
16
__

Columnwise Formulations

Because the fundamental idea of an optimization problem is to minimize or maximize
a function of the decision variables, subject to constraints on them, AMPL is oriented
toward explicit descriptions of variables and constraints. This is why var declarations
tend to come first, followed by the minimize or maximize and subject to decla-
rations that use the variables. A wide variety of optimization problems can be formulated
with this approach, as the examples in this book demonstrate.

For certain kinds of linear programs, however, it can be preferable to declare the
objective and constraints before the variables. Usually in these cases, there is a much
simpler pattern or interpretation to the coefficients of a single variable down all the con-
straints than to the coefficients of a single constraint across all the variables. In the jar-
gon of linear programming, it is easier to describe the matrix of constraint coefficients
‘‘columnwise’’ than ‘‘row-wise’’. As a result, the formulation is simplified by first
declaring the constraints and objective, then listing the nonzero coefficients in the decla-
rations of the variables.

One example of this phenomenon is provided by the network linear programs
described in Chapter 15. Each variable has at most two nonzero coefficients in the con-
straints, a +1 and a –1. Rather than trying to describe the constraints algebraically, you
may find it easier to specify, in each variable’s declaration, the one or two constraints that
the variable figures in. In fact, this is exactly what you do by using the special node and
arc declarations introduced by Section 15.3. The node declarations come first to
describe the nature of the constraints at the network nodes. Then the arc declarations
define the network flow variables, using from and to phrases to locate their nonzero
coefficients among the node constraints. This approach is particularly appealing because
it corresponds directly to the way most people think about a network flow problem.

It would be impractical for AMPL to offer special declarations and phrases for every
kind of linear program that you might want to declare by columns rather than by rows.
Instead, additional options to the var and subject to declarations permit any linear
program to be given a columnwise declaration. This chapter introduces AMPL’s column-
wise features through two contrasting examples — an input-output production model, and

353

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

354 COLUMNWISE FORMULATIONS CHAPTER 16

a work-shift scheduling model — and concludes with a summary of the language exten-
sions that may be used in columnwise formulations.

16.1 An input-output model

In simple maximum-profit production models such as the examples in Chapter 1, the
goods produced are distinct from the resources consumed, so that overall production is
limited in an obvious way by resources available. In a more realistic model of a complex
operation such as a steel mill or refinery, however, production is carried out at a series of
units; as a result, some of a production unit’s inputs may be the outputs from other units.
For this situation we need a model that deals more generally with materials that may be
inputs or outputs, and with production activities that may involve several inputs and out-
puts each.

We begin by developing an AMPL formulation in the usual row-wise (or constraint-
oriented) way. Then we explain the columnwise (or variable-oriented) alternative, and
discuss refinements of the model.

Formulation by constraints

The definition of our model starts with a set of materials and a set of activities:

set MAT;
set ACT;

The key data values are the input-output coefficients for all material-activity combina-
tions:

param io {MAT,ACT};

If io[i,j] > 0, it is interpreted as the amount of material i produced (as an output) by
a unit of activity j. On the other hand, if io[i,j] < 0, it represents minus the amount
of material i consumed (as an input) by a unit of activity j. For example, a value of 10
represents 10 units of i produced per unit of j, while a value of –10 represents 10 units
consumed per unit of j. Of course, we can expect that for many combinations of i and j
we will have io[i,j] = 0, signifying that material i does not figure in activity j at all.

To see why we want to interpret io[i,j] in this manner, suppose we define
Run[j] to be the level at which we operate (run) activity j:

param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];

var Run {j in ACT} >= act_min[j], <= act_max[j];

Then io[i,j] * Run[j] is the total amount of material i produced (if io[i,j] > 0)
or minus the amount of material i consumed (if io[i,j] < 0) by activity j. Summing
over all activities, we see that

SECTION 16.1 AN INPUT-OUTPUT MODEL 355

__
__

set MAT; # materials
set ACT; # activities
param io {MAT,ACT}; # input-output coefficients

param revenue {ACT};
param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];

var Run {j in ACT} >= act_min[j], <= act_max[j];

maximize Net_Profit: sum {j in ACT} revenue[j] * Run[j];

subject to Balance {i in MAT}:
sum {j in ACT} io[i,j] * Run[j] = 0;

