
15
__

Network Linear Programs

Models of networks have appeared in several chapters, notably in the transportation
problems in Chapter 3. We now return to the formulation of these models, and AMPL’s
features for handling them.

Figure 15-1 shows the sort of diagram commonly used to describe a network problem.
A circle represents a node of the network, and an arrow denotes an arc running from one
node to another. A flow of some kind travels from node to node along the arcs, in the
directions of the arrows.

An endless variety of models involve optimization over such networks. Many cannot
be expressed in any straightforward algebraic way or are very difficult to solve. Our dis-
cussion starts with a particular class of network optimization models in which the deci-
sion variables represent the amounts of flow on the arcs, and the constraints are limited to
two kinds: simple bounds on the flows, and conservation of flow at the nodes. Models
restricted in this way give rise to the problems known as network linear programs. They
are especially easy to describe and solve, yet are widely applicable. Some of their bene-
fits extend to certain generalizations of the network flow form, which we also touch upon.

We begin with minimum-cost transshipment models, which are the largest and most
intuitive source of network linear programs, and then proceed to other well-known cases:
maximum flow, shortest path, transportation and assignment models. Examples are ini-
tially given in terms of standard AMPL variables and constraints, defined in var and
subject to declarations. In later sections, we introduce node and arc declarations
that permit models to be described more directly in terms of their network structure. The
last section discusses formulating network models so that the resulting linear programs
can be solved most efficiently.

15.1 Minimum-cost transshipment models

As a concrete example, imagine that the nodes and arcs in Figure 15-1 represent cities
and intercity transportation links. A manufacturing plant at the city marked PITT will

319

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

320 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

PITT 450

NE

SE

BOS 90

EWR 120

BWI 120

ATL 70

MCO 50

2.5, 250

3.5, 250

1.7, 100

0.7, 100

1.3, 100

1.3, 100

0.8, 100

0.2, 100

2.1, 100

Figure 15-1: A directed network.
__

make 450,000 packages of a certain product in the next week, as indicated by the 450 at
the left of the diagram. The cities marked NE and SE are the northeast and southeast dis-
tribution centers, which receive packages from the plant and transship them to ware-
houses at the cities coded as BOS, EWR, BWI, ATL and MCO. (Frequent flyers will recog-
nize Boston, Newark, Baltimore, Atlanta, and Orlando.) These warehouses require 90,
120, 120, 70 and 50 thousand packages, respectively, as indicated by the numbers at the
right. For each intercity link there is a shipping cost per thousand packages and an upper
limit on the packages that can be shipped, indicated by the two numbers next to the corre-
sponding arrow in the diagram.

The optimization problem over this network is to find the lowest-cost plan of ship-
ments that uses only the available links, respects the specified capacities, and meets the
requirements at the warehouses. We first model this as a general network flow problem,
and then consider alternatives that specialize the model to the particular situation at hand.
We conclude by introducing a few of the most common variations on the network flow
constraints.

A general transshipment model

To write a model for any problem of shipments from city to city, we can start by
defining a set of cities and a set of links. Each link is in turn defined by a start city and an
end city, so we want the set of links to be a subset of the set of ordered pairs of cities:

set CITIES;
set LINKS within (CITIES cross CITIES);

SECTION 15.1 MINIMUM-COST TRANSSHIPMENT MODELS 321

Corresponding to each city there is potentially a supply of packages and a demand for
packages:

param supply {CITIES} >= 0;
param demand {CITIES} >= 0;

In the case of the problem described by Figure 15-1, the only nonzero value of supply
should be the one for PITT, where packages are manufactured and supplied to the distri-
bution network. The only nonzero values of demand should be those corresponding to
the five warehouses.

The costs and capacities are indexed over the links:

param cost {LINKS} >= 0;
param capacity {LINKS} >= 0;

as are the decision variables, which represent the amounts to ship over the links. These
variables are nonnegative and bounded by the capacities:

var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];

The objective is

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];

which represents the sum of the shipping costs over all of the links.
It remains to describe the constraints. At each city, the packages supplied plus pack-

ages shipped in must balance the packages demanded plus packages shipped out:

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]

= demand[k] + sum {(k,j) in LINKS} Ship[k,j];

Because the expression

sum {(i,k) in LINKS} Ship[i,k]

appears within the scope of definition of the dummy index k, the summation is inter-
preted to run over all cities i such that (i,k) is in LINKS. That is, the summation is
over all links into city k; similarly, the second summation is over all links out of k. This
indexing convention, which was explained in Section 6.2, is frequently useful in describ-
ing network balance constraints algebraically. Figures 15-2a and 15-2b display the com-
plete model and data for the particular problem depicted in Figure 15-1.

If all of the variables are moved to the left of the = sign and the constants to the right,
the Balance constraint becomes:

subject to Balance {k in CITIES}:
sum {(i,k) in LINKS} Ship[i,k]

- sum {(k,j) in LINKS} Ship[k,j]
= demand[k] - supply[k];

This variation may be interpreted as saying that, at each city k, shipments in minus ship-
ments out must equal ‘‘net demand’’. If no city has both a plant and a warehouse (as in

322 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0; # amounts available at cities
param demand {CITIES} >= 0; # amounts required at cities

check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];

param cost {LINKS} >= 0; # shipment costs/1000 packages
param capacity {LINKS} >= 0; # max packages that can be shipped

var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];
packages to be shipped

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]

= demand[k] + sum {(k,j) in LINKS} Ship[k,j];

Figure 15-2a: General transshipment model (net1.mod).

set CITIES := PITT NE SE BOS EWR BWI ATL MCO ;

set LINKS := (PITT,NE) (PITT,SE)
(NE,BOS) (NE,EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);

param supply default 0 := PITT 450 ;

param demand default 0 :=
BOS 90, EWR 120, BWI 120, ATL 70, MCO 50;

param: cost capacity :=
PITT NE 2.5 250
PITT SE 3.5 250

NE BOS 1.7 100
NE EWR 0.7 100
NE BWI 1.3 100

SE EWR 1.3 100
SE BWI 0.8 100
SE ATL 0.2 100
SE MCO 2.1 100 ;

Figure 15-2b: Data for general transshipment model (net1.dat).
__

our example), then positive net demand always indicates warehouse cities, negative net
demand indicates plant cities, and zero net demand indicates transshipment cities. Thus
we could have gotten by with just one parameter net_demand in place of demand and
supply, with the sign of net_demand[k] indicating what goes on at city k. Alterna-
tive formulations of this kind are often found in descriptions of network flow models.

SECTION 15.1 MINIMUM-COST TRANSSHIPMENT MODELS 323

Specialized transshipment models

The preceding general approach has the advantage of being able to accommodate any
pattern of supplies, demands, and links between cities. For example, a simple change in
the data would suffice to model a plant at one of the distribution centers, or to allow ship-
ment links between some of the warehouses.

The disadvantage of a general formulation is that it fails to show clearly what arrange-
ment of supplies, demands and links is expected, and in fact will allow inappropriate
arrangements. If we know that the situation will be like the one shown in Figure 15-1,
with supply at one plant, which ships to distribution centers, which then ship to ware-
houses that satisfy demand, the model can be specialized to exhibit and enforce such a
structure.

To show explicitly that there are three different kinds of cities in the specialized
model, we can declare them separately. We use a symbolic parameter rather than a set to
hold the name of the plant, to specify that only one plant is expected:

param p_city symbolic;
set D_CITY;
set W_CITY;

There must be a link between the plant and each distribution center, so we need a subset
of pairs only to specify which links connect distribution centers to warehouses:

set DW_LINKS within (D_CITY cross W_CITY);

With the declarations organized in this way, it is impossible to specify inappropriate
kinds of links, such as ones between two warehouses or from a warehouse back to the
plant.

One parameter represents the supply at the plant, and a collection of demand parame-
ters is indexed over the warehouses:

param p_supply >= 0;
param w_demand {W_CITY} >= 0;

These declarations allow supply and demand to be defined only where they belong.
At this juncture, we can define the sets CITIES and LINKS and the parameters

supply and demand as they would be required by our previous model:

set CITIES = {p_city} union D_CITY union W_CITY;
set LINKS = ({p_city} cross D_CITY) union DW_LINKS;

param supply {k in CITIES} =
if k = p_city then p_supply else 0;

param demand {k in CITIES} =
if k in W_CITY then w_demand[k] else 0;

The rest of the model can then be exactly as in the general case, as indicated in Figures
15-3a and 15-3b.

