273, 460
substr 271, 459
$\tan 113,458$
tanh 113, 458
time 458
trunc 212, 458
Uniform, Uniform01 459
function declaration 402, 497
functions
concave 383, 393
convex $383,393,396$
imported 497-499
of sets 83-85
of sets, table of 464
piecewise-linear 365, 379-384, 393, 395
separable 381,383
smooth 391, 400-402
table of arithmetic 113,458
table of random number 459
table of regular expression 459
table of rounding 212
table of string 459

Gamma function 459
Garille, Susan Garner 39
Gass, Saul I. 39
Gassmann, H. I. xxi
Gay, David M. 318
generic names 249, 291, 429, 492
and complementarity 431
table of 493
gentimes option 250
Gill, Philip E. 410
Gilmore-Gomory algorithm 305-306
global optimum 408
Glover, Fred 347
graph
bipartite 330
directed network 320
transitive closure of 462

Grosse, Eric H. xxi
gsub function 273, 460
gutter_width option 230

Haessler, Robert W. 318
Hager, W. W. 318
handler see table handler
_handler_lib 477
_HANDLERS 477
Hearn, D. W. 318
Hilal, Said S. 39
-i command-line argument 500
ichar function 459
IEEE arithmetic see floating-point representation
if indexing expression $138,338,341,362$, 460-461, 467
if-then-else
nested 266
operator $115,117,133,264,457$
statement 264-266, 493-494
.iis suffix 299
iisfind, iis_table option 299
imported functions 497-499
IN, INOUT suffix attribute 472
in operator 78, 98, 114, 455-457, 465
IN read/write status $174,177,180,182,186$, 478
include see also model, data
include
command 255-256, 479
search path 479
index see dummy index
indexarity function 462, 464
indexed
collection, data for 101,161
collections of data columns 196
collections of sets 100-104, 161-162
collections of tables 193
objectives 134
indexing
expression 9, 79-82, 99-100, 110, 138, 455
expression, displaying 224-227
expression, scope of $80,94-95,455-456$, 482
over empty set 82,146
indexing expression, if $138,338,341,362$, 460-461, 467
infeasibility in presolve 279
infeasible solutions 34, 299, 374
infinite
loop 262, 267
sets 86,463
Infinity 242, 276, 338, 456, 466
inheritance of ordered attribute 86,463

Initial

environment 316, 490
problem 311, 315, 489
initial values
of dual variables $185,468,472,477,486$
of variables $131,162,398,405,408-409$,
466, 471, 477, 486
initial values
:= versus = 211
default versus = 119
initialization, suffix 466, 469-470, 489
INOUT read/write status 186, 193, 195
input redirection, < 163, 165, 481, 485
input-output model 37, 42, 354-358
insertprompt option 268, 479
integer
program, relaxation of 309,448
programming xvi, 36, 437-438, 448-449
solution, rounding to $35,309,360,439$, 448
solutions in diet model 36, 439
solutions in network model 344
solutions in scheduling model 360
solutions in transportation model 51, 439-448
integer
attribute 36, 116, 131, 438, 441, 465-466
set 86, 463-464
integer_markers option 486
Integers set 87,464
inter operator 76, 98, 103, 456-457
interior point algorithm 287
intersection, set see inter
interval set 86, 463-464
Irand 224 function 459
irreducible infeasible subset 299
iterated operator see operator

Jacobs, Walter 347, 351
Johnson, Ellis L. 449

Kahan, Gerald 363
Kelly, Paul xxi
Kendrick, David A. 20
Kernighan, Mark D. xxi
key
column 170, 172, 175, 178, 180, 183, 193
specification, empty 182
keyword see reserved word
Klingman, Darwin 347
knapsack problem 23, 306, 451
Kontogiorgis, Spyros 384
Kostreva, Michael M. 449
Kuhn, Harold W. xxi
Kuip, C. A. C. xxi