Figure 16-1: Input-output model by rows (iorow.mod).
__

sum {j in ACT} io[i,j] * Run[j]

represents the amount of material i produced in the operation minus the amount con-
sumed. These amounts must balance, as expressed by the following constraint:

subject to Balance {i in MAT}:
sum {j in ACT} io[i,j] * Run[j] = 0;

What about the availability of resources, or the requirements for finished goods? These
are readily modeled through additional activities that represent the purchase or sale of
materials. A purchase activity for material i has no inputs and just i as an output; the
upper limit on Run[i] represents the amount of this resource available. Similarly, a sale
activity for material i has no outputs and just i as an input, and the lower limit on
Run[i] represents the amount of this good that must be produced for sale.

We complete the model by associating unit revenues with the activities. Sale activi-
ties necessarily have positive revenues, while purchase and production activities have
negative revenues — that is, costs. The sum of unit revenues times activity levels gives
the total net profit of the operation:

param revenue {ACT};
maximize Net_Profit: sum {j in ACT} revenue[j] * Run[j];

The completed model is shown in Figure 16-1.

A columnwise formulation

As our discussion of purchase and sale activities suggests, everything in this model
can be organized by activity. Specifically, for each activity j we have a decision variable
Run[j], a cost or income represented by revenue[j], limits act_min[j] and
act_max[j], and a collection of input-output coefficients io[i,j]. Changes such as
improving the yield of a unit, or acquiring a new source of supply, are accommodated by
adding an activity or by modifying the data for an activity.

356 COLUMNWISE FORMULATIONS CHAPTER 16

In the formulation by rows, the activities’ importance to this model is somewhat hid-
den. While act_min[j] and act_max[j] appear in the declaration of the variables,
revenue[j] is in the objective, and the io[i,j] values are in the constraint declara-
tion. The columnwise alternative brings all of this information together, by adding obj
and coeff phrases to the var declaration:

var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit revenue[j],
coeff {i in MAT} Balance[i] io[i,j];

The obj phrase says that in the objective function named Net_Profit, the variable
Run[j] has the coefficient revenue[j]; that is, the term revenue[j] * Run[j]
should be added in. The coeff phrase is a bit more complicated, because it is indexed
over a set. It says that for each material i, in the constraint Balance[i] the variable
Run[j] should have the coefficient io[i,j], so that the term io[i,j] * Run[j] is
added in. Together, these phrases describe all the coefficients of all the variables in the
linear program.

Since we have placed all the coefficients in the var declaration, we must remove
them from the other declarations:

maximize Net_Profit;
subject to Balance {i in MAT}: to_come = 0;

The keyword to_come indicates where the terms io[i,j] * Run[j] generated by
the var declaration are to be ‘‘added in.’’ You can think of to_come = 0 as a template
for the constraint, which will be filled out as the coefficients are declared. No template is
needed for the objective in this example, however, since it is exclusively the sum of the
terms revenue[j] * Run[j]. Templates may be written in a limited variety of ways,
as shown in Section 16.3 below.

Because the obj and coeff phrases refer to Net_Profit and Balance, the var
declaration must come after the maximize and subject to declarations in the
columnwise formulation. The complete model is shown in Figure 16-2.
__
__

set MAT; # materials
set ACT; # activities
param io {MAT,ACT}; # input-output coefficients

param revenue {ACT};
param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];

maximize Net_Profit;

subject to Balance {i in MAT}: to_come = 0;

var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit revenue[j],
coeff {i in MAT} Balance[i] io[i,j];

Figure 16-2: Columnwise formulation (iocol1.mod).
__

SECTION 16.1 AN INPUT-OUTPUT MODEL 357

Refinements of the columnwise formulation

The advantages of a columnwise approach become more evident as the model
becomes more complicated. As one example, consider what happens if we want to have
separate variables to represent sales of finished materials. We declare a subset of materi-
als that can be sold, and use it to index new collections of bounds, revenues and variables:

set MATF within MAT; # finished materials

param revenue {MATF} >= 0;

param sell_min {MATF} >= 0;
param sell_max {i in MATF} >= sell_min[i];

var Sell {i in MATF} >= sell_min[i], <= sell_max[i];