324 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

param p_city symbolic;

set D_CITY;
set W_CITY;
set DW_LINKS within (D_CITY cross W_CITY);

param p_supply >= 0; # amount available at plant
param w_demand {W_CITY} >= 0; # amounts required at warehouses

check: p_supply = sum {k in W_CITY} w_demand[k];

set CITIES = {p_city} union D_CITY union W_CITY;
set LINKS = ({p_city} cross D_CITY) union DW_LINKS;

param supply {k in CITIES} =
if k = p_city then p_supply else 0;

param demand {k in CITIES} =
if k in W_CITY then w_demand[k] else 0;

Remainder same as general transshipment model

param cost {LINKS} >= 0; # shipment costs/1000 packages
param capacity {LINKS} >= 0; # max packages that can be shipped

var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];
packages to be shipped

minimize Total_Cost:
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j];

subject to Balance {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k]

= demand[k] + sum {(k,j) in LINKS} Ship[k,j];

Figure 15-3a: Specialized transshipment model (net2.mod).
__

Alternatively, we can maintain references to the different types of cities and links
throughout the model. This means that we must declare two types of costs, capacities and
shipments:

param pd_cost {D_CITY} >= 0;
param dw_cost {DW_LINKS} >= 0;

param pd_cap {D_CITY} >= 0;
param dw_cap {DW_LINKS} >= 0;

var PD_Ship {i in D_CITY} >= 0, <= pd_cap[i];
var DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j];

The ‘‘pd’’ quantities are associated with shipments from the plant to distribution centers;
because they all relate to shipments from the same plant, they need only be indexed over
D_CITY. The ‘‘dw’’ quantities are associated with shipments from distribution centers
to warehouses, and so are naturally indexed over DW_LINKS.

The total shipment cost can now be given as the sum of two summations:

SECTION 15.1 MINIMUM-COST TRANSSHIPMENT MODELS 325

__
__

param p_city := PITT ;

set D_CITY := NE SE ;
set W_CITY := BOS EWR BWI ATL MCO ;

set DW_LINKS := (NE,BOS) (NE,EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);

param p_supply := 450 ;

param w_demand :=
BOS 90, EWR 120, BWI 120, ATL 70, MCO 50;

param: cost capacity :=
PITT NE 2.5 250
PITT SE 3.5 250

NE BOS 1.7 100
NE EWR 0.7 100
NE BWI 1.3 100

SE EWR 1.3 100
SE BWI 0.8 100
SE ATL 0.2 100
SE MCO 2.1 100 ;

Figure 15-3b: Data for specialized transshipment model (net2.dat).
__

minimize Total_Cost:
sum {i in D_CITY} pd_cost[i] * PD_Ship[i]

+ sum {(i,j) in DW_LINKS} dw_cost[i,j] * DW_Ship[i,j];

Finally, there must be three kinds of balance constraints, one for each kind of city. Ship-
ments from the plant to the distribution centers must equal the supply at the plant:

subject to P_Bal: sum {i in D_CITY} PD_Ship[i] = p_supply;

At each distribution center, shipments in from the plant must equal shipments out to all
the warehouses:

subject to D_Bal {i in D_CITY}:
PD_Ship[i] = sum {(i,j) in DW_LINKS} DW_Ship[i,j];

And at each warehouse, shipments in from all distribution centers must equal the
demand:

subject to W_Bal {j in W_CITY}:
sum {(i,j) in DW_LINKS} DW_Ship[i,j] = w_demand[j];

The whole model, with appropriate data, is shown in Figures 15-4a and 15-4b.
The approaches shown in Figures 15-3 and 15-4 are equivalent, in the sense that they

cause the same linear program to be solved. The former is more convenient for experi-
menting with different network structures, since any changes affect only the data for the
initial declarations in the model. If the network structure is unlikely to change, however,

326 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

set D_CITY;
set W_CITY;
set DW_LINKS within (D_CITY cross W_CITY);

param p_supply >= 0; # amount available at plant
param w_demand {W_CITY} >= 0; # amounts required at warehouses

check: p_supply = sum {j in W_CITY} w_demand[j];

param pd_cost {D_CITY} >= 0; # shipment costs/1000 packages
param dw_cost {DW_LINKS} >= 0;

param pd_cap {D_CITY} >= 0; # max packages that can be shipped
param dw_cap {DW_LINKS} >= 0;

var PD_Ship {i in D_CITY} >= 0, <= pd_cap[i];
var DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j];

packages to be shipped

minimize Total_Cost:
sum {i in D_CITY} pd_cost[i] * PD_Ship[i] +
sum {(i,j) in DW_LINKS} dw_cost[i,j] * DW_Ship[i,j];

subject to P_Bal: sum {i in D_CITY} PD_Ship[i] = p_supply;

subject to D_Bal {i in D_CITY}:
PD_Ship[i] = sum {(i,j) in DW_LINKS} DW_Ship[i,j];

subject to W_Bal {j in W_CITY}:
sum {(i,j) in DW_LINKS} DW_Ship[i,j] = w_demand[j];

Figure 15-4a: Specialized transshipment model, version 2 (net3.mod).
__

the latter form facilitates alterations that affect only particular kinds of cities, such as the
generalizations we describe next.

Variations on transshipment models

Some balance constraints in a network flow model may have to be inequalities rather
than equations. In the example of Figure 15-4, if production at the plant can sometimes
exceed total demand at the warehouses, we should replace = by <= in the P_Bal con-
straints.

A more substantial modification occurs when the quantity of flow that comes out of
an arc does not necessarily equal the quantity that went in. As an example, a small frac-
tion of the packages shipped from the plant may be damaged or stolen before the pack-
ages reach the distribution center. Suppose that a parameter pd_loss is introduced to
represent the loss rate:

param pd_loss {D_CITY} >= 0, < 1;

Then the balance constraints at the distribution centers must be adjusted accordingly:

SECTION 15.1 MINIMUM-COST TRANSSHIPMENT MODELS 327

__
__

set D_CITY := NE SE ;

set W_CITY := BOS EWR BWI ATL MCO ;

set DW_LINKS := (NE,BOS) (NE,EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);

param p_supply := 450 ;

param w_demand :=
BOS 90, EWR 120, BWI 120, ATL 70, MCO 50;

param: pd_cost pd_cap :=
NE 2.5 250
SE 3.5 250 ;

param: dw_cost dw_cap :=
NE BOS 1.7 100
NE EWR 0.7 100
NE BWI 1.3 100

SE EWR 1.3 100
SE BWI 0.8 100
SE ATL 0.2 100
SE MCO 2.1 100 ;

Figure 15-4b: Data for specialized transshipment model, version 2 (net3.dat).
__

subject to D_Bal {i in D_CITY}:
(1-pd_loss[i]) * PD_Ship[i]

= sum {(i,j) in DW_LINKS} DW_Ship[i,j];

The expression to the left of the = sign has been modified to reflect the fact that only
(1-pd_loss[i]) * PD_Ship[i] packages arrive at city i when PD_Ship[i]
packages are shipped from the plant.

A similar variation occurs when the flow is not measured in the same units throughout
the network. If demand is reported in cartons rather than thousands of packages, for
example, the model will require a parameter to represent packages per carton:

param ppc integer > 0;

Then the demand constraints at the warehouses are adjusted as follows:

subject to W_Bal {j in W_CITY}:
sum {(i,j) in DW_LINKS} (1000/ppc) * DW_Ship[i,j]

= w_demand[j];

The term (1000/ppc) * DW_Ship[i,j] represents the number of cartons received
at warehouse j when DW_Ship[i,j] thousand packages are shipped from distribution
center i.

328 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

a b

c d e

f g

50

100 40
20

60

20

50

60 70
70

Figure 15-5: Traffic flow network.
__

15.2 Other network models

Not all network linear programs involve the transportation of things or the minimiza-
tion of costs. We describe here three well-known model classes — maximum flow,
shortest path, and transportation/assignment — that use the same kinds of variables and
constraints for different purposes.

