
10
__

Database Access

The structure of indexed data in AMPL has much in common with the structure of the
relational tables widely used in database applications. The AMPL table declaration lets
you take advantage of this similarity to define explicit connections between sets, parame-
ters, variables, and expressions in AMPL, and relational database tables maintained by
other software. The read table and write table commands subsequently use
these connections to import data values into AMPL and to export data and solution values
from AMPL.

The relational tables read and written by AMPL reside in files whose names and loca-
tions you specify as part of the table declaration. To work with these files, AMPL
relies on table handlers , which are add-ons that can be loaded as needed. Handlers may
be provided by the vendors of solvers or database software. AMPL has built-in handlers
for two simple relational table formats useful for experimentation, and the AMPL web site
provides a handler that works with the widely available ODBC interface.

This chapter begins by showing how AMPL entities can be put into correspondence
with the columns of relational tables, and how the same correspondences can be
described and implemented by use of AMPL’s table declaration. Subsequent sections
present basic features for reading and writing external relational tables, additional rules
for handling complications that arise when reading and writing the same table, and mech-
anisms for writing a series of tables or columns and for reading spreadsheet data. The
final section briefly describes some standard and built-in handlers.

10.1 General principles of data correspondence

Consider the following declarations from diet.mod in Chapter 2, defining the set
FOOD and three parameters indexed over it:

169

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

170 DATABASE ACCESS CHAPTER 10

set FOOD;
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

A relational table giving values for these components has four columns:

FOOD cost f_min f_max
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10

The column headed FOOD lists the members of the AMPL set also named FOOD. This is
the table’s key column; entries in a key column must be unique, like a set’s members, so
that each key value identifies exactly one row. The column headed cost gives the val-
ues of the like-named parameter indexed over set FOOD; here the value of
cost["BEEF"] is specified as 3.19, cost["CHK"] as 2.59, and so forth. The
remaining two columns give values for the other two parameters indexed over FOOD.

The table has eight rows of data, one for each set member. Thus each row contains all
of the table’s data corresponding to one member — one food, in this example.

In the context of database software, the table rows are often viewed as data records,
and the columns as fields within each record. Thus a data entry form has one entry field
for each column. A form for the diet example (from Microsoft Access) might look like
Figure 10-1. Data records, one for each table row, can be entered or viewed one at a time
by using the controls at the bottom of the form.
__
__

Figure 10-1: Access data entry form.
__

SECTION 10.1 GENERAL PRINCIPLES OF DATA CORRESPONDENCE 171

Parameters are not the only entities indexed over the set FOOD in this example. There
are also the variables:

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

and assorted result expressions that may be displayed:

ampl: model diet.mod;
ampl: data diet2a.dat;

ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032

ampl: display Buy, Buy.rc, {j in FOOD} Buy[j]/f_max[j];
: Buy Buy.rc Buy[j]/f_max[j] :=
BEEF 5.36061 8.88178e-16 0.536061
CHK 2 1.18884 0.2
FISH 2 1.14441 0.2
HAM 10 -0.302651 1
MCH 10 -0.551151 1
MTL 10 -1.3289 1
SPG 9.30605 0 0.930605
TUR 2 2.73162 0.2
;

All of these can be included in the relational table for values indexed over FOOD:

FOOD cost f_min f_max Buy BuyRC BuyFrac
BEEF 3.19 2 10 5.36061 8.88178e-16 0.536061
CHK 2.59 2 10 2 1.18884 0.2
FISH 2.29 2 10 2 1.14441 0.2
HAM 2.89 2 10 10 -0.302651 1
MCH 1.89 2 10 10 -0.551151 1
MTL 1.99 2 10 10 -1.3289 1
SPG 1.99 2 10 9.30605 0 0.930605
TUR 2.49 2 10 2 2.73162 0.2

Where the first four columns would typically be read into AMPL from a database, the last
three are results that would be written back from AMPL to the database. We have
invented the column headings BuyRC and BuyFrac, because the AMPL expressions for
the quantities in those columns are typically not valid column headings in database man-
agement systems. The table declaration provides for input/output and naming distinc-
tions such as these, as subsequent sections will show.

Other entities of diet.mod are indexed over the set NUTR of nutrients: parameters
n_min and n_max, dual prices and other values associated with constraint Diet, and
expressions involving these. Since nutrients are entirely distinct from foods, however,
the values indexed over nutrients go into a separate relational table from the one for
foods. It might look like this:

172 DATABASE ACCESS CHAPTER 10

NUTR n_min n_max NutrDual
A 700 20000 0
B1 700 20000 0
B2 700 20000 0.404585
C 700 20000 0
CAL 16000 24000 0
NA 0 50000 -0.00306905

As this example suggests, any model having more than one indexing set will require more
than one relational table to hold its data and results. Databases that consist of multiple
tables are a standard feature of relational data management, to be found in all but the sim-
plest ‘‘flat file’’ database packages.

Entities indexed over the same higher-dimensional set have a similar correspondence
to a relational table, but with one key column for each dimension. In the case of Chapter
4’s steelT.mod, for example, the following parameters and variables are indexed over
the same two-dimensional set of product-time pairs:

set PROD; # products
param T > 0; # number of weeks

param market {PROD,1..T} >= 0;
param revenue {PROD,1..T} >= 0;
var Make {PROD,1..T} >= 0;
var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t];

A corresponding relational table thus has two key columns, one containing members of
PROD and the other members of 1..T, and then a column of values for each parameter
and variable. Here’s an example, corresponding to the data in steelT.dat:

PROD TIME market revenue Make Sell
bands 1 6000 25 5990 6000
bands 2 6000 26 6000 6000
bands 3 4000 27 1400 1400
bands 4 6500 27 2000 2000
coils 1 4000 30 1407 307
coils 2 2500 35 1400 2500
coils 3 3500 37 3500 3500
coils 4 4200 39 4200 4200

Each ordered pair of items in the two key columns is unique in this table, just as these
pairs are unique in the set {PROD,1..T}. The market column of the table implies,
for example, that market["bands",1] is 6000 and that market["coils",3] is
3500. From the first row, we can also see that revenue["bands",1] is 25,
Make["bands",1] is 5990, and Sell["bands",1] is 6000. Again various names
from the AMPL model are used as column headings, except for TIME, which must be
invented to stand for the expression 1..T. As in the previous example, the column head-
ings can be any identifiers acceptable to the database software, and the table declara-
tion will take care of the correspondences to AMPL names (as explained below).

SECTION 10.1 GENERAL PRINCIPLES OF DATA CORRESPONDENCE 173

AMPL entities that have sufficiently similar indexing generally fit into the same rela-
tional table. We could extend the steelT.mod table, for instance, by adding a column
for values of

var Inv {PROD,0..T} >= 0;

The table would then have the following layout:

PROD TIME market revenue Make Sell Inv
bands 0 10
bands 1 6000 25 5990 6000 0
bands 2 6000 26 6000 6000 0
bands 3 4000 27 1400 1400 0
bands 4 6500 27 2000 2000 0
coils 0 0
coils 1 4000 30 1407 307 1100
coils 2 2500 35 1400 2500 0
coils 3 3500 37 3500 3500 0
coils 4 4200 39 4200 4200 0

We use ‘‘.’’ here to mark table entries that correspond to values not defined by the
model and data. There is no market["bands",0] in the data for this model, for
example, although there does exist a value for Inv["bands",0] in the results. Data-
base packages vary in their handling of ‘‘missing’’ entries of this sort.