Lagrange multiplier see dual variables
large scale optimization xvi
Lasdon, Leon 318, 414
last function 84,463
. 1b lower bound 35, 241-242, 279, 470, 486
.lb0, .lb1, . lb2 lower bound 279
least squares 388,412
length function 271, 459
Lenstra, Jan Karel xxi
less operator 111, 456
let command 36, 210-212, 405, 491
library see imported functions
Liebman, Judith 414
line continuation $\backslash 205,453$
linear
expression 132-134, 139, 383
program, network 319, 343, 353
programming xvi, $1-5,129$
linearity of costs, yield 38,393
linelim option 467
linked linear programs 55, 60
list data
multidimensional 148-151
one-dimensional 145-146
two-dimensional 146-148
literal
number $75,111,144,453-454$
set 74,454
string $74,144,453-454,473$
load command 402, 477, 498
local optimum 407-408
LOCAL suffix attribute 472
$\log , \log 10$ function 113,458
log_file option 251, 496
log_model, log_data option 252, 496
logical
arithmetic, set operators, table of 456
conversion, arithmetic to 123,457
expression 80, 99, 114-116, 455, 457
operators 114, 457
parameters 122-123
loop
infinite 262, 267
name 268, 494
nested 261, 267
loss in network flow 326, 336
Lowe, Todd xxi
lower bound
. 1b 35, 241-242, 279, 470, 486
.lb0,.lb1, .lb2 279

Magnanti, Thomas L. 347
marginal value see dual value
Marsten, Roy E. 384
match function $271,285,460$
mathematical programming $\mathrm{xv}-\mathrm{xvi}$
matrix see two-dimensional set, parameter
matrix generator xvii , xxi
max
function $113,380,458$
operator 114,456
maximize see objective declaration
maximum flow model 328-329, 337-339, 412
max-min objective 382
.mdb Access filename extension 199-200
Meeraus, Alexander xxi, 20
member, dummy see dummy index
member function 463
membership test see in, within
membership operators, set 78-79
memory use $88,97,448$
messages see error messages
metacharacters, regular expression 460

min

function $113,140,458$
operator 114,456
minimize see objective declaration
min-max objective 382
MINOS solver 6, 208, 281, 398
mixed-integer programming 441
.mod file see file
mod operator 111,456
model file see file
model
activity 43
advertising 21, 450
aggregated 55, 88
assignment $49-51,53,135,330-333,348$
blending 37-39
credit scoring 386
diet 27-37, 39, 77-78, 135
economic equilibrium 419, 422
equilibrium stress 388
input-output 37, 42, 354-358
maximum flow 328-329, 337-339, 412
mode $143,206,256,479,496$
multicommodity transportation 56-59, 450
multiperiod planning 67-69, 452
multiperiod production 59-63
network flow 319, 333-339, 416
nonlinear transportation 403-410
oil refinery $24-25$
piecewise-linear production 370-377
piecewise-linear transportation 366-369
production 6-12, 15, 420
production and transportation 63-67
scheduling 37, 359-362, 451
shortest path 329-330
steel production 2-7, 10-19
stress analysis 388
transportation 44-49, 52, 330-333
transshipment 319-327, 334-337, 347
model command $11,206,214,256,479$
model-data separation $7,11,74,143$
modeling language $x v i-x v i i i$
MPEC system 426
MPS file 486
multicommodity transportation model 56-59, 450
multidimensional
list data 148-151
tabular data 156-160
multiperiod planning model 67-69, 452
production model 59-63
multiple
objectives 134-137, 206, 240
solutions 6, 49, 137, 407
Murray, Walter 410
Murty, Katta G. 347
name
loop 268, 494
syntax 453
named
environments 316-317
problems 309-316
names
generic 249, 291, 429, 492
table of generic 493
Nash equilibrium 426, 433
Nemhauser, George L. 450
NEOS xx
nested loop 261, 267
nested if-then-else 266
net_in, net_out 334, 340, 469
network
flow, loss in 326, 336
flow model 319, 333-339, 416
graph, directed 320
linear program 319, 343, 353
model, integer solutions in 344
newline $144,453,473,498$
In newline in printf $239,261,482$
next
command 269, 495
function 84-85, 463
nextw function 84-85, 463
nl_permute option 487
Nocedal, Jorge 410
node declaration 334-340, 353, 468
non-existent data value see default symbol
nonlinear
constraint 59, 140, 492
cost functions 394
expression 114, 133, 400-403
programming xvi, 391-397, 403-410
transportation model 403-410
variables 397-400
nonlinearity in
blending 38
physical models 397
nonnegative variables $3,10,45,130,377$
Normal, Normal 01 function 209, 459
not
in operator 79,456
operator 114,456
within operator 79, 456
null command 494
num, num0 function 460
number representation see floating-point representation
number
literal $75,111,144,453-454$
to string, conversion from 271, 459
numbers, set of 75-76
numeric to logical conversion 457
numeric options, display 232-238