Maximum flow models

In some network design applications the concern is to send as much flow as possible
through the network, rather than to send flow at lowest cost. This alternative is readily
handled by dropping the balance constraints at the origins and destinations of flow, while
substituting an objective that stands for total flow in some sense.

As a specific example, Figure 15-5 presents a diagram of a simple traffic network.
The nodes and arcs represent intersections and roads; capacities, shown as numbers next
to the roads, are in cars per hour. We want to find the maximum traffic flow that can
enter the network at a and leave at g .

A model for this situation begins with a set of intersections, and symbolic parameters
to indicate the intersections that serve as entrance and exit to the road network:

set INTER;

param entr symbolic in INTER;
param exit symbolic in INTER, <> entr;

The set of roads is defined as a subset of the pairs of intersections:

set ROADS within (INTER diff {exit}) cross (INTER diff {entr});

This definition ensures that no road begins at the exit or ends at the entrance.
Next, the capacity and traffic load are defined for each road:

SECTION 15.2 OTHER NETWORK MODELS 329

__
__

set INTER; # intersections

param entr symbolic in INTER; # entrance to road network
param exit symbolic in INTER, <> entr; # exit from road network

set ROADS within (INTER diff {exit}) cross (INTER diff {entr});

param cap {ROADS} >= 0; # capacities
var Traff {(i,j) in ROADS} >= 0, <= cap[i,j]; # traffic loads

maximize Entering_Traff: sum {(entr,j) in ROADS} Traff[entr,j];

subject to Balance {k in INTER diff {entr,exit}}:
sum {(i,k) in ROADS} Traff[i,k] = sum {(k,j) in ROADS} Traff[k,j];

data;

set INTER := a b c d e f g ;

param entr := a ;
param exit := g ;

param: ROADS: cap :=
a b 50, a c 100
b d 40, b e 20
c d 60, c f 20
d e 50, d f 60
e g 70, f g 70 ;

Figure 15-6: Maximum traffic flow model and data (netmax.mod).
__

param cap {ROADS} >= 0;
var Traff {(i,j) in ROADS} >= 0, <= cap[i,j];

The constraints say that except for the entrance and exit, flow into each intersection
equals flow out:

subject to Balance {k in INTER diff {entr,exit}}:
sum {(i,k) in ROADS} Traff[i,k]

= sum {(k,j) in ROADS} Traff[k,j];

Given these constraints, the flow out of the entrance must be the total flow through the
network, which is to be maximized:

maximize Entering_Traff: sum {(entr,j) in ROADS} Traff[entr,j];

We could equally well maximize the total flow into the exit. The entire model, along
with data for the example shown in Figure 15-5, is presented in Figure 15-6. Any linear
programming solver will find a maximum flow of 130 cars per hour.

Shortest path models

If you were to use the optimal solution to any of our models thus far, you would have
to send each of the packages, cars, or whatever along some path from a supply (or
entrance) node to a demand (or exit) node. The values of the decision variables do not

330 NETWORK LINEAR PROGRAMS CHAPTER 15

directly say what the optimal paths are, or how much flow must go on each one. Usually
it is not too hard to deduce these paths, however, especially when the network has a regu-
lar or special structure.

If a network has just one unit of supply and one unit of demand, the optimal solution
assumes a quite different nature. The variable associated with each arc is either 0 or 1,
and the arcs whose variables have value 1 comprise a minimum-cost path from the supply
node to the demand node. Often the ‘‘costs’’ are in fact times or distances, so that the
optimum gives a shortest path.

Only a few changes need be made to the maximum flow model of Figure 15-6 to turn
it into a shortest path model. There are still a parameter and a variable associated with
each road from i to j, but we call them time[i,j] and Use[i,j], and the sum of
their products yields the objective:

param time {ROADS} >= 0; # times to travel roads
var Use {(i,j) in ROADS} >= 0; # 1 iff (i,j) in shortest path

minimize Total_Time: sum {(i,j) in ROADS} time[i,j] * Use[i,j];

Since only those variables Use[i,j] on the optimal path equal 1, while the rest are 0,
this sum does correctly represent the total time to traverse the optimal path. The only
other change is the addition of a constraint to ensure that exactly one unit of flow is avail-
able at the entrance to the network:

subject to Start: sum {(entr,j) in ROADS} Use[entr,j] = 1;

The complete model is shown in Figure 15-7. If we imagine that the numbers on the arcs
in Figure 15-5 are travel times in minutes rather than capacities, the data are the same;
AMPL finds the solution as follows:

ampl: model netshort.mod;
ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 140

ampl: option omit_zero_rows 1;
ampl: display Use;
Use :=
a b 1
b e 1
e g 1
;

The shortest path is a → b → e → g, which takes 140 minutes.

Transportation and assignment models

The best known and most widely used special network structure is the ‘‘bipartite’’
structure depicted in Figure 15-8. The nodes fall into two groups, one serving as origins
of flow and the other as destinations. Each arc connects an origin to a destination.

SECTION 15.2 OTHER NETWORK MODELS 331

__
__

set INTER; # intersections

param entr symbolic in INTER; # entrance to road network
param exit symbolic in INTER, <> entr; # exit from road network

set ROADS within (INTER diff {exit}) cross (INTER diff {entr});

param time {ROADS} >= 0; # times to travel roads
var Use {(i,j) in ROADS} >= 0; # 1 iff (i,j) in shortest path

minimize Total_Time: sum {(i,j) in ROADS} time[i,j] * Use[i,j];

subject to Start: sum {(entr,j) in ROADS} Use[entr,j] = 1;

subject to Balance {k in INTER diff {entr,exit}}:
sum {(i,k) in ROADS} Use[i,k] = sum {(k,j) in ROADS} Use[k,j];

data;

set INTER := a b c d e f g ;

param entr := a ;
param exit := g ;

param: ROADS: time :=
a b 50, a c 100
b d 40, b e 20
c d 60, c f 20
d e 50, d f 60
e g 70, f g 70 ;

Figure 15-7: Shortest path model and data (netshort.mod).
__

The minimum-cost transshipment model on this network is known as the transporta-
tion model. The special case in which every origin is connected to every destination was
introduced in Chapter 3; an AMPL model and sample data are shown in Figures 3-1a and
3-1b. A more general example analogous to the models developed earlier in this chapter,
where a set LINKS specifies the arcs of the network, appears in Figures 6-2a and 6-2b.

Every path from an origin to a destination in a bipartite network consists of one arc.
Or, to say the same thing another way, the optimal flow along an arc of the transportation
model gives the actual amount shipped from some origin to some destination. This prop-
erty permits the transportation model to be viewed alternatively as a so-called assignment
model, in which the optimal flow along an arc is the amount of something from the origin
that is assigned to the destination. The meaning of assignment in this context can be
broadly construed, and in particular need not involve a shipment in any sense.

One of the more common applications of the assignment model is matching people to
appropriate targets, such as jobs, offices or even other people. Each origin node is associ-
ated with one person, and each destination node with one of the targets — for example,
with one project. The sets might then be defined as follows:

set PEOPLE;
set PROJECTS;
set ABILITIES within (PEOPLE cross PROJECTS);

332 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

PITT

GARY

CLEV

WIN

STL

LAN

LAF

FRE

FRA

DET

Figure 15-8: Bipartite network.
__

The set ABILITIES takes the role of LINKS in our earlier models; a pair (i,j) is
placed in this set if and only if person i can work on project j.

As one possibility for continuing the model, the supply at node i could be the number
of hours that person i is available to work, and the demand at node j could be the num-
ber of hours required for project j. Variables Assign[i,j] would represent the num-
ber of hours of person i’s time assigned to project j. Also associated with each pair
(i,j) would be a cost per hour, and a maximum number of hours that person i could
contribute to job j. The resulting model is shown in Figure 15-9.

Another possibility is to make the assignment in terms of people rather than hours.
The supply at every node i is 1 (person), and the demand at node j is the number of peo-
ple required for project j. The supply constraints ensure that Assign[i,j] is not
greater than 1; and it will equal 1 in an optimal solution if and only if person i is
assigned to project j. The coefficient cost[i,j] could be some kind of cost of assign-
ing person i to project j, in which case the objective would still be to minimize total
cost. Or the coefficient could be the ranking of person i for project j, perhaps on a scale
from 1 (highest) to 10 (lowest). Then the model would produce an assignment for which
the total of the rankings is the best possible.