Parameters and variables may also be indexed over a set of pairs that is read as data
rather than being constructed from one-dimensional sets. For instance, in the example of
transp3.mod from Chapter 3, we have:

set LINKS within {ORIG,DEST};
param cost {LINKS} >= 0; # shipment costs per unit
var Trans {LINKS} >= 0; # actual units to be shipped

A corresponding relational table has two key columns corresponding to the two compo-
nents of the indexing set LINKS, plus a column each for the parameter and variable that
are indexed over LINKS:

ORIG DEST cost Trans
GARY DET 14 0
GARY LAF 8 600
GARY LAN 11 0
GARY STL 16 800
CLEV DET 9 1200
CLEV FRA 27 0
CLEV LAF 17 400
CLEV LAN 12 600
CLEV STL 26 0
CLEV WIN 9 400
PITT FRA 24 900
PITT FRE 99 1100
PITT STL 28 900
PITT WIN 13 0

174 DATABASE ACCESS CHAPTER 10

The structure here is the same as in the previous example. There is a row in the table
only for each origin-destination pair that is actually in the set LINKS, however, rather
than for every possible origin-destination pair.

10.2 Examples of table-handling statements

To transfer information between an AMPL model and a relational table, we begin with
a table declaration that establishes the correspondence between them. Certain details
of this declaration depend on the software being used to create and maintain the table. In
the case of the four-column table of diet data defined above, some of the possibilities are
as follows:

• For a Microsoft Access table in a database file diet.mdb:

table Foods IN "ODBC" "diet.mdb":
FOOD <- [FOOD], cost, f_min, f_max;

• For a Microsoft Excel range from a workbook file diet.xls:

table Foods IN "ODBC" "diet.xls":
FOOD <- [FOOD], cost, f_min, f_max;

• For an ASCII text table in file Foods.tab:

table Foods IN:
FOOD <- [FOOD], cost, f_min, f_max;

Each table declaration has two parts. Before the colon, the declaration provides gen-
eral information. First comes the table name — Foods in the examples above — which
will be the name by which the table is known within AMPL. The keyword IN states that
the default for all non-key table columns will be read-only; AMPL will read values in
from these columns and will not write out to them.

Details for locating the table in an external database file are provided by the character
strings such as "ODBC" and "diet.mdb", with the AMPL table name (Foods) provid-
ing a default where needed:

• For Microsoft Access, the table is to be read from database file
diet.mdb using AMPL’s ODBC handler. The table’s name within the data-
base file is taken to be Foods by default.

• For Microsoft Excel, the table is to be read from spreadsheet file
diet.xls using AMPL’s ODBC handler. The spreadsheet range containing
the table is taken to be Foods by default.

• Where no details are given, the table is read by default from the ASCII text
file Foods.tab using AMPL’s built-in text table handler.

SECTION 10.2 EXAMPLES OF TABLE-HANDLING STATEMENTS 175

__
__

Figure 10-2: Access relational table.
__

In general, the format of the character strings in the table declaration depends upon the
table handler being used. The strings required by the handlers used in our examples are
described briefly in Section 10.7, and in detail in online documentation for specific table
handlers.

After the colon, the table declaration gives the details of the correspondence
between AMPL entities and relational table columns. The four comma-separated entries
correspond to four columns in the table, starting with the key column distinguished by
surrounding brackets [...]. In this example, the names of the table columns (FOOD,
cost, f_min, f_max) are the same as the names of the corresponding AMPL compo-
nents. The expression FOOD <- [FOOD] indicates that the entries in the key column
FOOD are to be copied into AMPL to define the members of the set FOOD.

The table declaration only defines a correspondence. To read values from columns
of a relational table into AMPL sets and parameters, it is necessary to give an explicit

read table

command.
Thus, if the data values were in an Access relational table like Figure 10-2, the

table declaration for Access could be used together with the read table command
to read the members of FOOD and values of cost, f_min and f_max into the corre-
sponding AMPL set and parameters:

176 DATABASE ACCESS CHAPTER 10

__
__

Figure 10-3: Excel worksheet range.
__

ampl: model diet.mod;
ampl: table Foods IN "ODBC" "diet.mdb":
ampl? FOOD <- [FOOD], cost, f_min, f_max;
ampl: read table Foods;
ampl: display cost, f_min, f_max;
: cost f_min f_max :=
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10
;

(The display command confirms that the database values were read as intended.) If
the data values were instead in an Excel worksheet range like Figure 10-3, the values
would be read in the same way, but using the table declaration for Excel:

ampl: model diet.mod;
ampl: table Foods IN "ODBC" "diet.xls":
ampl? FOOD <- [FOOD], cost, f_min, f_max;
ampl: read table Foods;

SECTION 10.2 EXAMPLES OF TABLE-HANDLING STATEMENTS 177

And if the values were in a file Foods.tab containing a text table like this:

ampl.tab 1 3
FOOD cost f_min f_max
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10

the declaration for a text table would be used:

ampl: model diet.mod;
ampl: table Foods IN: FOOD <- [FOOD], cost, f_min, f_max;
ampl: read table Foods;

Because the AMPL table name Foods is the same in all three of these examples, the
read table command is the same for all three: read table Foods. In general, the
read table command only specifies the AMPL name of the table to be read. All infor-
mation about what is to be read, and how it is to be handled, is taken from the named
table’s definition in the table declaration.

To create the second (7-column) relational table example of the previous section, we
could use a pair of table declarations:

table ImportFoods IN "ODBC" "diet.mdb" "Foods":
FOOD <- [FOOD], cost, f_min, f_max;

table ExportFoods OUT "ODBC" "diet.mdb" "Foods":
FOOD <- [FOOD], Buy, Buy.rc ˜ BuyRC,
{j in FOOD} Buy[j]/f_max[j] ˜ BuyFrac;

or a single table declaration combining the input and output information:

table Foods "ODBC" "diet.mdb": [FOOD] IN, cost IN,
f_min IN, f_max IN, Buy OUT, Buy.rc ˜ BuyRC OUT,
{j in FOOD} Buy[j]/f_max[j] ˜ BuyFrac OUT;

These examples show how the AMPL table name (such as ExportFoods) may be dif-
ferent from the name of the corresponding table within the external file (as indicated by
the subsequent string "Foods"). A number of other useful options are also seen here:
IN and OUT are associated with individual columns of the table, rather than with the
whole table; [FOOD] IN is used as an abbreviation for FOOD <- [FOOD]; columns of
the table are associated with the values of variables Buy and expressions Buy.rc and
Buy[j]/f_max[j]; Buy.rc ̃ BuyRC and {j in FOOD} Buy[j]/f_max[j] ̃
BuyFrac associate an AMPL expression (to the left of the ˜ operator) with a database
column heading (to the right).

To write meaningful results back to the Access database, we need to read all of the
diet model’s data, then solve, and then give a write table command. Here’s how it

178 DATABASE ACCESS CHAPTER 10

all might look using separate table declarations to read and write the Access table
Foods:

ampl: model diet.mod;
ampl: table ImportFoods IN "ODBC" "diet.mdb" "Foods":
ampl? FOOD <- [FOOD], cost, f_min, f_max;
ampl: table Nutrs IN "ODBC" "diet.mdb": NUTR <- [NUTR],
ampl? n_min, n_max;
ampl: table Amts IN "ODBC" "diet.mdb": [NUTR, FOOD], amt;
ampl: read table ImportFoods;
ampl: read table Nutrs;
ampl: read table Amts;
ampl: solve;
ampl: table ExportFoods OUT "ODBC" "diet.mdb" "Foods":
ampl? FOOD <- [FOOD],
ampl? Buy, Buy.rc ˜ BuyRC,
ampl? {j in FOOD} Buy[j]/f_max[j] ˜ BuyFrac;
ampl: write table ExportFoods;

and here is an alternative using a single declaration to both read and write Foods:

ampl: model diet.mod;
ampl: table Foods "ODBC" "diet.mdb":
ampl? [FOOD] IN, cost IN, f_min IN, f_max IN,
ampl? Buy OUT, Buy.rc ˜ BuyRC OUT,
ampl? {j in FOOD} Buy[j]/f_max[j] ˜ BuyFrac OUT;
ampl: table Nutrs IN "ODBC" "diet.mdb":
ampl? NUTR <- [NUTR], n_min, n_max;
ampl: table Amts IN "ODBC" "diet.mdb": [NUTR, FOOD], amt;
ampl: read table Foods;
ampl: read table Nutrs;
ampl: read table Amts;
ampl: solve;
ampl: write table Foods;

Either way, the Access table Foods would end up having three additional columns, as
seen in Figure 10-4.