- o command-line argument 485
obj attribute $334,339,341,356,363,466$
objective 3 , 9
declaration 134-137, 470
function $\mathrm{xv}, 31,240,341$
max-min, min-max 382
objective function, to_come 362, 470
objective command 135-136, 206, 489
objective_precision option 484-485
objectives
indexed 134
multiple 134-137, 206, 240
ODBC table handler $169,174,194,198$
oil refinery model $24-25$
omit_zero_cols option 66, 232
omit_zero_rows option 50, 66, 231
omitted data value see default symbol
one-dimensional
list data 145-146
parameter 110
set 110,454
set data 473
O'Neill, Richard P. 411
operator
precedence $9,77,111-114,116,133,456$, 459
synonyms 454
operator
~ column name 177, 184-185, 188, 190, 478
\& string concatenation 270, 459
and 114, 456
complements 469
cross 98, 456
diff $76,98,456-457$
div 111, 456
exists $115,456-457$
forall 115, 456-457
if-then-else $115,117,133,264,457$
in $78,98,114,455-457,465$
inter 76, 98, 103, 456-457
less 111,456
max 114, 456
$\min 114,456$
$\bmod 111,456$
not 114,456
not in 79,456
not within 79,456
or 114,456
prod $74,114,456$
setof $98,272,457$
sum $74,113,456$
symdiff 76, 98, 456-457
union $76,98,103,456-457$
within 78, 93, 97-98, 114, 456-457, 462
operators
arithmetic 456
arithmetic reduction 456
logical 114, 457
relational 114,465
set 76-78
set membership 78-79
table of arithmetic 112
table of arithmetic, logical, set 456
tuple 98-100
optimal basis see basic solution
optimum
global 408
local 407-408
option
ampl_include 479
AMPLFUNC 498, 500
astatus_table 294
bad_subscripts 253
cmdprompt1, cmdprompt2 494
compl_warn 487
dataprompt1, dataprompt2 494
display_1col 63, 228, 231
display_eps 235
display_precision 233, 263, 406, 483
display_round 234-235, 483
display_transpose 229
display_width 204, 229
dual_initial_guesses 486
eexit 252
expand_precision 484
gentimes 250
gutter_width 230
iisfind,iis_table 299
insertprompt 268, 479
integer_markers 486
linelim 467
log_file 251, 496
log_model, log_data 252, 496
nl_permute 487
objective_precision 484-485
omit_zero_cols 66, 232
omit_zero_rows 50, 66, 231
pl_linearize 383
presolve 139, 278, 290
presolve_eps, presolve_epsmax 281
presolve_fixeps, presolve_fixepsmax 282
presolve_inteps, presolve_intepsmax 279
presolve_warnings 252, 282
print_precision 239, 482-483
print_round 239, 482-483
print_separator 238, 482
prompt1, prompt2 204, 494
randseed 122, 458
relax_integrality 215, 217, 309, 486
reset_initial_guesses 291, 297, 486
send_statuses 288
send_suffixes 486
SHELL 495
shell_env_file 495
show_stats 250, 275, 282
single_step 268
solution_precision $236,238,264$, 484, 486
solution_round 236, 238, 484, 486
solve_exitcode, solve_exitcode_max 285
solve_message 285
solve_result, solve_result_num 283-284
solve_result_table 283
solver 37, 207
solver_msg 260
sstatus_table 289
substout 399, 414, 467-468
times 250
TMPDIR 285, 485
var_bounds 279, 486
version 500
option command 204, 481
* in 205, 481
option-name pattern 481
options 204-205, 481
environment 490
options
display formatting 227-230
display numeric 232-238
table of display formatting 227
table of display numeric 232
options, reset 205,490
OPTIONS_IN, OPTIONS_OUT, OPTIONS_INOUT 490, 499
\$option value 460, 481
\$\$option default value 481
or operator 114, 456
ord, ord0 function 85,463
order of evaluation $100,111,132,467,473$
ordered sets $82-87,98,223,261,463-464$
ordered
attribute $83,98,146,463$
attribute, inheritance of 86, 463
by attribute 86,463
Orlin, James B. 347
OUT
read/write status $177,186,190,192,478$
suffix attribute 472
output redirection, >, >> 220, 239, 251, 273, 481
pairs
sets of ordered 91-92
slices of 93-96
subsets of 93-96
Pang, Jong-Shi 432-433
parameter
and set data table 476
data 477
data statement 475
data table 154
data template $147-148,150,475$