Finally, we can imagine an assignment model in which the demand at each node j is
also 1; the problem is then to match people to projects. In the objective, cost[i,j]
could be the number of hours that person i would need to complete project j, in which
case the model would find the assignment that minimizes the total hours of work needed
to finish all the projects. You can create a model of this kind by replacing all references

SECTION 15.3 DECLARING NETWORK MODELS BY NODE AND ARC 333

__
__

set PEOPLE;
set PROJECTS;

set ABILITIES within (PEOPLE cross PROJECTS);

param supply {PEOPLE} >= 0; # hours each person is available
param demand {PROJECTS} >= 0; # hours each project requires

check: sum {i in PEOPLE} supply[i] = sum {j in PROJECTS} demand[j];

param cost {ABILITIES} >= 0; # cost per hour of work
param limit {ABILITIES} >= 0; # maximum contributions to projects

var Assign {(i,j) in ABILITIES} >= 0, <= limit[i,j];

minimize Total_Cost:
sum {(i,j) in ABILITIES} cost[i,j] * Assign[i,j];

subject to Supply {i in PEOPLE}:
sum {(i,j) in ABILITIES} Assign[i,j] = supply[i];

subject to Demand {j in PROJECTS}:
sum {(i,j) in ABILITIES} Assign[i,j] = demand[j];

Figure 15-9: Assignment model (netasgn.mod).
__

to supply[i] and demand[j] by 1 in Figure 15-9. Objective coefficients represent-
ing rankings are an option for this model as well, giving rise to the kind of assignment
model that we used as an example in Section 3.3.

15.3 Declaring network models by node and arc

AMPL’s algebraic notation has great power to express a variety of network linear pro-
grams, but the resulting constraint expressions are often not as natural as we would like.
While the idea of constraining ‘‘flow out minus flow in’’ at each node is easy to describe
and understand, the corresponding algebraic constraints tend to involve terms like

sum {(i,k) in LINKS} Ship[i,k]

that are not so quickly comprehended. The more complex and realistic the network, the
worse the problem. Indeed, it can be hard to tell whether a model’s algebraic constraints
represent a valid collection of flow balances on a network, and consequently whether spe-
cialized network optimization software (described later in this chapter) can be used.

Algebraic formulations of network flows tend to be problematical because they are
constructed explicitly in terms of variables and constraints, while the nodes and arcs are
merely implicit in the way that the constraints are structured. People prefer to approach
network flow problems in the opposite way. They imagine giving an explicit definition
of nodes and arcs, from which flow variables and balance constraints implicitly arise. To
deal with this situation, AMPL provides an alternative that allows network concepts to be
declared directly in a model.

334 NETWORK LINEAR PROGRAMS CHAPTER 15

The network extensions to AMPL include two new kinds of declaration, node and
arc, that take the place of the subject to and var declarations in an algebraic con-
straint formulation. The node declarations name the nodes of a network, and character-
ize the flow balance constraints at the nodes. The arc declarations name and define the
arcs, by specifying the nodes that arcs connect, and by providing optional information
such as bounds and costs that are associated with arcs.

This section introduces node and arc by showing how they permit various examples
from earlier in this chapter to be reformulated conveniently. The following section pre-
sents the rules for these declarations more systematically.

A general transshipment model

In rewriting the model of Figure 15-2a using node and arc, we can retain all of the
set and param declarations and associated data. The changes affect only the three dec-
larations — minimize, var, and subject to — that define the linear program.

There is a node in the network for every member of the set CITIES. Using a node
declaration, we can say this directly:

node Balance {k in CITIES}: net_in = demand[k] - supply[k];

The keyword net_in stands for ‘‘net input’’, that is, the flow in minus the flow out, so
this declaration says that net flow in must equal net demand at each node Balance[k].
Thus it says the same thing as the constraint named Balance[k] in the algebraic ver-
sion, except that it uses the concise term net_in in place of the lengthy expression

sum {(i,k) in LINKS} Ship[i,k] - sum {(k,j) in LINKS} Ship[k,j]

Indeed, the syntax of subject to and node are practically the same except for the way
that the conservation-of-flow constraint is stated. (The keyword net_out may also be
used to stand for flow out minus flow in, so that we could have written net_out =
supply[k] - demand[k].)

There is an arc in the network for every pair in the set LINKS. This too can be said
directly, using an arc declaration:

arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
from Balance[i], to Balance[j], obj Total_Cost cost[i,j];

An arc Ship[i,j] is defined for each pair in LINKS, with bounds of 0 and
capacity[i,j] on its flow; to this extent, the arc and var declarations are the
same. The arc declaration contains additional phrases, however, to say that the arc runs
from the node named Balance[i] to the node named Balance[j], with a linear
coefficient of cost[i,j] in the objective function named Total_Cost. These
phrases use the keywords from, to, and obj.

Since the information about the objective function is included in the arc declaration,
it is not needed in the minimize declaration, which reduces to:

minimize Total_Cost;

SECTION 15.3 DECLARING NETWORK MODELS BY NODE AND ARC 335

__
__

set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0; # amounts available at cities
param demand {CITIES} >= 0; # amounts required at cities

check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];

param cost {LINKS} >= 0; # shipment costs/1000 packages
param capacity {LINKS} >= 0; # max packages that can be shipped

minimize Total_Cost;

node Balance {k in CITIES}: net_in = demand[k] - supply[k];

arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
from Balance[i], to Balance[j], obj Total_Cost cost[i,j];

Figure 15-10: General transshipment model with node and arc (net1node.mod).
__

The whole model is shown in Figure 15-10.
As this description suggests, arc and node take the place of var and subject to,

respectively. In fact AMPL treats an arc declaration as a definition of variables, so that
you would still say display Ship to look at the optimal flows in the network model of
Figure 15-10; it treats a node declaration as a definition of constraints. The difference is
that node and arc present the model in a way that corresponds more directly to its
appearance in a network diagram. The description of the nodes always comes first, fol-
lowed by a description of how the arcs connect the nodes.

A specialized transshipment model

The node and arc declarations make it easy to define a linear program for a network
that has several different kinds of nodes and arcs. For an example we return to the spe-
cialized model of Figure 15-4a.

The network has a plant node, a distribution center node for each member of
D_CITY, and a warehouse node for each member of W_CITY. Thus the model requires
three node declarations:

node Plant: net_out = p_supply;
node Dist {i in D_CITY};
node Whse {j in W_CITY}: net_in = w_demand[j];

The balance conditions say that flow out of node Plant must be p_supply, while flow
into node Whse[j] is w_demand[j]. (The network has no arcs into the plant or out
of the warehouses, so net_out and net_in are just the flow out and flow in, respec-
tively.) The conditions at node Dist[i] could be written either net_in = 0 or
net_out = 0, but since these are assumed by default we need not specify any condition
at all.

336 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

set D_CITY;
set W_CITY;
set DW_LINKS within (D_CITY cross W_CITY);

param p_supply >= 0; # amount available at plant
param w_demand {W_CITY} >= 0; # amounts required at warehouses

check: p_supply = sum {j in W_CITY} w_demand[j];

param pd_cost {D_CITY} >= 0; # shipment costs/1000 packages
param dw_cost {DW_LINKS} >= 0;

param pd_cap {D_CITY} >= 0; # max packages that can be shipped
param dw_cap {DW_LINKS} >= 0;

minimize Total_Cost;

node Plant: net_out = p_supply;

node Dist {i in D_CITY};

node Whse {j in W_CITY}: net_in = w_demand[j];

arc PD_Ship {i in D_CITY} >= 0, <= pd_cap[i],
from Plant, to Dist[i], obj Total_Cost pd_cost[i];

arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[j], obj Total_Cost dw_cost[i,j];

Figure 15-11: Specialized transshipment model with node and arc (net3node.mod).
__

This network has two kinds of arcs. There is an arc from the plant to each member of
D_CITY, which can be declared by:

arc PD_Ship {i in D_CITY} >= 0, <= pd_cap[i],
from Plant, to Dist[i], obj Total_Cost pd_cost[i];

And there is an arc from distribution center i to warehouse j for each pair (i,j) in
DW_LINKS:

arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[j], obj Total_Cost dw_cost[i,j];

The arc declarations specify the relevant bounds and objective coefficients, as in our
previous example. The whole model is shown in Figure 15-11.