The same operations are handled similarly for other types of database files. In gen-
eral, the actions of a write table command are determined by the previously declared
AMPL table named in the command, and by the status of the external file associated with
the AMPL table through its table declaration. Depending on the circumstances, the
write table command may create a new external file or table, overwrite an existing
table, overwrite certain columns within an existing table, or append columns to an exist-
ing table.

The table declaration is the same for multidimensional AMPL entities, except that
there must be more than one key column specified between brackets [and]. For the
steel production example discussed previously, the correspondence to a relational table
could be set up like this:

SECTION 10.2 EXAMPLES OF TABLE-HANDLING STATEMENTS 179

__
__

Figure 10-4: Access relational table with output columns.
__

table SteelProd "ODBC" "steel.mdb":
[PROD, TIME], market IN, revenue IN,
Make OUT, Sell OUT, Inv OUT;

Here the key columns PROD and TIME are not specified as IN. This is because the
parameters to be read in, market and revenue, are indexed in the AMPL model over
the set {PROD, 1..T}, whose membership would be specified by use of other, simpler
tables. The read table SteelProd command merely uses the PROD and TIME
entries of each database row to determine the pair of indices (subscripts) that are to be
associated with the market and revenue entries in the row.

Our transportation example also involves a relational table for two-dimensional enti-
ties, and the associated table declaration is similar:

table TransLinks "ODBC" "trans.xls" "Links":
LINKS <- [ORIG, DEST], cost IN, Trans OUT;

The difference here is that LINKS, the AMPL set of pairs over which cost and Trans
are indexed, is part of the data rather than being determined from simpler sets or parame-
ters. Thus we write LINKS <- [ORIG, DEST], to request that pairs from the key
columns be read into LINKS at the same time that the corresponding values are read into
cost. This distinction is discussed further in the next section.

As you can see from even our simple examples so far, table statements tend to be
cumbersome to type interactively. Instead they are usually placed in AMPL programs, or
scripts, which are executed as described in Chapter 13. The read table and write
table statements may be included in the scripts as well. You can define a table and

180 DATABASE ACCESS CHAPTER 10

then immediately read or write it, as seen in some of our examples, but a script is often
more readable if the complex table statements are segregated from the statements that
read and write the tables.

The rest of this chapter will concentrate on table statements. Complete sample
scripts and Access or Excel files for the diet, production, and transportation examples can
be obtained from the AMPL web site.

10.3 Reading data from relational tables

To use an external relational table for reading only, you should employ a table dec-
laration that specifies a read/write status of IN. Thus it should have the general form

table table-name IN string-list opt :
key-spec, data-spec, data-spec, ... ;

where the optional string-list is specific to the database type and access method being
used. (In the interest of brevity, most subsequent examples do not show a string-list.)
The key-spec names the key columns, and the data-spec gives the data columns. Data
values are subsequently read from the table into AMPL entities by the command

read table table-name ;

which determines the values to be read by referring to the table declaration that defined
table-name.

Reading parameters only

To assign values from data columns to like-named AMPL parameters, it suffices to
give a bracketed list of key columns and then a list of data columns. The simplest case,
where there is only one key column, is exemplified by

table Foods IN: [FOOD], cost, f_min, f_max;

This indicates that the relational table has four columns, comprising a key column FOOD
and data columns cost, f_min and f_max. The data columns are associated with
parameters cost, f_min and f_max in the current AMPL model. Since there is only
one key column, all of these parameters must be indexed over one-dimensional sets.

When the command

read table Foods

is executed, the relational table is read one row at a time. A row’s entry in the key col-
umn is interpreted as a subscript to each of the parameters, and these subscripted parame-
ters are assigned the row’s entries from the associated data columns. For example, if the
relational table is

SECTION 10.3 READING DATA FROM RELATIONAL TABLES 181

FOOD cost f_min f_max
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10

processing the first row assigns the values 3.19 to parameter cost[’BEEF’], 2 to
f_min[’BEEF’], and 10 to f_max[’BEEF’]; processing the second row assigns
2.59 to cost[’CHK’], 2 to f_min[’CHK’], and 10 to f_max[’CHK’]; and so
forth through the six remaining rows.

At the time that the read table command is executed, AMPL makes no assump-
tions about how the parameters are declared; they need not be indexed over a set named
FOOD, and indeed the members of their indexing sets may not yet even be known. Only
later, when AMPL first uses each parameter in some computation, does it check the
entries read from key column FOOD to be sure that each is a valid subscript for that
parameter.

The situation is analogous for multidimensional parameters. The name of each data
column must also be the name of an AMPL parameter, and the dimension of the
parameter’s indexing set must equal the number of key columns. For example, when two
key columns are listed within the brackets:

table SteelProd IN: [PROD, TIME], market, revenue;

the listed data columns, market and revenue, must correspond to AMPL parameters
market and revenue that are indexed over two-dimensional sets.

When read table SteelProd is executed, each row’s entries in the key columns
are interpreted as a pair of subscripts to each of the parameters. Thus if the relational
table has contents

PROD TIME market revenue
bands 1 6000 25
bands 2 6000 26
bands 3 4000 27
bands 4 6500 27
coils 1 4000 30
coils 2 2500 35
coils 3 3500 37
coils 4 4200 39

processing the first row will assign 6000 to market[’bands’,1] and 25 to
revenue[’bands’,1]; processing the second row will assign 6000 to
market[’bands’,2] and 26 to revenue[’bands’,2]; and so forth through all
eight rows. The pairs of subscripts given by the key column entries must be valid for
market and revenue when the values of these parameters are first needed by AMPL,
but the parameters need not be declared over sets named PROD and TIME. (In fact, in the

182 DATABASE ACCESS CHAPTER 10

model from which this example is taken, the parameters are indexed by {PROD, 1..T}
where T is a previously defined parameter.)

Since a relational table has only one collection of key columns, AMPL applies the
same subscripting to each of the parameters named by the data columns. These parame-
ters are thus usually indexed over the same AMPL set. Parameters indexed over similar
sets may also be accommodated in one database table, however, by leaving blank any
entries in rows corresponding to invalid subscripts. The way in which a blank entry is
indicated is specific to the database software being used.

Values of unindexed (scalar) parameters may be supplied by a relational table that has
one row and no key columns, so that each data column contains precisely one value. The
corresponding table declaration has an empty key-spec, []. For example, to read a
value for the parameter T that gives the number of periods in steelT.mod, the table
declaration is

table SteelPeriods IN: [], T;

and the corresponding relational table has one column, also named T, whose one entry is
a positive integer.

Reading a set and parameters

It is often convenient to read the members of a set from a table’s key column or
columns, at the same time that parameters indexed over that set are read from the data
columns. To indicate that a set should be read from a table, the key-spec in the table
declaration is written in the form

set-name <- [key-col-spec, key-col-spec, ...]

The <- symbol is intended as an arrow pointing in the direction that the information is
moved, from the key columns to the AMPL set.