declaration 8, 110-111, 465-466
definition, recursive $120,122,465$
one-dimensional 110
two-dimensional 110
parameters
computed 118-121
displaying 220-224
logical 122-123
randomly generated 121-122, 209
restrictions on 116-118
symbolic 123-124, 323, 328
table of built-in timing 496
Pardalos, P. M. 318
PATH solver 422
pattern, option-name 481
penalty function 369-377, 385, 396
piecewise-linear 372, 375-376
Phillips, Nancy 347
physical models, nonlinearity in 397
_pid process ID 495
piecewise-linear
function at zero 367,376
functions 365, 379-384, 393, 395
penalty function $372,375-376$
production model 370-377
transportation model 366-369
piecewise-linear expression <<...>> 367, 369, 376, 380-382, 460
Pike, Ralph 411
pipe attribute 498
pl_linearize option 383
planning model, multiperiod 67-69, 452
Poisson function 459
pre status 276
precedence, operator 9, 77, 111-114, 116, 133, 456, 459
precision function 458
predefined words $74,112,454$
redefinition of 213, 454
presolve 60, 65, 207, 241, 275-282, 486
and complementarity 429
infeasibility in 279
presolve option 139, 278, 290
presolve_eps, presolve_epsmax option 281
presolve_fixeps, presolve_fixepsmax option 282
presolve_inteps, presolve_intepsmax option 279
presolve_warnings option 252, 282
prev, prevw function 83-84, 463
price, shadow see dual value
primal variables $243,398,485$
print command 238-239, 482-484
print_precision option 239, 482-483
print_round option 239, 482-483
print_separator option 238, 482
printf
command 124, 239-240, 261, 482-484
conversion character, \% 239, 482
conversion characters, table of 483
\ escape sequences 482
string quotes, \%q, \%Q 483
.priority suffix 296
problem see also model
problem
caterer 347, 350
complementarity 420-423
cutting-stock $41,305,364,452$
declaration 489
knapsack 23, 306, 451
set covering 362, 364
problem, Initial 311, 315, 489
problem command 301, 307, 311, 489
problems, named 309-316
prod operator $74,114,456$
production
and transportation model 63-67
model 6-12, 15, 420
model in algebraic form 7
model, multiperiod 59-63
model, piecewise-linear 370-377
programming
integer xvi, 36, 437-438, 448-449
linear xvi, $1-5,129$
mathematical $\mathrm{xv}-\mathrm{xvi}$
mixed-integer 441
nonlinear xvi, 391-397, 403-410
stochastic 69-71
prompt
ampl: 5, 165, 204, 485
ampl? $165,204,485$
ampl data 144
prompt1, prompt2 option 204, 494
purge command 213, 488
\%q, \%Q printf string quotes 483
qualified name see suffix
query, SQL 184, 199
quit command 5, 204, 214, 496
quotes $74,144,165,204-205,453,473$
-R command-line argument 500
random number
functions, table of 459
generator seed 122, 210, 458
random attribute 497
randomly generated parameters 121-122, 209
randseed option 122,458
.rc see reduced cost
read
command 163,484
table command $175,177,180,477$
reading files see model, data
reading scalar from table 182
read/write status
-> 189, 193, 478
<- 175, 177, 182, 193
<-> 193, 478
IN $174,177,180,182,186,478$
INOUT 186, 193, 195
OUT 177, 186, 190, 192, 478
Reals set 87, 464
recursive
parameter definition $120,122,465$
set definition 462
redeclare
check command 488
command 213, 488
redefinition of predefined words 213,454
redirection
>, >> output 220, 239, 251, 273, 481
< input $163,165,481,485$
reduced cost $17,22,40,67,243-245$
reduction operators, arithmetic 456
redundant constraint 276-278
regular expression 273,460
functions, table of 459
metacharacters 460
relational
operators 114, 465
table 170-171, 173, 178
.relax suffix 486
relax_integrality option 215, 217, 309, 486
relaxation of integer program 309, 448
reload command 498
remove command 482
repeat statement $262-264,493$
representation, floating-point $76,87,144$, $233,235,263,271,279,453-454,483$
reserved
word synonyms 454