Variations on transshipment models

The balance conditions in node declarations may be inequalities, like ordinary alge-
braic balance constraints. If production at the plant can sometimes exceed total demand
at the warehouses, it would be appropriate to give the condition in the declaration of node
Plant as net_out <= p_supply.

An arc declaration can specify losses in transit by adding a factor at the end of the
to phrase:

SECTION 15.3 DECLARING NETWORK MODELS BY NODE AND ARC 337

arc PD_Ship {i in D_CITY} >= 0, <= pd_cap[i],
from Plant, to Dist[i] 1-pd_loss[i],
obj Total_Cost pd_cost[i];

This is interpreted as saying that PD_Ship[i] is the number of packages that leave
node Plant, but (1-pd_loss[i]) * PD_Ship[i] is the number that enter node
Dist[i].

The same option can be used to specify conversions. To use our previous example, if
shipments are measured in thousands of packages but demands are measured in cartons,
the arcs from distribution centers to warehouses should be declared as:

arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[j] (1000/ppc),
obj Total_Cost dw_cost[i,j];

If the shipments to warehouses are also measured in cartons, the factor should be applied
at the distribution center:

arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i] (ppc/1000), to Whse[j],
obj Total_Cost dw_cost[i,j];

A loss factor could also be applied to the to phrase in these examples.

Maximum flow models

In the diagram of Figure 15-5 that we have used to illustrate the maximum flow prob-
lem, there are three kinds of intersections represented by nodes: the one where traffic
enters, the one where traffic leaves, and the others where traffic flow is conserved. Thus
a model of the network could have three corresponding node declarations:

node Entr_Int: net_out >= 0;
node Exit_Int: net_in >= 0;

node Intersection {k in INTER diff {entr,exit}};

The condition net_out >= 0 implies that the flow out of node Entr_Int may be any
amount at all; this is the proper condition, since there is no balance constraint on the
entrance node. An analogous comment applies to the condition for node Exit_Int.

There is one arc in this network for each pair (i,j) in the set ROADS. Thus the dec-
laration should look something like this:

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j], # NOT RIGHT
from Intersection[i], to Intersection[j],
obj Entering_Traff (if i = entr then 1);

Since the aim is to maximize the total traffic leaving the entrance node, the arc is given a
coefficient of 1 in the objective if and only if i takes the value entr. When i does take
this value, however, the arc is specified to be from Intersection[entr], a node
that does not exist; the arc should rather be from node Entr_Int. Similarly, when j
takes the value exit, the arc should not be to Intersection[exit], but to

338 NETWORK LINEAR PROGRAMS CHAPTER 15

Exit_Int. AMPL will catch these errors and issue a message naming one of the nonex-
istent nodes that has been referenced.

It might seem reasonable to use an if-then-else to get around this problem, in the
following way:

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j], # SYNTAX ERROR
from (if i = entr then Entr_Int else Intersection[i]),
to (if j = exit then Exit_Int else Intersection[j]),
obj Entering_Traff (if i = entr then 1);

However, the if-then-else construct in AMPL does not apply to model components
such as Entr_Int and Intersection[i]; this version will be rejected as a syntax
error. Instead you need to use from and to phrases qualified by indexing expressions:

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j],
from {if i = entr} Entr_Int,
from {if i <> entr} Intersection[i],
to {if j = exit} Exit_Int,
to {if j <> exit} Intersection[j],
obj Entering_Traff (if i = entr then 1);

The special indexing expression beginning with if works much the same way here as it
does for constraints (Section 8.4); the from or to phrase is processed if the condition
following if is true. Thus Traff[i,j] is declared to be from Entr_Int if i equals
entr, and to be from Intersection[i] if i is not equal to entr, which is what we
intend.

As an alternative, we can combine the declarations of the three different kinds of
nodes into one. Observing that net_out is positive or zero for Entr_Int, negative or
zero for Exit_Int, and zero for all other nodes Intersection[i], we can declare:

node Intersection {k in INTER}:
(if k = exit then -Infinity)

<= net_out <= (if k = entr then Infinity);

The nodes that were formerly declared as Entr_Int and Exit_Int are now just
Intersection[entr] and Intersection[exit], and consequently the arc dec-
laration that we previously marked ‘‘not right’’ now works just fine. The choice between
this version and the previous one is entirely a matter of convenience and taste.
(Infinity is a predefined AMPL parameter that may be used to specify any ‘‘infinitely
large’’ bound; its technical definition is given in Section A.7.2.)

Arguably the AMPL formulation that is most convenient and appealing is neither of
the above, but rather comes from interpreting the network diagram of Figure 15-5 in a
slightly different way. Suppose that we view the arrows into the entrance node and out of
the exit node as representing additional arcs, which happen to be adjacent to only one
node rather than two. Then flow in equals flow out at every intersection, and the node
declaration simplifies to:

node Intersection {k in INTER};

SECTION 15.3 DECLARING NETWORK MODELS BY NODE AND ARC 339

__
__

set INTER; # intersections

param entr symbolic in INTER; # entrance to road network
param exit symbolic in INTER, <> entr; # exit from road network

set ROADS within (INTER diff {exit}) cross (INTER diff {entr});

param cap {ROADS} >= 0; # capacities of roads

node Intersection {k in INTER};

arc Traff_In >= 0, to Intersection[entr];
arc Traff_Out >= 0, from Intersection[exit];

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j],
from Intersection[i], to Intersection[j];

maximize Entering_Traff: Traff_In;

data;

set INTER := a b c d e f g ;

param entr := a ;
param exit := g ;

param: ROADS: cap :=
a b 50, a c 100
b d 40, b e 20
c d 60, c f 20
d e 50, d f 60
e g 70, f g 70 ;

Figure 15-12: Maximum flow model with node and arc (netmax3.mod).
__

The two arcs ‘‘hanging’’ at the entrance and exit are defined in the obvious way, but
include only a to or a from phrase:

arc Traff_In >= 0, to Intersection[entr];
arc Traff_Out >= 0, from Intersection[exit];

The arcs that represent roads within the network are declared as before:

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j],
from Intersection[i], to Intersection[j];

When the model is represented in this way, the objective is to maximize Traff_In (or
equivalently Traff_Out). We could do this by adding an obj phrase to the arc dec-
laration for Traff_In, but in this case it is perhaps clearer to define the objective alge-
braically:

maximize Entering_Traff: Traff_In;

This version is shown in full in Figure 15-12.

340 NETWORK LINEAR PROGRAMS CHAPTER 15

15.4 Rules for node and arc declarations

Having defined node and arc by example, we now describe more comprehensively
the required and optional elements of these declarations, and comment on their interac-
tion with the conventional declarations minimize or maximize, subject to, and
var when both kinds appear in the same model.

node declarations

A node declaration begins with the keyword node, a name, an optional indexing
expression, and a colon. The expression following the colon, which describes the balance
condition at the node, may have any of the following forms:

net-expr = arith-expr
net-expr <= arith-expr
net-expr >= arith-expr

arith-expr = net-expr
arith-expr <= net-expr
arith-expr >= net-expr

arith-expr <= net-expr <= arith-expr
arith-expr >= net-expr >= arith-expr

where an arith-expr may be any arithmetic expression that uses previously declared
model components and currently defined dummy indices. A net-expr is restricted to one
of the following:

± net_in ± net_out
± net_in + arith-expr ± net_out + arith-expr
arith-expr ± net_in arith-expr ± net_out

(and a unary + may be omitted). Each node defined in this way induces a constraint in
the resulting linear program. A node name is treated like a constraint name in the AMPL
command environment, for example in a display statement.

For declarations that use net_in, AMPL generates the constraint by substituting, at
the place where net_in appears in the balance conditions, a linear expression that repre-
sents flow into the node minus flow out of the node. Declarations that use net_out are
handled the same way, except that AMPL substitutes flow out minus flow in. The expres-
sions for flow in and flow out are deduced from the arc declarations.

arc declarations

An arc declaration consists of the keyword arc, a name, an optional indexing
expression, and a series of optional qualifying phrases. Each arc creates a variable in the
resulting linear program, whose value is the amount of flow over the arc; the arc name
may be used to refer to this variable elsewhere. All of the phrases that may appear in a
var definition have the same significance in an arc definition; most commonly, the >=

SECTION 15.4 RULES FOR NODE AND ARC DECLARATIONS 341

and <= phrases are used to specify values for lower and upper bounds on the flow along
the arc.