The simplest case involves reading a one-dimensional set and the parameters indexed
over it, as in this example for diet.mod:

table Foods IN: FOOD <- [FoodName], cost, f_min, f_max;

When the command read table Foods is executed, all entries in the key column
FoodName of the relational table are read into AMPL as members of the set FOOD, and
the entries in the data columns cost, f_min and f_max are read into the like-named
AMPL parameters as previously described. If the key column is named FOOD like the
AMPL set, the appropriate table declaration becomes

table Foods IN: FOOD <- [FOOD], cost, f_min, f_max;

In this special case only, the key-spec can also be written in the abbreviated form
[FOOD] IN.

An analogous syntax is employed for reading a multidimensional set along with
parameters indexed over it. In the case of transp3.mod, for instance, the table dec-
laration could be:

SECTION 10.3 READING DATA FROM RELATIONAL TABLES 183

table TransLinks IN: LINKS <- [ORIG, DEST], cost;

When read table TransLinks is executed, each row of the table provides a pair of
entries from key columns ORIG and DEST. All such pairs are read into AMPL as mem-
bers of the two-dimensional set LINKS. Finally, the entries in column cost are read
into parameter cost in the usual way.

As in our previous multidimensional example, the names in brackets need not corre-
spond to sets in the AMPL model. The bracketed names serve only to identify the key
columns. The name to the left of the arrow is the only one that must name a previously
declared AMPL set; moreover, this set must have been declared to have the same dimen-
sion, or arity, as the number of key columns.

It makes sense to read the set LINKS from a relational table, because LINKS is
specifically declared in the model in a way that leaves the corresponding data to be read
separately:

set ORIG;
set DEST;
set LINKS within {ORIG,DEST};
param cost {LINKS} >= 0;

By contrast, in the similar model transp2.mod, LINKS is defined in terms of two
one-dimensional sets:

set ORIG;
set DEST;
set LINKS = {ORIG,DEST};
param cost {LINKS} >= 0;

and in transp.mod, no named two-dimensional set is defined at all:

set ORIG;
set DEST;
param cost {ORIG,DEST} >= 0;

In these latter cases, a table declaration would still be needed for reading parameter
cost, but it would not specify the reading of any associated set:

table TransLinks IN: [ORIG, DEST], cost;

Separate relational tables would instead be used to provide members for the one-
dimensional sets ORIG and DEST and values for the parameters indexed over them.

When a table declaration specifies an AMPL set to be assigned members, its list of
data-specs may be empty. In that case only the key columns are read, and the only action
of read table is to assign the key column values as members of the specified AMPL
set. For instance, with the statement

table TransLinks IN: LINKS <- [ORIG, DEST];

a subsequent read table statement would cause just the values for the set LINKS to be
read, from the two key columns in the corresponding database table.

184 DATABASE ACCESS CHAPTER 10

Establishing correspondences

An AMPL model’s set and parameter declarations do not necessarily correspond in all
respects to the organization of tables in relevant databases. Where the difference is sub-
stantial, it may be necessary to use the database’s query language (often SQL) to derive
temporary tables that have the structure required by the model; an example is given in the
discussion of the ODBC handler later in this chapter. A number of common, simple dif-
ferences can be handled directly, however, through features of the table declaration.

Differences in naming are perhaps the most common. A table declaration can asso-
ciate a data column with a differently named AMPL parameter by use of a data-spec of
the form param-name ˜ data-col-name. Thus, for example, if table Foods were instead
defined by

table Foods IN:
[FOOD], cost, f_min ˜ lowerlim, f_max ˜ upperlim;

the AMPL parameters f_min and f_max would be read from data columns lowerlim
and upperlim in the relational table. (Parameter cost would be read from column
cost as before.)

A similarly generalized form, index ˜ key-col-name, can be used to associate a kind of
dummy index with a key column. This index may then be used in a subscript to the
optional param-name in one or more data-specs. Such an arrangement is useful in a
number of situations where the key column entries do not exactly correspond to the sub-
scripts of the parameters that are to receive table values. Here are three common cases.

Where a numbering of some kind in the relational table is systematically different
from the corresponding numbering in the AMPL model, a simple expression involving a
key column index can translate from the one numbering scheme to the other. For exam-
ple, if time periods were counted from 0 in the relational table data rather than from 1 as
in the model, an adjustment could be made in the table declaration as follows:

table SteelProd IN: [p ˜ PROD, t ˜ TIME],
market[p,t+1] ˜ market, revenue[p,t+1] ˜ revenue;

In the second case, where AMPL parameters have subscripts from the same sets but in
different orders, key column indexes must be employed to provide a correct index order.
If market is indexed over {PROD, 1..T} but revenue is indexed over {1..T,
PROD}, for example, a table declaration to read values for these two parameters should
be written as follows:

table SteelProd IN: [p ˜ PROD, t ˜ TIME],
market, revenue[t,p] ˜ revenue;

Finally, where the values for an AMPL parameter are divided among several database
columns, key column indexes can be employed to describe the values to be found in each
column. For instance, if the revenue values are given in one column for "bands" and
in another column for "coils", the corresponding table declaration could be written
like this:

SECTION 10.3 READING DATA FROM RELATIONAL TABLES 185

table SteelProd IN: [t ˜ TIME],
revenue["bands",t] ˜ revbands,
revenue["coils",t] ˜ revcoils;

It is tempting to try to shorten declarations of these kinds by dropping the ˜ data-col-
name, to produce, say,

table SteelProd IN:
[p ˜ PROD, t ˜ TIME], market, revenue[t,p]; # ERROR

This will usually be rejected as an error, however, because revenue[t,p] is not a
valid name for a relational table column in most database software. Instead it is neces-
sary to write

table SteelProd IN:
[p ˜ PROD, t ˜ TIME], market, revenue[t,p] ˜ revenue;

to indicate that the AMPL parameters revenue[t,p] receive values from the column
revenue of the table.

More generally, a ˜ synonym will have to be used in any situation where the AMPL
expression for the recipient of a column’s data is not itself a valid name for a database
column. The rules for valid column names tend to be the same as the rules for valid com-
ponent names in AMPL models, but they can vary in details depending on the database
software that is being used to create and maintain the tables.

Reading other values

In a table declaration used for input, an assignable AMPL expression may appear
anywhere that a parameter name would be allowed. An expression is assignable if it can
be assigned a value, such as by placing it on the left side of := in a let command.

Variable names are assignable expressions. Thus a table declaration can specify
columns of data to be read into variables, for purposes of evaluating a previously stored
solution or providing a good initial solution for a solver.

Constraint names are also assignable expressions. Values ‘‘read into a constraint’’ are
interpreted as initial dual values for some solvers, such as MINOS.

Any variable or constraint name qualified by an assignable suffix is also an assignable
expression. Assignable suffixes include the predefined .sstatus and .relax as well
as any user-defined suffixes. For example, if the diet problem were changed to have inte-
ger variables, the following table declaration could help to provide useful information
for the CPLEX solver (see Section 14.3):

table Foods IN: FOOD IN,
cost, f_min, f_max, Buy, Buy.priority ˜ prior;

An execution of read table Foods would supply members for set FOOD and values
for parameters cost, f_min and f_max in the usual way, and would also assign initial
values and branching priorities to the Buy variables.

186 DATABASE ACCESS CHAPTER 10

10.4 Writing data to relational tables

To use an external relational table for writing only, you should employ a table dec-
laration that specifies its read/write status to be OUT. The general form of such a declara-
tion is

table table-name OUT string-list opt :
key-spec, data-spec, data-spec, ... ;

where the optional string-list is specific to the database type and access method being
used. (Again, most subsequent examples do not include a string-list.) AMPL expression
values are subsequently written to the table by the command

write table table-name ;

which uses the table declaration that defined table-name to determine the information
to be written.