words 74,112
words, table of 454
reset
command $17,214,481,490$
data command 122, 209-210, 490
options command 205,490
problem command 491
reset_initial_guesses option 291, 297, 486
restore command 214,489
restrictions on parameters 116-118
. result suffix 287
reversed attribute 86,463
reversible activities 377-379
Richton, Robert E. xxi
Rinnooy Kan, Alexander H. G. xxi
roll trim problem see cutting-stock problem
round function 212,458
rounding $76,87,233,237,263,271,279$, 454, 457, 483
functions, table of 212
to integer solution $35,309,360,439,448$
-s command-line argument 458
Saunders, Michael A. xxi
scalar from table, reading 182
scaling along arc see loss in network flow
scaling of variables 410
scheduling
airline crew 362
model 37, 359-362, 451
model, integer solutions in 360
Schrage, Linus 414
Schrijver, Alexander xxi, 450
scope see also dummy index
scope of
dummy index 47,321
indexing expression $80,94-95,455-456$, 482
script $18,179,195,255,304,485,495$
script
cut.run 308
diet.run 284
dietu.run 256
steelT.sa1 258
steelT.sa2 259
steelT.sa3 260
steelT.sa4 263
steelT.sa5 266
steelT.sa7 267
steelT.tab1 261
search path, include 479
seed, random number generator 122,210 , 458
Seip, Robert H. xxi
self-reference 117
semicolon statement terminator 9, 144, 204, 256, 453, 473, 494
send_statuses option 288
send_suffixes option 486
sensitivity analysis $194,256,262,304$
separable functions 381,383
separator in data, comma 144
set difference see diff, symdiff
set intersection see inter
set of sets see indexed collection
set
and parameter data 151-154
and parameter data table 476
arithmetic, logical operators, table of 456
covering problem 362,364
data 473-475
data, one-dimensional 473
data statement 474
data table 474
data template $147,150,474$
data, two-dimensional 475
declaration 8, 74, 461-465
definition, recursive 462
expression 455, 457
literal 74, 454
member rules 454
membership operators 78-79
of numbers 75-76
one-dimensional 110, 454
operators 76-78
two-dimensional 110, 455
set
ASCII 87, 464
data table, + , - in 156-157, 475
Display 87, 464
EBCDIC 87,464
integer 86, 463-464
Integers 87, 464
interval 86, 463-464
Reals 87, 464
setof operator $98,272,457$
sets
displaying 220
functions of 83-85
indexed collections of 100-104, 161-162
infinite 86, 463
of ordered pairs 91-92
of tuples $96-98$
ordered 82-87, 98, 223, 261, 463-464
unordered 73-74
shadow price see dual value
shell command 214, 495
SHELL option 495
shell script 500
shell_env_file option 495
Shepheard, J. R. xxi
shortest path model 329-330
show command 246, 491
show_stats option 250, 275, 282
side
constraint $342,345,363$
variable 343
significant figures 233
simplex algorithm xvi, xxi, 279, 287, 344, 486
simplification of expression see also presolve
simplification of expression $46,130,134$, 139
sin function 113,458
single_step option 268
single-step mode 495
singularity 406-407
sinh function 113, 458
Sinha, Lakshman P. xxi
skip command 270,495
.slack suffix 81, 241-242, 244, 472
slice $58,91,95,97,147-149,455$
slices of pairs 93-96
slope see piecewise-linear expression
smooth functions 391, 400-402
SNOPT solver 48, 208
social accounting matrix 415
soft constraints see penalty function
solexpand command 248, 492
solution, basic $287,289-290,292,298,473$
solution command 487
solution_precision option 236, 238, 264, 484, 486
solution_round option 236, 238, 484, 486
solutions
feasible 4,35
infeasible 34, 299, 374
multiple $6,49,137,407$
solve
command 206-207, 485-486
problem command 315
solve_exitcode, solve_exitcode_max option 285
solve_message option 285
solve_result, solve_result_num option 283-284
solve_result_table option 283
_solve_time parameter 251, 496
solver
CPLEX 36, 50, 208, 281
MINOS 6, 208, 281, 398
PATH 422