The from and to phrases specify the nodes connected by an arc. Usually these con-
sist of the keyword from or to followed by a node name. An arc is interpreted to con-
tribute to the flow out of the from node, and to the flow into the to node; these interpre-
tations are what permit the inference of the constraints associated with the nodes.

Typically one from and one to phrase are specified in an arc declaration. Either
may be omitted, however, as in Figure 15-12. Either may also be followed by an optional
indexing expression, which should be one of two kinds:

• An indexing expression that specifies — depending on the data — an empty set (in
which case the from or to phrase is ignored) or a set with one member (in which
case the from or to phrase is used).

• An indexing expression of the special form {if logical-expr}, which causes the
from or to phrase to be used if and only if the logical-expr evaluates to true.

It is possible to specify that an arc carries flow out of or into two or more nodes, by giv-
ing more than one from or to phrase, or by using an indexing expression that specifies a
set having more than one member. The result is not a network linear program, however,
and AMPL displays an appropriate warning message.

At the end of a from or to phrase, you may add an arithmetic expression represent-
ing a factor to multiply the flow, as shown in our examples of shipping-loss and change-
of-unit variations in Section 15.3. If the factor is in the to phrase, it multiplies the arc
variable in determining the flow into the specified node; that is, for a given flow along the
arc, an amount equal to the to-factor times the flow is considered to enter the to node.
A factor in the from phrase is interpreted analogously. The default factor is 1.

An optional obj phrase specifies a coefficient that will multiply the arc variable to
create a linear term in a specified objective function. Such a phrase consists of the key-
word obj, the name of an objective that has previously been defined in a minimize or
maximize declaration, and an arithmetic expression for the coefficient value. The key-
word may be followed by an indexing expression, which is interpreted as for the from
and to phrases.

Interaction with objective declarations

If all terms in the objective function are specified through obj phrases in arc decla-
rations, the declaration of the objective is simply minimize or maximize followed by
an optional indexing expression and a name. This declaration must come before the arc
declarations that refer to the objective.

Alternatively, arc names may be used as variables to specify the objective function in
the usual algebraic way. In this case the objective must be declared after the arcs, as in
Figure 15-12.

342 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

set CITIES;
set LINKS within (CITIES cross CITIES);

set PRODS;

param supply {CITIES,PRODS} >= 0; # amounts available at cities
param demand {CITIES,PRODS} >= 0; # amounts required at cities

check {p in PRODS}:
sum {i in CITIES} supply[i,p] = sum {j in CITIES} demand[j,p];

param cost {LINKS,PRODS} >= 0; # shipment costs/1000 packages
param capacity {LINKS,PRODS} >= 0; # max packages shipped
param cap_joint {LINKS} >= 0; # max total packages shipped/link

minimize Total_Cost;

node Balance {k in CITIES, p in PRODS}:
net_in = demand[k,p] - supply[k,p];

arc Ship {(i,j) in LINKS, p in PRODS} >= 0, <= capacity[i,j,p],
from Balance[i,p], to Balance[j,p], obj Total_Cost cost[i,j,p];

subject to Multi {(i,j) in LINKS}:
sum {p in PRODS} Ship[i,j,p] <= cap_joint[i,j];

Figure 15-13: Multicommodity flow with side constraints (netmulti.mod).
__

Interaction with constraint declarations

The components defined in arc declarations may be used as variables in additional
subject to declarations. The latter represent ‘‘side constraints’’ that are imposed in
addition to balance of flow at the nodes.

As an example, consider how a multicommodity flow problem can be built from the
node-and-arc network formulation in Figure 15-10. Following the approach in Section
4.1, we introduce a set PRODS of different products, and add it to the indexing of all
parameters, nodes and arcs. The result is a separate network linear program for each
product, with the objective function being the sum of the costs for all products. To tie
these networks together, we provide for a joint limit on the total shipments along any
link:

param cap_joint {LINKS} >= 0;

subject to Multi {(i,j) in LINKS}:
sum {p in PRODS} Ship[p,i,j] <= cap_joint[i,j];

The final model, shown in Figure 15-13, is not a network linear program, but the network
and non-network parts of it are cleanly separated.

Interaction with variable declarations

Just as an arc variable may be used in a subject to declaration, an ordinary var
variable may be used in a node declaration. That is, the balance condition in a node

SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 343

declaration may contain references to variables that were defined by preceding var dec-
larations. These references define ‘‘side variables’’ to the network linear program.

As an example, we again replicate the formulation of Figure 15-10 over the set
PRODS. This time we tie the networks together by introducing a set of feedstocks and
associated data:

set FEEDS;
param yield {PRODS,FEEDS} >= 0;
param limit {FEEDS,CITIES} >= 0;

We imagine that at city k, in addition to the amounts supply[p,k] of products avail-
able to be shipped, up to limit[f,k] of feedstock f can be converted into products;
one unit of feedstock f gives rise to yield[p,f] units of each product p. A variable
Feed[f,k] represents the amount of feedstock f used at city k:

var Feed {f in FEEDS, k in CITIES} >= 0, <= limit[f,k];

The balance condition for product p at city k can now say that the net flow out equals net
supply plus the sum of the amounts derived from the various feedstocks:

node Balance {p in PRODS, k in CITIES}:
net_out = supply[p,k] - demand[p,k]

+ sum {f in FEEDS} yield[p,f] * Feed[f,k];

The arcs are unchanged, leading to the model shown in Figure 15-14. At a given city k,
the variables Feed[f,k] appear in the node balance conditions for all the different
products, bringing together the product networks into a single linear program.

15.5 Solving network linear programs

All of the models that we have described in this chapter give rise to linear programs
that have a ‘‘network’’ property of some kind. AMPL can send these linear programs to
an LP solver and retrieve the optimal values, much as for any other class of LPs. If you
use AMPL in this way, the network structure is helpful mainly as a guide to formulating
the model and interpreting the results.

Many of the models that we have described belong as well to a more restricted class
of problems that (confusingly) are also known as ‘‘network linear programs.’’ In model-
ing terms, the variables of a network LP must represent flows on the arcs of a network,
and the constraints must be only of two types: bounds on the flows along the arcs, and
limits on flow out minus flow in at the nodes. A more technical way to say the same
thing is that each variable of a network linear program must appear in at most two con-
straints (aside from lower or upper bounds on the variables), such that the variable has a
coefficient of +1 in at most one constraint, and a coefficient of –1 in at most one con-
straint.

‘‘Pure’’ network linear programs of this restricted kind have some very strong proper-
ties that make their use particularly desirable. So long as the supplies, demands, and

344 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

set CITIES;

set LINKS within (CITIES cross CITIES);

set PRODS;

param supply {PRODS,CITIES} >= 0; # amounts available at cities

param demand {PRODS,CITIES} >= 0; # amounts required at cities

check {p in PRODS}:
sum {i in CITIES} supply[p,i] = sum {j in CITIES} demand[p,j];

param cost {PRODS,LINKS} >= 0; # shipment costs/1000 packages
param capacity {PRODS,LINKS} >= 0; # max packages shipped of product

set FEEDS;

param yield {PRODS,FEEDS} >= 0; # amounts derived from feedstocks
param limit {FEEDS,CITIES} >= 0; # feedstocks available at cities

minimize Total_Cost;

var Feed {f in FEEDS, k in CITIES} >= 0, <= limit[f,k];

node Balance {p in PRODS, k in CITIES}:
net_out = supply[p,k] - demand[p,k]

+ sum {f in FEEDS} yield[p,f] * Feed[f,k];

arc Ship {p in PRODS, (i,j) in LINKS} >= 0, <= capacity[p,i,j],
from Balance[p,i], to Balance[p,j],
obj Total_Cost cost[p,i,j];

Figure 15-14: Multicommodity flow with side variables (netfeeds.mod).
__

bounds are integers, a network linear program must have an optimal solution in which all
flows are integers. Moreover, if the solver is of a kind that finds ‘‘extreme’’ solutions
(such as those based on the simplex method) it will always find one of the all-integer
optimal solutions. We have taken advantage of this property, without explicitly mention-
ing it, in assuming that the variables in the shortest path problem and in certain assign-
ment problems come out to be either zero or one, and never some fraction in between.