A table declaration for writing specifies an external file and possibly a relational
table within that file, either explicitly in the string-list or implicitly by default rules. Nor-
mally the named external file or table is created if it does not exist, or is overwritten oth-
erwise. To specify that instead certain columns are to be replaced or are to be added to a
table, the table declaration must incorporate one or more data-specs that have
read/write status IN or INOUT, as discussed in Section 10.5. A specific table handler
may also have its own more detailed rules for determining when files and tables are mod-
ified or overwritten, as explained in its documentation.

The key-specs and data-specs of table declarations for writing external tables super-
ficially resemble those for reading. The range of AMPL expressions allowed when writ-
ing is much broader, however, including essentially all set-valued and numeric-valued
expressions. Moreover, whereas the table rows to be read are those of some existing
table, the rows to be written must be determined from AMPL expressions in some part of
a table declaration. Specifically, rows to be written can be inferred either from the
data-specs, using the same conventions as in display commands, or from the key-spec.
Each of these alternatives employs a characteristic table syntax as described below.

Writing rows inferred from the data specifications

If the key-spec is simply a bracketed list of the names of key columns,

[key-col-name, key-col-name, ...]

the table declaration works much like the display command. It determines the
external table rows to be written by taking the union of the indexing sets stated or implied
in the data-specs. The format of the data-spec list is the same as in display, except
that all of the items listed must have the same dimension.

In the simplest case, the data-specs are the names of model components indexed over
the same set:

table Foods OUT: [FoodName], f_min, Buy, f_max;

SECTION 10.4 WRITING DATA TO RELATIONAL TABLES 187

When write table Foods is executed, it creates a key column FoodName and data
columns f_min, Buy, and f_max. Since the AMPL components corresponding to the
data columns are all indexed over the AMPL set FOOD, one row is created for each mem-
ber of FOOD. In a representative row, a member of FOOD is written to the key column
FoodName, and the values of f_min, Buy, and f_max subscripted by that member are
written to the like-named data columns. For the data used in the diet example, the result-
ing relational table would be:

FoodName f_min Buy f_max
BEEF 2 5.36061 10
CHK 2 2 10
FISH 2 2 10
HAM 2 10 10
MCH 2 10 10
MTL 2 10 10
SPG 2 9.30605 10
TUR 2 2 10

Tables corresponding to higher-dimensional sets are handled analogously, with the num-
ber of bracketed key-column names listed in the key-spec being equal to the dimension of
the items in the data-spec. Thus a table containing the results from steelT.mod could
be defined as

table SteelProd OUT: [PROD, TIME], Make, Sell, Inv;

Because Make and Sell are indexed over {PROD,1..T}, while Inv is indexed over
{PROD,0..T}, a subsequent write table SteelProd command would produce a
table with one row for each member of the union of these sets:

PROD TIME Make Sell Inv
bands 0 . . 10
bands 1 5990 6000 0
bands 2 6000 6000 0
bands 3 1400 1400 0
bands 4 2000 2000 0
coils 0 . . 0
coils 1 1407 307 1100
coils 2 1400 2500 0
coils 3 3500 3500 0
coils 4 4200 4200 0

Two rows are empty in the columns for Make and Sell, because ("bands",0) and
("coils",0) are not members of the index sets of Make and Sell. We use a ‘‘.’’
here to indicate the empty table entries, but the actual appearance and handling of empty
entries will vary depending on the database software being used.

If this form is applied to writing suffixed variable or constraint names, such as the
dual and slack values related to the constraint Diet:

table Nutrs OUT: [Nutrient],
Diet.lslack, Diet.ldual, Diet.uslack, Diet.udual; # ERROR

188 DATABASE ACCESS CHAPTER 10

a subsequent write table Nutrs command is likely to be rejected, because names
with a ‘‘dot’’ in the middle are not allowed as column names by most database software:

ampl: write table Nutrs;
Error executing "write table" command:

Error writing table Nutrs with table handler ampl.odbc:
Column 2’s name "Diet.lslack" contains non-alphanumeric

character ’.’.

This situation requires that each AMPL expression be followed by the operator ˜ and a
corresponding valid column name for use in the relational table:

table Nutrs OUT: [Nutrient],
Diet.lslack ˜ lb_slack, Diet.ldual ˜ lb_dual,
Diet.uslack ˜ ub_slack, Diet.udual ˜ ub_dual;

This says that the values represented by Diet.lslack should be placed in a column
named lb_slack, the values represented by Diet.ldual should be placed in a col-
umn named lb_dual, and so forth. With the table defined in this way, a write
table Nutrs command produces the intended relational table:

Nutrient lb_slack lb_dual ub_slack ub_dual
A 1256.29 0 18043.7 0
B1 336.257 0 18963.7 0
B2 0 0.404585 19300 0
C 982.515 0 18317.5 0
CAL 3794.62 0 4205.38 0
NA 50000 0 0 -0.00306905

The ˜ can also be used with unsuffixed names, if it is desired to assign the dabatase col-
umn a name different from the corresponding AMPL entity.

More general expressions for the values in data columns require the use of dummy
indices, in the same way that they are used in the data-list of a display command.
Since indexed AMPL expressions are rarely valid column names for a database, they
should generally be followed by ˜ data-col-name to provide a valid name for the corre-
sponding relational table column that is to be written. To write a column servings
containing the number of servings of each food to be bought and a column percent
giving the amount bought as a percentage of the maximum allowed, for example, the
table declaration could be given as either

table Purchases OUT: [FoodName],
Buy ˜ servings, {j in FOOD} 100*Buy[j]/f_max[j] ˜ percent;

or

table Purchases OUT: [FoodName],
{j in FOOD} (Buy[j] ˜ servings,

100*Buy[j]/f_max[j] ˜ percent);

Either way, since both data-specs give expressions indexed over the AMPL set FOOD, the
resulting table has one row for each member of that set:

SECTION 10.4 WRITING DATA TO RELATIONAL TABLES 189

FoodName servings percent
BEEF 5.36061 53.6061
CHK 2 20
FISH 2 20
HAM 10 100
MCH 10 100
MTL 10 100
SPG 9.30605 93.0605
TUR 2 20

The expression in a data-spec may also use operators like sum that define their own
dummy indices. Thus a table of total production and sales by period for steelT.mod
could be specified by

table SteelTotal OUT: [TIME],
{t in 1..T} (sum {p in PROD} Make[p,t] ˜ Made,

sum {p in PROD} Sell[p,t] ˜ Sold);

As a two-dimensional example, a table of the amounts sold and the fractions of demand
met could be specified by

table SteelSales OUT: [PROD, TIME], Sell,
{p in PROD, t in 1..T} Sell[p,t]/market[p,t] ˜ FracDemand;

The resulting external table would have key columns PROD and TIME, and data columns
Sell and FracDemand.

Writing rows inferred from a key specification

An alternative form of table declaration specifies that one table row is to be written
for each member of an explicitly specified AMPL set. For the declaration to work in this
way, the key-spec must be written as

set-spec -> [key-col-spec, key-col-spec, ...]

In contrast to the arrow <- that points from a key-column list to an AMPL set, indicating
values to be read into the set, this form uses an arrow -> that points from an AMPL set to
a key column list, indicating information to be written from the set into the key columns.

An explicit expression for the row index set is given by the set-spec, which can be the
name of an AMPL set, or any AMPL set-expression enclosed in braces { }. The key-col-
specs give the names of the corresponding key columns in the database. Dummy indices,
if needed, can appear either with the set-spec or the key-col-specs, as we will show.