SNOPT 48, 208
status suffixes 286, 288
solver status, .status 473
solver option 37,207
solver_msg option 260
solver-defined suffixes 298-304
space requirement see memory use sparse
set 111
subset 94
spreadsheet 238
Excel 174, 176, 196
sprintf function 271, 459, 483
SQL query 184, 199
SQL SELECT statement 199
sqret function 113, 458
square system 422, 425, 427, 487
.sstatus suffix 290, 292, 295, 473
sstatus_table option 289
s.t. see constraint declaration
standard input filename, - 165, 283, 485, 495
starting guess see initial values of variables statement see also command, declaration statement
parameter data 475
set data 474
terminator, semicolon 9, 144, 204, 256, 453, 473, 494
statement
break 266, 493
check 46, 56, 117, 465
commands 256, 479
continue 266, 493
for 258-262, 493
if-then-else 264-266, 493-494
repeat 262-264, 493
statements, control flow 492
.status
solver status 473
suffix 295
steel production model 2-7, 10-19
step command 268, 495
stepping through commands 268-270, 495
stochastic programming 69-71
Stone, Richard E. 432
stress analysis model 388
string
conversion from number to 271,459
expression 194, 197, 273, 459
functions, table of 459
literal 74, 144, 453-454, 473
string
concatenation operator, \& 270, 459
quotes, \%q, \%Q printf 483
sub function 273,460
subject to see constraint declaration
subscript $8,16,110,455$
subset test see in, within
subsets of pairs 93-96
substitution of variables 399-400, 414
substout option 399, 414, 467-468
substr function 271, 459
such-that condition see logical condition suffix declarations 471
suffix
.astatus 294-295
attribute, IN, INOUT, OUT, LOCAL 304, 472
. direction 296
.iis 299
.priority 296
.relax 486
.result 287
.slack 81, 241-242, 244, 472
.sstatus 290, 292, 295, 473
.status 295
suffix
attribute 466, 469-470, 489
command 296, 299, 302
initialization 466, 469-470, 489
suffixes
for complementarity constraint 428,431 , 471
solver status 286, 288
solver-defined 298-304
table of 472
user-defined 296-297, 302
Suhl, Uwe H. 449
sum of squares 388,412
sum operator 74, 113, 456
symbolic parameters $123-124,323,328$
symbolic attribute $123,465,476,497$
symdiff operator $76,98,456-457$
symmetric difference see symdiff
synonyms, table of 454
syntax error see error messages
. tab ASCII filename extension 201, 477 table
declaration $174,178,180,186,477$
entry, empty 173,187
handler 169, 197-202, 477
handler, built-in 174, 201
handler, ODBC $169,174,194,198$
of arithmetic functions 113,458
of arithmetic, logical, set operators 456
of arithmetic operators 112
of auxiliary files 488
of built-in timing parameters 496
of commands 480
of environment variables 484
of functions of sets 464
of generic names 493
of random number functions 459
of regular expression functions 459
of reserved words 454
of rounding functions 212
of string functions 459
of suffixes 472
of synonyms 454
parameter data 154
reading scalar from 182
relational $170-171,173,178$
set data 474
table
of display formatting options 227
of display numeric options 232