Network linear programs can also be solved much faster than other linear programs of
comparable size, through the use of solvers that are specialized to take advantage of the
network structure. If you write your model in terms of node and arc declarations,
AMPL automatically communicates the network structure to the solver, and any special
network algorithms available in the solver can be applied automatically. On the other
hand, a network expressed algebraically using var and subject to may or may not be
recognized by the solver, and certain options may have to be set to ensure that it is recog-
nized. For example, when using the algebraic model of Figure 15-4a, you may see the
usual response from the general LP algorithm:

ampl: model net3.mod; data net3.dat; solve;
CPLEX 8.0.0: optimal solution; objective 1819
1 dual simplex iterations (0 in phase I)

SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 345

But when using the equivalent node and arc formulation of Figure 15-11, you may get a
somewhat different response to reflect the application of a special network LP algorithm:

ampl: model net3node.mod
ampl: data net3.dat
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 1819
Network extractor found 7 nodes and 7 arcs.
7 network simplex iterations.
0 simplex iterations (0 in phase I)

To determine how your favorite solver behaves in this situation, consult the solver-
specific documentation that is supplied with your AMPL installation.

Because network linear programs are much easier to solve, especially with integer
data, the success of a large-scale application may depend on whether a pure network for-
mulation is possible. In the case of the multicommodity flow model of Figure 15-13, for
example, the joint capacity constraints disrupt the network structure — they represent a
third constraint in which each variable figures — but their presence cannot be avoided in
a correct representation of the problem. Multicommodity flow problems thus do not nec-
essarily have integer solutions, and are generally much harder to solve than single-
commodity flow problems of comparable size.

In some cases, a judicious reformulation can turn what appears to be a more general
model into a pure network model. Consider, for instance, a generalization of Figure
15-10 in which capacities are defined at the nodes as well as along the arcs:

param city_cap {CITIES} >= 0;
param link_cap {LINKS} >= 0;

The arc capacities represent, as before, upper limits on the shipments between cities. The
node capacities limit the throughput, or total flow handled at a city, which may be written
as the supply at the city plus the sum of the flows in, or equivalently as the demand at the
city plus the sum of the flows out. Using the former, we arrive at the following con-
straint:

subject to through_limit {k in CITIES}:
supply[k] + sum {(i,k) in LINKS} Ship[i,k] <= node_cap[k];

Viewed in this way, the throughput limit is another example of a ‘‘side constraint’’ that
disrupts the network structure by adding a third coefficient for each variable. But we can
achieve the same effect without a side constraint, by using two nodes to represent each
city; one receives flow into a city plus any supply, and the other sends flow out of a city
plus any demand:

node Supply {k in CITIES}: net_out = supply[k];
node Demand {k in CITIES}: net_in = demand[k];

A shipment link between cities i and j is represented by an arc that connects the node
Demand[i] to node Supply[j]:

346 NETWORK LINEAR PROGRAMS CHAPTER 15

__
__

set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0; # amounts available at cities
param demand {CITIES} >= 0; # amounts required at cities

check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];

param cost {LINKS} >= 0; # shipment costs per ton

param city_cap {CITIES} >= 0; # max throughput at cities
param link_cap {LINKS} >= 0; # max shipment over links

minimize Total_Cost;

node Supply {k in CITIES}: net_out = supply[k];
node Demand {k in CITIES}: net_in = demand[k];

arc Ship {(i,j) in LINKS} >= 0, <= link_cap[i,j],
from Demand[i], to Supply[j], obj Total_Cost cost[i,j];

arc Through {k in CITIES} >= 0, <= city_cap[k],
from Supply[k], to Demand[k];

Figure 15-15: Transshipment model with node capacities (netthru.mod).
__

arc Ship {(i,j) in LINKS} >= 0, <= link_cap[i,j],
from Demand[i], to Supply[j], obj Total_Cost cost[i,j];

The throughput at city k is represented by a new kind of arc, from Supply[k] to
Demand[k]:

arc Through {k in cities} >= 0, <= city_cap[k],
from Supply[k], to Demand[k];

The throughput limit is now represented by an upper bound on this arc’s flow, rather than
by a side constraint, and the network structure of the model is preserved. A complete list-
ing appears in Figure 15-15.

The preceding example exhibits an additional advantage of using the node and arc
declarations when developing a network model. If you use only node and arc in their
simple forms — no variables in the node conditions, and no optional factors in the from
and to phrases — your model is guaranteed to give rise only to pure network linear pro-
grams. By contrast, if you use var and subject to, it is your responsibility to ensure
that the resulting linear program has the necessary network structure.

Some of the preceding comments can be extended to ‘‘generalized network’’ linear
programs in which each variable still figures in at most two constraints, but not necessar-
ily with coefficients of +1 and –1. We have seen examples of generalized networks in the
cases where there is a loss of flow or change of units on the arcs. Generalized network
LPs do not necessarily have integer optimal solutions, but fast algorithms for them do
exist. A solver that promises a ‘‘network’’ algorithm may or may not have an extension
to generalized networks; check the solver-specific documentation before you make any
assumptions.

SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 347

Bibliography

Ravindra K. Ahuja, Thomas L. Magnanti and James B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall (Englewood Cliffs, NJ, 1993).

Dimitri P. Bertsekas Network Optimization: Continuous and Discrete Models. Athena Scientific
(Princeton, NJ, 1998).

L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks. Princeton University Press (Princeton, NJ,
1962). A highly influential survey of network linear programming and related topics, which stimu-
lated much subsequent study.

Fred Glover, Darwin Klingman and Nancy V. Phillips, Network Models in Optimization and their
Applications in Practice. John Wiley & Sons (New York, 1992).

Walter Jacobs, ‘‘The Caterer Problem.’’ Naval Research Logistics Quarterly 1 (1954) pp.
154–165. The origin of the network problem described in Exercise 15-8.

Katta G. Murty, Network Programming. Prentice-Hall (Englewood Cliffs, NJ, 1992).

Exercises

15-1. The following diagram can be interpreted as representing a network transshipment problem:

A

B

C

D

E

F(100)

(50)

(30)

(120)

13

12

6

1
9

7

4

13

12

The arrows into nodes A and B represent supply in the indicated amounts, 100 and 50; the arrows
out of nodes E and F similarly represent demand in the amounts 30 and 120. The remaining arrows
indicate shipment possibilities, and the numbers on them are the unit shipping costs. There is a
capacity of 80 on every arc.

(a) Solve this problem by developing appropriate data statements to go along with the model of
Figure 15-2a.

(b) Check that you get the same solution using the node and arc formulation of Figure 15-10. Does
the solver appear to be using the same algorithm as in (a)? Try this comparison with each LP
solver available to you.

15-2. Reinterpret the numbers on the arcs between nodes, in the diagram of the preceding exer-
cise, to solve the following problems. (Ignore the numbers on the arrows into A and B and on the
arrows out of E and F.)

(a) Regarding the numbers on the arcs between nodes as lengths, use a model such as the one in
Figure 15-7 to find the shortest path from A to F.

348 NETWORK LINEAR PROGRAMS CHAPTER 15

(b) Regarding the numbers on the arcs between nodes as capacities, use a model such as the one in
Figure 15-6 to find the maximum flow from A to F.

(c) Generalize the model from (b) so that it can find the maximum flow from any subset of nodes
to any other subset of nodes, in some meaningful sense. Use your generalization to find the maxi-
mum flow from A and B to E and F.

15-3. Section 4.2 showed how a multiperiod model could be constructed by replicating a static
model over time periods, and using inventories to tie the periods together. Consider applying the
same approach to the specialized transshipment model of Figure 15-4a.

(a) Construct a multi-week version of Figure 15-4a, with the inventories kept at the distribution
centers (the members of D_CITY).