The simplest case of this form involves writing database columns for model compo-
nents indexed over the same one-dimensional set, as in this example for diet.mod:

table Foods OUT: FOOD -> [FoodName], f_min, Buy, f_max;

When write table Foods is executed, a table row is created for each member of the
AMPL set FOOD. In that row, the set member is written to the key column FoodName,
and the values of f_min, Buy, and f_max subscripted by the set member are written to

190 DATABASE ACCESS CHAPTER 10

the like-named data columns. (For the data used in our diet example, the resulting table
would be the same as for the FoodName table given previously in this section.) If the
key column has the same name, FOOD, as the AMPL set, the appropriate table declara-
tion becomes

table Foods OUT: FOOD -> [FOOD], f_min, Buy, f_max;

In this special case only, the key-spec can also be written in the abbreviated form
[FOOD] OUT.

The use of ˜ with AMPL names and suffixed names is governed by the considerations
previously described, so that the example of diet slack and dual values would be written

table Nutrs OUT: NUTR -> [Nutrient],
Diet.lslack ˜ lb_slack, Diet.ldual ˜ lb_dual,
Diet.uslack ˜ ub_slack, Diet.udual ˜ ub_dual;

and write table Nutrs would give the same table as previously shown.
More general expressions for the values in data columns require the use of dummy

indices. Since the rows to be written are determined from the key-spec, however, the
dummies are also defined there (rather than in the data-specs as in the alternative form
above). To specify a column containing the amount of a food bought as a percentage of
the maximum allowed, for example, it is necessary to write 100*Buy[j]/f_max[j],
which in turn requires that dummy index j be defined. The definition may appear either
in a set-spec of the form { index-list in set-expr }:

table Purchases OUT: {j in FOOD} -> [FoodName],
Buy[j] ˜ servings, 100*Buy[j]/f_max[j] ˜ percent;

or in a key-col-spec of the form index ˜ key-col-name:

table Purchases OUT: FOOD -> [j ˜ FoodName],
Buy[j] ˜ servings, 100*Buy[j]/f_max[j] ˜ percent;

These two forms are equivalent. Either way, as each row is written, the index j takes the
key column value, which is used in interpreting the expressions that give the values for
the data columns. For our example, the resulting table, having key column FoodName
and data columns servings and percent, is the same as previously shown. Simi-
larly, the previous example of the table SteelTotal could be written as either

table SteelTotal OUT: {t in 1..T} -> [TIME],
sum {p in PROD} Make[p,t] ˜ Made,
sum {p in PROD} Sell[p,t] ˜ Sold;

or

table SteelTotal OUT: {1..T} -> [t ˜ TIME],
sum {p in PROD} Make[p,t] ˜ Made,
sum {p in PROD} Sell[p,t] ˜ Sold;

The result will have a key column TIME containing the integers 1 through T, and data
columns Made and Sold containing the values of the two summations. (Notice that

SECTION 10.5 READING AND WRITING THE SAME TABLE 191

since 1..T is a set-expression, rather than the name of a set, it must be included in
braces to be used as a set-spec.)

Tables corresponding to higher-dimensional sets are handled analogously, with the
number of key-col-specs listed in brackets being equal to the dimension of the set-spec.
Thus a table containing the results from steelT.mod could be defined as

table SteelProd OUT:
{PROD, 1..T} -> [PROD, TIME], Make, Sell, Inv;

and a subsequent write table SteelProd would produce a table of the form

PROD TIME Make Sell Inv
bands 1 5990 6000 0
bands 2 6000 6000 0
bands 3 1400 1400 0
bands 4 2000 2000 0
coils 1 1407 307 1100
coils 2 1400 2500 0
coils 3 3500 3500 0
coils 4 4200 4200 0

This result is not quite the same as the table produced by the previous SteelProd
example, because the rows to be written here correspond explicitly to the members of the
set {PROD, 1..T}, rather than being inferred from the indexing sets of Make, Sell,
and Inv. In particular, the values of Inv["bands",0] and Inv["coils",0] do
not appear in this table.

The options for dummy indices in higher dimensions are the same as in one dimen-
sion. Thus our example SteelSales could be written either using dummy indices
defined in the set-spec:

table SteelSales OUT:
{p in PROD, t in 1..T} -> [PROD, TIME],
Sell[p,t] ˜ sold, Sell[p,t]/market[p,t] ˜ met;

or with dummy indices added to the key-col-specs:

table SteelSales OUT:
{PROD,1..T} -> [p ˜ PROD, t ˜ TIME],
Sell[p,t] ˜ sold, Sell[p,t]/market[p,t] ˜ met;

If dummy indices happen to appear in both the set-spec and the key-col-specs, ones in the
key-col-specs take precedence.

10.5 Reading and writing the same table

To read data from a relational table and then write results to the same table, you can
use a pair of table declarations that reference the same file and table names. You may
also be able to combine these declarations into one that specifies some columns to be read

192 DATABASE ACCESS CHAPTER 10

and others to be written. This section gives examples and instructions for both of these
possibilities.

Reading and writing using two table declarations

A single external table can be read by one table declaration and later written by
another. The two table declarations follow the rules for reading and writing given
above.

In this situation, however, one usually wants write table to add or rewrite
selected columns, rather than overwriting the entire table. This preference can be com-
municated to the AMPL table handler by including input as well as output columns in the
table declaration that is to be used for writing. Columns intended for input to AMPL
can be distinguished from those intended for output to the external table by specifying a
read/write status column by column (rather than for the table as a whole).

As an example, an external table for diet.mod might consist of columns cost,
f_min and f_max containing input for the model, and a column Buy containing the
results. If this is maintained as a Microsoft Access table named Diet within a file
diet.mdb, the table declaration for reading data into AMPL could be

table FoodInput IN "ODBC" "diet1.mdb" "Diet":
FOOD <- [FoodName], cost, f_min, f_max;

The corresponding declaration for writing the results would have a different AMPL table-
name but would refer to the same Access table and file:

table FoodOutput "ODBC" "diet1.mdb" "Diet":
[FoodName], cost IN, f_min IN, Buy OUT, f_max IN;

When read table FoodInput is executed, only the three columns listed in the
table FoodInput declaration are read; if there is an existing column named Buy, it is
ignored. Later, when the problem has been solved and write table FoodOutput is
executed, only the one column that has read/write status OUT in the table FoodOut-
put declaration is written to the Access table, while the table’s other columns are left
unmodified.

Although details may vary with the database software used, the general convention is
that overwriting of an entire existing table or file is intended only when all data columns
in the table declaration have read/write status OUT. Selective rewriting or addition of
columns is intended otherwise. Thus if our AMPL table for output had been declared

table FoodOutput "ODBC" "diet1.mdb" "Diet":
[FoodName], Buy OUT;

then all of the data columns in Access table Diet would have been deleted by write
table FoodOutput, but the alternative

table FoodOutput "ODBC" "diet1.mdb" "Diet":
[FoodName], Buy;

SECTION 10.6 INDEXED COLLECTIONS OF TABLES AND COLUMNS 193

would have only overwritten the column Buy, as in the example we originally gave, since
there is a data column (namely Buy itself) that does not have read/write status OUT. (The
default, when no status is given, is INOUT.)

Reading and writing using the same table declaration

In many cases, all of the information for both reading and writing an external table
can be specified in the same table declaration. The key-spec may use the arrow <- to
read contents of the key columns into an AMPL set, -> to write members of an AMPL set
into the key columns, or <-> to do both. A data-spec may specify read/write status IN
for a column that will only be read into AMPL, OUT for a column that will only be written
out from AMPL, or INOUT for a column that will be both read and written.

A read table table-name command reads only the key or data columns that are
specified in the declaration of table-name as being IN or INOUT. A write table
table-name command analogously writes to only the columns that are specified as OUT or
INOUT.

As an example, the declarations defining FoodInput and FoodOutput above
could be replaced by

table Foods "ODBC" "diet1.mdb" "Diet":
FOOD <- [FoodName], cost IN, f_min IN, Buy OUT, f_max IN;

A read table Foods would then read only from key column FoodName and data
columns cost, f_min and f_max. A later write table Foods would write only to
the column Buy.