of printf conversion characters 483
transposition (tr) 32, 155, 157, 228-229, 475-476
tables, indexed collections of 193
tabular data
multidimensional 156-160
two-dimensional 154-156
tan function 113,458
tanh function 113, 458
Tayyabkhan, Michael T. 20
template
parameter data $147-148,150,475$
set data $147,150,474$
temporary file 485
time function 458
times option 250
timing parameters, table of built-in 496
TMPDIR option 285,485
to attribute $334,336,338,341,353,361$, 363, 467
to_come
constraint declaration $356,362,468$
objective function 362,470
tolerance, feasibility 281
(tr), table transposition 32, 155, 157, 228-229, 475-476
traffic flow see maximum flow model
transitive closure of graph 462
transportation model 44-49, 52, 330-333
integer solutions in 51, 439-448
multicommodity 56-59, 450
nonlinear 403-410
piecewise-linear 366-369
production and 63-67
transposition see table transposition
transshipment model 319-327, 334-337, 347
trunc function 212, 458
tuple operators 98-100
tuples 73, 91, 96, 146
sets of 96-98
two-dimensional
list data 146-148
parameter 110
set 110,455
set data 475
tabular data 154-156
. ub upper bound 35, 240-242, 279, 470, 486
.ub0, .ub1, .ub2 upper bound 279
unfix command 215,489
unformatted data 163
Unicode 453, 459
Uniform, Uniform01 function 459
union operator $76,98,103,456-457$
unload command 498
unordered sets 73-74
unspecified data value see default symbol
until condition 262, 267, 494
update data command 209, 491
user-defined suffixes 296-297, 302
-v command-line argument 500
valid column name $171-172,177,185$
validation, data $12,46,93,118$
Van Wyk, Chris J. xxi
Vanderbei, Robert J. 20
var_bounds option 279, 486
variable
data $162,398,477$
declaration 5, 8, 466-467
variables $\mathrm{xv}, 2,129-132$
bounds on $10,14,17,32,35,130,139$, 241-242, 276, 279, 466, 470-471, 486
defined 466-468
dual 162, 243, 468, 472, 485
environment 205, 481
fixed 131, 241, 402
initial values of $131,162,398,405$, 408-409, 466, 471, 477, 486
initial values of dual $185,468,472,477$, 486
nonlinear 397-400
nonnegative $3,10,45,130,377$
primal $243,398,485$
scaling of 410
substitution of 399-400, 414
zero-one 439-448
vector see one-dimensional set, parameter verbose attribute 200
version option 500
viewing data see display command Vignali, Juliana xxi
Vukhac, Thong xxi

Waren, Allan 414
while condition 262, 267, 494
white space $144,453,473$
wild card * 205, 481
Wilkins, Bert 411
Williams, H. Paul 67
Williard, Mark 411
within operator $78,93,97-98,114$, 456-457, 462
Wolsey, Laurence A. 450
words
predefined $74,112,454$
reserved 74,112
Wright
Margaret H. xxi, 410
Stephen J. 410
write
command 487
table command 178, 186, 477
www. ampl. com xviii, xx, 19, 453
.xls Excel filename extension 199-200
xref command 213, 247, 492

zero

piecewise-linear function at 367,376 suppression 231-232
zero-one programming see integer programming
zero-one variables 439-448
zero-or-minimum restrictions 444

[^0]: "ODBC" "connection-spec" "external-table-spec" opt "verbose" opt