We may now dispense with the special sale activities previously described. Since the
remaining members of ACT represent purchase or production activities, we can introduce
a nonnegative parameter cost associated with them:

param cost {ACT} >= 0;

In the row-wise approach, the new objective is written as

maximize Net_Profit:
sum {i in MATF} revenue[i] * Sell[i]
- sum {j in ACT} cost[j] * Run[j];

to represent total sales revenue minus total raw material and production costs.
So far we seem to have improved upon the model in Figure 16-1. The composition of

net profit is more clearly modeled, and sales are restricted to explicitly designated fin-
ished materials; also the optimal amounts sold are more easily examined apart from the
other variables, by a command such as display Sell. It remains to fix up the con-
straints. We would like to say that the net output of material i from all activities, repre-
sented as

sum {j in ACT} io[i,j] * Run[j]

in Figure 16-1, must balance the amount sold — either Sell[i] if i is a finished mate-
rial, or zero. Thus the constraint declaration must be written:

subject to Balance {i in MAT}:
sum {j in ACT} io[i,j] * Run[j]

= if i in MATF then Sell[i] else 0;

Unfortunately this constraint seems less clear than our original one, due to the complica-
tion introduced by the if-then-else expression.

In the columnwise alternative, the objective and constraints are the same as in Figure
16-2, while all the changes are reflected in the declarations of the variables:

358 COLUMNWISE FORMULATIONS CHAPTER 16

__
__

set MAT; # materials
set ACT; # activities

param io {MAT,ACT}; # input-output coefficients

set MATF within MAT; # finished materials

param revenue {MATF} >= 0;

param sell_min {MATF} >= 0;
param sell_max {i in MATF} >= sell_min[i];

param cost {ACT} >= 0;
param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];

maximize Net_Profit;

subject to Balance {i in MAT}: to_come = 0;

var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit -cost[j],
coeff {i in MAT} Balance[i] io[i,j];

var Sell {i in MATF} >= sell_min[i], <= sell_max[i],
obj Net_Profit revenue[i],
coeff Balance[i] -1;

Figure 16-3: Columnwise formulation, with sales activities (iocol2.mod).
__

var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit -cost[j],
coeff {i in MAT} Balance[i] io[i,j];

var Sell {i in MATF} >= sell_min[i], <= sell_max[i],
obj Net_Profit revenue[i],
coeff Balance[i] -1;

In this view, the variable Sell[i] represents the kind of sale activity that we previously
described, with only material i as input and no materials as output — hence the single
coefficient of –1 in constraint Balance[i]. We need not specify all the zero coeffi-
cients for Sell[i]; a zero is assumed for any constraint not explicitly cited in a coeff
phrase in the declaration. The whole model is shown in Figure 16-3.

This example suggests that a columnwise approach is particularly suited to refine-
ments of the input-output model that distinguish different kinds of activities. It would be
easy to add another group of variables that represent purchases of raw materials, for
instance.

On the other hand, versions of the input-output model that involve numerous special-
ized constraints would lend themselves more to a formulation by rows.

SECTION 16.2 A SCHEDULING MODEL 359

16.2 A scheduling model

In Section 2.4 we observed that the general form of a blending model was applicable
to certain scheduling problems. Here we describe a related scheduling model for which
the columnwise approach is particularly attractive.

Suppose that a factory’s production for the next week is divided into fixed time peri-
ods, or shifts. You want to assign employees to shifts, so that the required number of
people are working on each shift. You cannot fill each shift independently of the others,
however, because only certain weekly schedules are allowed; for example, a person can-
not work five shifts in a row. Your problem is thus more properly viewed as one of
assigning employees to schedules, so that each shift is covered and the overall assignment
is the most economical.