10.6 Indexed collections of tables and columns

In some circumstances, it is convenient to declare an indexed collection of tables, or
to define an indexed collection of data columns within a table. This section explains how
indexing of these kinds can be specified within the table declaration.

To illustrate indexed collections of tables, we present a script (Chapter 13) that auto-
matically solves a series of scenarios stored separately. To illustrate indexed collections
of columns, we show how a two-dimensional spreadsheet table can be read.

All of our examples of these features make use of AMPL’s character-string expres-
sions to generate names for series of files, tables, or columns. For more on string expres-
sions, see Sections 13.7 and A.4.2.

Indexed collections of tables

AMPL table declarations can be indexed in much the same way as sets, parameters,
and other model components. An optional {indexing-expr} follows the table-name:

table table-name {indexing-expr} opt string-list opt : ...

194 DATABASE ACCESS CHAPTER 10

__
__

Figure 10-5: Access database with tables of sensitivity analysis.
__

One table is defined for each member of the set specified by the indexing-expr. Individ-
ual tables in this collection are denoted in the usual way, by appending a bracketed sub-
script or subscripts to the table-name.

As an example, the following declaration defines a collection of AMPL tables indexed
over the set of foods in diet.mod, each table corresponding to a different database table
in the Access file DietSens.mdb:

table DietSens {j in FOOD}
OUT "ODBC" "DietSens.mdb" ("Sens" & j):

[Food], f_min, Buy, f_max;

Following the rules for the standard ODBC table handler, the Access table names are
given by the third item in the string-list, the string expression ("Sens" & j). Thus
the AMPL table DietSens["BEEF"] is associated with the Access table SensBEEF,
the AMPL table DietSens["CHK"] is associated with the Access table SensCHK, and
so forth. The following AMPL script uses these tables to record the optimal diet when
there is a two-for-the-price-of-one sale on each of the foods:

for {j in FOOD} {
let cost[j] := cost[j] / 2;
solve;
write table DietSens[j];
let cost[j] := cost[j] * 2;

}

SECTION 10.6 INDEXED COLLECTIONS OF TABLES AND COLUMNS 195

__
__

Figure 10-6: Alternate Access table for sensitivity analysis.
__

For the data in diet2a.dat, the set FOOD has eight members, so eight tables are writ-
ten in the Access database, as seen in Figure 10-5. If instead the table declaration were
to give a string expression for the second string in the string-list, which specifies the
Access filename:

table DietSens {j in FOOD}
OUT "ODBC" ("DietSens" & j & ".mdb"):

[Food], f_min, Buy, f_max;

then AMPL would write eight different Access database files, named
DietSensBEEF.mdb, DietSensCHK.mdb, and so forth, each containing a single
table named (by default) DietSens. (These files must have been created before the
write table commands are executed.)

A string expression can be used in a similar way to make every member of an indexed
collection of AMPL tables correspond to the same Access table, but with a different data-
col-name for the optimal amounts:

table DietSens {j in FOOD} "ODBC" "DietSens.mdb":
[Food], Buy ˜ ("Buy" & j);

Then running the script shown above will result in the Access table of Figure 10-6. The
AMPL tables in this case were deliberately left with the default read/write status, INOUT.
Had the read/write status been specified as OUT, then each write table would have
overwritten the columns created by the previous one.

196 DATABASE ACCESS CHAPTER 10

__
__

Figure 10-7: Two-dimensional AMPL table in Excel.
__

Indexed collections of data columns

Because there is a natural correspondence between data columns of a relational table
and indexed collections of entities in an AMPL model, each data-spec in a table decla-
ration normally refers to a different AMPL parameter, variable, or expression. Occasion-
ally the values for one AMPL entity are split among multiple data columns, however.
Such a case can be handled by defining a collection of data columns, one for each mem-
ber of a specified indexing set.

The most common use of this feature is to read or write two-dimensional tables. For
example, the data for the parameter

param amt {NUTR,FOOD} >= 0;

from diet.mod might be represented in an Excel spreadsheet as a table with nutrients
labeling the rows and foods the columns (Figure 10-7). To read this table using AMPL’s
external database features, we must regard it as having one key column, under the head-
ing NUTR, and data columns headed by the names of individual foods. Thus we require a
table declaration whose key-spec is one-dimensional and whose data-specs are indexed
over the AMPL set FOOD:

table dietAmts IN "ODBC" "Diet2D.xls":
[i ˜ NUTR], {j in FOOD} <amt[i,j] ˜ (j)>;

The key-spec [i ̃ NUTR] associates the first table column with the set NUTR. The
data-spec {j in FOOD} <...> causes AMPL to generate an individual data-spec for each
member of set FOOD. Specifically, for each j in FOOD, AMPL generates the data-spec
amt[i,j] ̃ (j), where (j) is the AMPL string expression for the heading of the
external table column for food j, and amt[i,j] denotes the parameter to which the val-

SECTION 10.7 STANDARD AND BUILT-IN TABLE HANDLERS 197

ues in that column are to be written. (According to the convention used here and in other
AMPL declarations and commands, the parentheses around (j) cause it to be interpreted
as an expression for a string; without the parentheses it would denote a column name con-
sisting of the single character j.)

A similar approach works for writing two-dimensional tables to spreadsheets. As an
example, after steelT.mod is solved, the results could be written to a spreadsheet
using the following table declaration:

table Results1 OUT "ODBC" "steel1out.xls":
{p in PROD} -> [Product],

Inv[p,0] ˜ Inv0,
{t in 1..T} < Make[p,t] ˜ (’Make’ & t),

Sell[p,t] ˜ (’Sell’ & t),
Inv[p,t] ˜ (’Inv’ & t) >;

or, equivalently, using display-style indexing:

table Results2 OUT "ODBC" "steel2out.xls":
[Product],

{p in PROD} Inv[p,0] ˜ Inv0,
{t in 1..T} < {p in PROD} (Make[p,t] ˜ (’Make’ & t),

Sell[p,t] ˜ (’Sell’ & t),
Inv[p,t] ˜ (’Inv’ & t)) >;

The key column labels the rows with product names. The data columns include one for
the initial inventories, and then three representing production, sales, and inventories,
respectively, for each period, as in Figure 10-8. Conceptually, there is a symmetry
between the row and column indexing of a two-dimensional table. But because the tables
in these examples are being treated as relational tables, the table declaration must treat
the row indexing and the column indexing in different ways. As a result, the expressions
describing row indexing are substantially different from those describing column index-
ing.

As these examples suggest, the general form for specifying an indexed collection of
table columns is

{indexing-expr} < data-spec, data-spec, data-spec, ... >

where each data-spec has any of the forms previously given. For each member of the set
specified by the indexing-expr, AMPL generates one copy of each data-spec within the
angle brackets <...>. The indexing-expr also defines one or more dummy indices that run
over the index set; these indices are used in expressions within the data-specs, and also
appear in string expressions that give the names of columns in the external database.

10.7 Standard and built-in table handlers

To work with external database files, AMPL relies on table handlers. These are add-
ons, usually in the form of shared or dynamic link libraries, that can be loaded as needed.

198 DATABASE ACCESS CHAPTER 10

__
__

Figure 10-8: Another two-dimensional Excel table.
__

AMPL is distributed with a ‘‘standard’’ table handler that runs under Microsoft Windows
and communicates via the Open Database Connectivity (ODBC) application programming
interface; it recognizes relational tables in the formats used by Access, Excel, and any
other application for which an ODBC driver exists on your computer. Additional handlers
may be supplied by vendors of AMPL or of database software.

In addition to any supplied handlers, minimal ASCII and binary relational table file
handlers are built into AMPL for testing. Vendors may include other built-in handlers. If
you are not sure which handlers are currently seen by your copy of AMPL, the features
described in A.13 can get you a list of active handlers and brief instructions for using
them.