(b) Now consider expanding the data of Figure 15-4b for this model. Suppose that the initial
inventory is 200 at NE and 75 at SE, and that the inventory carrying cost per 1000 packages is 0.15
per week at NE and 0.12 per week at SE. Let the supplies and demands over 5 weeks be as fol-
lows:

Demand
Week Supply BOS EWR BWI ATL MCO

1 450 50 90 95 50 20
2 450 65 100 105 50 20
3 400 70 100 110 50 25
4 250 70 110 120 50 40
5 325 80 115 120 55 45

Leave the cost and capacity data unchanged, the same in all weeks. Develop an appropriate data
file for this situation, and solve the multi-week problem.

(c) The multi-week model in this case can be viewed as a pure network model, with arcs represent-
ing inventories as well as shipments. To show that this is the case, reformulate the model from (a)
using only node and arc declarations for the constraints and variables.

15-4. For each of the following network problems, construct a data file that permits it to be
solved using the general transshipment model of Figure 15-2a.

(a) The transportation problem of Figure 3-1.

(b) The assignment problem of Figure 3-2.

(c) The maximum flow problem of Figure 15-6.

(d) The shortest path problem of Figure 15-7.

15-5. Reformulate each of the following network models using node and arc declarations as
much as possible:

(a) The transportation model of Figure 6-2a.

(b) The shortest path model of Figure 15-7.

(c) The production/transportation model of Figure 4-6.

(d) The multicommodity transportation model of Figure 6-5.

15-6. The professor in charge of an industrial engineering design course is faced with the prob-
lem of assigning 28 students to eight projects. Each student must be assigned to one project, and
each project group must have 3 or 4 students. The students have been asked to rank the projects,
with 1 being the best ranking and higher numbers representing lower rankings.

SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 349

(a) Formulate an algebraic assignment model, using var and subject to declarations, for this
problem.

(b) Solve the assignment problem for the following table of rankings:

A ED EZ G H1 H2 RB SC A ED EZ G H1 H2 RB SC
Allen 1 3 4 7 7 5 2 6 Knorr 7 4 1 2 2 5 6 3
Black 6 4 2 5 5 7 1 3 Manheim 4 7 2 1 1 3 6 5
Chung 6 2 3 1 1 7 5 4 Morris 7 5 4 6 6 3 1 2
Clark 7 6 1 2 2 3 5 4 Nathan 4 7 5 6 6 3 1 2
Conners 7 6 1 3 3 4 5 2 Neuman 7 5 4 6 6 3 1 2
Cumming 6 7 4 2 2 3 5 1 Patrick 1 7 5 4 4 2 3 6
Demming 2 5 4 6 6 1 3 7 Rollins 6 2 3 1 1 7 5 4
Eng 4 7 2 1 1 6 3 5 Schuman 4 7 3 5 5 1 2 6
Farmer 7 6 5 2 2 1 3 4 Silver 4 7 3 1 1 2 5 6
Forest 6 7 2 5 5 1 3 4 Stein 6 4 2 5 5 7 1 3
Goodman 7 6 2 4 4 5 1 3 Stock 5 2 1 6 6 7 4 3
Harris 4 7 5 3 3 1 2 6 Truman 6 3 2 7 7 5 1 4
Holmes 6 7 4 2 2 3 5 1 Wolman 6 7 4 2 2 3 5 1
Johnson 7 2 4 6 6 5 3 1 Young 1 3 4 7 7 6 2 5

How many students are assigned second or third choice?

(c) Some of the projects are harder than others to reach without a car. Thus it is desirable that at
least a certain number of students assigned to each project must have a car; the numbers vary by
project as follows:

A 1 ED 0 EZ 0 G 2 H1 2 H2 2 RB 1 SC 1

The students who have cars are:

Chung Eng Manheim Nathan Rollins
Demming Holmes Morris Patrick Young

Modify the model to add this car constraint, and solve the problem again. How many more stu-
dents than before must be assigned second or third choice?

(d) Your formulation in (c) can be viewed as a transportation model with side constraints. By
defining appropriate network nodes and arcs, reformulate it as a ‘‘pure’’ network flow model, as
discussed in Section 15.5. Write the formulation in AMPL using only node and arc declarations
for the constraints and variables. Solve with the same data as in (c), to show that the optimal value
is the same.

15-7. To manage its excess cash over the next 12 months, a company may purchase 1-month,
2-month or 3-month certificates of deposit from any of several different banks. The current cash
on hand and amounts invested are known, while the company must estimate the cash receipts and
expenditures for each month, and the returns on the different certificates.

The company’s problem is to determine the best investment strategy, subject to cash requirements.
(As a practical matter, the company would use the first month of the optimal solution as a guide to
its current purchases, and then re-solve with updated estimates at the beginning of the next month.)

(a) Draw a network diagram for this situation. Show each month as a node, and the investments,
receipts and expenditures as arcs.

350 NETWORK LINEAR PROGRAMS CHAPTER 15

(b) Formulate the relevant optimization problem as an AMPL model, using node and arc declara-
tions. Assume that any cash from previously-purchased certificates coming due in the early
months is included in data for the receipts.

There is more than one way to describe the objective function for this model. Explain your choice.

(c) Suppose that the company’s estimated receipts and expenses (in thousands of dollars) over the
next 12 months are as follows:

receipt expense
1 3200 200
2 3600 200
3 3100 400
4 1000 800
5 1000 2100
6 1000 4500
7 1200 3300
8 1200 1800
9 1200 600

10 1500 200
11 1800 200
12 1900 200

The two banks competing for the business are estimating the following rates of return for the next
12 months:

CIT: 1 2 3 NBD: 1 2 3
1 0.00433 0.01067 0.01988 1 0.00425 0.01067 0.02013
2 0.00437 0.01075 0.02000 2 0.00429 0.01075 0.02025
3 0.00442 0.01083 0.02013 3 0.00433 0.01083 0.02063
4 0.00446 0.01092 0.02038 4 0.00437 0.01092 0.02088
5 0.00450 0.01100 0.02050 5 0.00442 0.01100 0.02100
6 0.00458 0.01125 0.02088 6 0.00450 0.01125 0.02138
7 0.00467 0.01142 0.02113 7 0.00458 0.01142 0.02162
8 0.00487 0.01183 0.02187 8 0.00479 0.01183 0.02212
9 0.00500 0.01217 0.02237 9 0.00492 0.01217 0.02262

10 0.00500 0.01217 0.02250 10 0.00492 0.01217 0.02275
11 0.00492 0.01217 0.02250 11 0.00483 0.01233 0.02275
12 0.00483 0.01217 0.02275 12 0.00475 0.01250 0.02312

Construct an appropriate data file, and solve the resulting linear program. Use display to pro-
duce a summary of the indicated purchases.

(d) Company policy prohibits investing more than 70% of its cash in new certificates of any one
bank in any month. Devise a side constraint on the model from (b) to impose this restriction.

Again solve the resulting linear program, and summarize the indicated purchases. How much
income is lost due to the restrictive policy?

15-8. A caterer has booked dinners for the next T days, and has as a result a requirement for a
certain number of napkins each day. He has a certain initial stock of napkins, and can buy new
ones each day at a certain price. In addition, used napkins can be laundered either at a slow service
that takes 4 days, or at a faster but more expensive service that takes 2 days. The caterer’s problem
is to find the most economical combination of purchase and laundering that will meet the forthcom-
ing demand.

(a) It is not hard to see that the decision variables for this problem should be something like the fol-
lowing:

SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 351

Buy[t] clean napkins bought for day t
Carry[t] clean napkins still on hand at the end of day t
Wash2[t] used napkins sent to the fast laundry after day t
Wash4[t] used napkins sent to the slow laundry after day t
Trash[t] used napkins discarded after day t

There are two collections of constraints on these variables, which can be described as follows:

– The number of clean napkins acquired through purchase, carryover and laundering on day t
must equal the number sent to laundering, discarded or carried over after day t.

– The number of used napkins laundered or discarded after day t must equal the number that were
required for that day’s catering.

Formulate an AMPL linear programming model for this problem.

(b) Formulate an alternative network linear programming model for this problem. Write it in
AMPL using node and arc declarations.

(c) The ‘‘caterer problem’’ was introduced in a 1954 paper by Walter Jacobs of the U.S. Air Force.
Although it has been presented in countless books on linear and network programming, it does not
seem to have ever been used by any caterer. In what application do you suppose it really origi-
nated?

(d) Since this is an artificial problem, you might as well make up your own data for it. Use your
data to check that the formulations in (a) and (b) give the same optimal value.