As the introductory examples of this chapter have shown, AMPL communicates with
handlers through the string-list in the table declaration. The form and interpretation of
the string-list are specific to each handler. The remainder of this section describes the
string-lists that are recognized by AMPL’s standard ODBC handler. Following a general
introduction, specific instructions are provided for the two applications, Access and
Excel, that are used in many of the examples in preceding sections. A final subsection
describes the string-lists recognized by the built-in binary and ASCII table handlers.

Using the standard ODBC table handler

In the context of a declaration that begins table table-name ..., the general form of
the string-list for the standard ODBC table handler is

"ODBC" "connection-spec" "external-table-spec" opt "verbose" opt

SECTION 10.7 STANDARD AND BUILT-IN TABLE HANDLERS 199

The first string tells AMPL that data transfers using this table declaration should employ
the standard ODBC handler. Subsequent strings then provide directions to that handler.

The second string identifies the external database file that is to be read or written upon
execution of read table table-name or write table table-name commands. There
are several possibilities, depending on the form of the connection-spec and the configura-
tion of ODBC on your computer.

If the connection-spec is a filename of the form name.ext, where ext is a 3-letter
extension associated with an installed ODBC driver, then the named file is the database
file. This form can be seen in a number of our examples, where filenames of the forms
name.mdb and name.xls refer to Access and Excel files, respectively.

Other forms of connection-spec are more specific to ODBC, and are explained in
online documentation. Information about your computer’s configuration of ODBC
drivers, data source names, file data sources, and related entities can be examined and
changed through the Windows ODBC control panel.

The third string normally gives the name of the relational table, within the specified
file, that is to be read or written upon execution of read table or write table com-
mands. If the third string is omitted, the name of the relational table is taken to be the
same as the table-name of the containing table declaration. For writing, if the indi-
cated table does not exist, it is created; if the table exists but all of the table
declaration’s data-specs have read/write status OUT, then it is overwritten. Otherwise,
writing causes the existing table to be modified; each column written either overwrites an
existing column of the same name, or becomes a new column appended to the table.

Alternatively, if the third string has the special form

"SQL=sql-query"

the table declaration applies to the relational table that is (temporarily) created by a state-
ment in the Structured Query Language, commonly abbreviated SQL. Specifically, a rela-
tional table is first constructed by executing the SQL statement given by sql-query, with
respect to the database file given by the second string in the table declaration’s string-
list . Then the usual interpretations of the table declaration are applied to the con-
structed table. All columns specified in the declaration should have read/write status IN,
since it would make no sense to write to a temporary table. Normally the sql-query is a
SELECT statement, which is SQL’s primary device for operating on tables to create new
ones.

As an example, if you wanted to read as data for diet.mod only those foods having
a cost of $2.49 or less, you could use an SQL query to extract the relevant records from
the Foods table of your database:

table cheapFoods IN "ODBC" "diet.mdb"
"SQL=SELECT * FROM Foods WHERE cost <= 2.49":
FOOD <- [FOOD], cost, f_min, f_max;

Then to read the relevant data for parameter amt, which is indexed over nutrients and
foods, you would want to read only those records that pertained to a food having a cost of

200 DATABASE ACCESS CHAPTER 10

$2.49 or less. Here is one way that an SQL query could be used to extract the desired
records:

option selectAmts "SELECT NUTR, Amts.FOOD, amt "
"FROM Amts, Foods "

"WHERE Amts.FOOD = Foods.FOOD and cost <= 2.49";

table cheapAmts IN "ODBC" "diet.mdb" ("SQL=" & $selectAmts):
[NUTR, FOOD], amt;

Here we have used an AMPL option to store the string containing the SQL query. Then
the table declaration’s third string can be given by the relatively short string expression
"SQL=" & $selectAmts.

The string verbose after the first three strings requests diagnostic messages — such
as the DSN= string that ODBC reports using — whenever the containing table declaration
is used by a read table or write table command.

Using the standard ODBC table handler with Access and Excel

To set up a relational table correspondence for reading or writing Microsoft Access
files, specify the ext in the second string of the string-list as mdb:

"ODBC" "filename.mdb" "external-table-spec" opt

The file named by the second string must exist, though for writing it may be a database
that does not yet contain any tables.

To set up a relational table correspondence for reading or writing Microsoft Excel
spreadsheets, specify the ext in the second string of the string-list as xls:

"ODBC" "filename.xls" "external-table-spec" opt

In this case, the second string identifies the external Excel workbook file that is to be read
or written. For writing, the file specified by the second string is created if it does not
exist already.

The external-table-spec specified by the third string identifies a spreadsheet range,
within the specified file, that is to be read or written; if this string is absent, it is taken to
be the table-name given at the start of the table declaration. For reading, the specified
range must exist in the Excel file. For writing, if the range does not exist, it is created, at
the upper left of a new worksheet having the same name. If the range exists but all of the
table declaration’s data-specs have read/write status OUT, it is overwritten. Otherwise,
writing causes the existing range to be modified. Each column written either overwrites
an existing column of the same name, or becomes a new column appended to the table;
each row written either overwrites entries in an existing row having the same key column
entries, or becomes a new row appended to the table.

When writing causes an existing range to be extended, rows or columns are added at
the bottom or right of the range, respectively. The cells of added rows or columns must
be empty; otherwise, the attempt to write the table fails and the write table command

SECTION 10.7 STANDARD AND BUILT-IN TABLE HANDLERS 201

elicits an error message. After a table is successfully written, the corresponding range is
created or adjusted to contain exactly the cells of that table.

Built-in table handlers for text and binary files

For debugging and demonstration purposes, AMPL has built-in handlers for two very
simple relational table formats. These formats store one table per file and convey equiva-
lent information. One produces ASCII files that can be examined in any text editor, while
the other creates binary files that are much faster to read and write.

For these handlers, the table declaration’s string-list contains at most one string,
identifying the external file that contains the relational table. If the string has the form

"filename.tab"

the file is taken to be an ASCII text file; if it has the form

"filename.bit"

it is taken to be a binary file. If no string-list is given, a text file table-name.tab is
assumed.

For reading, the indicated file must exist. For writing, if the file does not exist, it is
created. If the file exists but all of the table declaration’s data-specs have read/write
status OUT, it is overwritten. Otherwise, writing causes the existing file to be modified;
each column written either replaces an existing column of the same name, or becomes a
new column added to the table.

The format for the text files can be examined by writing one and viewing the results
in a text editor. For example, the following AMPL session,

ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032
ampl: table ResultList OUT "DietOpt.tab":
ampl? [FOOD], Buy, Buy.rc, {j in FOOD} Buy[j]/f_max[j];
ampl: write table ResultList;

produces a file DietOpt.tab with the following content:

ampl.tab 1 3
FOOD Buy Buy.rc ’Buy[j]/f_max[j]’
BEEF 5.360613810741701 8.881784197001252e-16 0.5360613810741701
CHK 2 1.1888405797101402 0.2
FISH 2 1.1444075021312856 0.2
HAM 10 -0.30265132139812223 1
MCH 10 -0.5511508951406658 1
MTL 10 -1.3289002557544745 1
SPG 9.306052855924973 -8.881784197001252e-16 0.9306052855924973
TUR 1.9999999999999998 2.7316197783461176 0.19999999999999998

202 DATABASE ACCESS CHAPTER 10

In the first line, ampl.tab identifies this as an AMPL relational table text file, and is fol-
lowed by the numbers of key and non-key columns, respectively. The second line gives
the names of the table’s columns, which may be any strings. (Use of the ˜ operator to
specify valid column-names is not necessary in this case.) Each subsequent line gives the
values in one table row; numbers are written in full precision, with no special formatting
or alignment.