We can conveniently represent the schedules for this problem by an indexed collec-
tion of subsets of shifts:

set SHIFTS; # shifts

param Nsched; # number of schedules;
set SCHEDS = 1..Nsched; # set of schedules

set SHIFT_LIST {SCHEDS} within SHIFTS;

For each schedule j in the set SCHEDS, the shifts that a person works on schedule j are
contained in the set SHIFT_LIST[j]. We also specify a pay rate per person on each
schedule, and the number of people required on each shift:

param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;

We let the variable Work[j] represent the number of people assigned to work each
schedule j, and minimize the sum of rate[j] * Work[j] over all schedules:

var Work {SCHEDS} >= 0;
minimize Total_Cost: sum {j in SCHEDS} rate[j] * Work[j];

Finally, our constraints say that the total of employees assigned to each shift i must be at
least the number required:

subject to Shift_Needs {i in SHIFTS}:
sum {j in SCHEDS: i in SHIFT_LIST[j]} Work[j]

>= required[i];

On the left we take the sum of Work[j] over all schedules j such that i is in
SHIFT_LIST[j]. This sum represents the total employees who are assigned to sched-
ules that contain shift i, and hence equals the total employees covering shift i.

The awkward description of the constraint in this formulation motivates us to try a
columnwise formulation. As in our previous examples, we declare the objective and con-
straints first, but with the variables left out:

minimize Total_Cost;
subject to Shift_Needs {i in SHIFTS}: to_come >= required[i];

360 COLUMNWISE FORMULATIONS CHAPTER 16

The coefficients of Work[j] appear instead in its var declaration. In the objective, it
has a coefficient of rate[j]. In the constraints, the membership of SHIFT_LIST[j]
tells us exactly what we need to know: Work[j] has a coefficient of 1 in constraint
Shift_Needs[i] for each i in SHIFT_LIST[j], and a coefficient of 0 in the other
constraints. This leads us to the following concise declaration:

var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j],
coeff {i in SHIFT_LIST[j]} Shift_Needs[i] 1;

The full model is shown in Figure 16-4.
As a specific instance of this model, imagine that you have three shifts a day on Mon-

day through Friday, and two shifts on Saturday. Each day you need 100, 78 and 52
employees on the first, second and third shifts, respectively. To keep things simple, sup-
pose that the cost per person is the same regardless of schedule, so that you may just min-
imize the total number of employees by setting rate[j] to 1 for all j.

As for the schedules, a reasonable scheduling rule might be that each employee works
five shifts in a week, but never more than one shift in any 24-hour period. Part of the
data file is shown in Figure 16-5; we don’t show the whole file, because there are 126
schedules that satisfy the rule! The resulting 126-variable linear program is not hard to
solve, however:

ampl: model sched.mod; data sched.dat; solve;
MINOS 5.5: optimal solution found.
19 iterations, objective 265.6

ampl: option display_eps .000001;
ampl: option omit_zero_rows 1;
ampl: option display_1col 0, display_width 60;

ampl: display Work;
Work [*] :=
10 28.8 30 14.4 71 35.6 106 23.2 123 35.6
18 7.6 35 6.8 73 28 109 14.4
24 6.8 66 35.6 87 14.4 113 14.4
;

As you can see, this optimal solution makes use of 13 of the schedules, some in fractional
amounts. (There exist many other optimal solutions to this problem, so the results you
get may differ.) If you round each fraction in this solution up to the next highest value,
you get a pretty good feasible solution using 271 employees. To determine whether this
is the best whole-number solution, however, it is necessary to use integer programming
techniques, which are the subject of Chapter 20.

The convenience of the columnwise formulation in this case follows directly from
how we have chosen to represent the data. We imagine that the modeler will be thinking
in terms of schedules, and will want to try adding, dropping or modifying different sched-
ules to see what solutions can be obtained. The subsets SHIFT_LIST[j] provide a
convenient and concise way of maintaining the schedules in the data. Since the data are
then organized by schedules, and there is also a variable for each schedule, it proves to be

SECTION 16.2 A SCHEDULING MODEL 361

__
__

set SHIFTS; # shifts

param Nsched; # number of schedules;
set SCHEDS = 1..Nsched; # set of schedules

set SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;

minimize Total_Cost;
subject to Shift_Needs {i in SHIFTS}: to_come >= required[i];

var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j],
coeff {i in SHIFT_LIST[j]} Shift_Needs[i] 1;

Figure 16-4: Columnwise scheduling model (sched.mod).

set SHIFTS := Mon1 Tue1 Wed1 Thu1 Fri1 Sat1
Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
Mon3 Tue3 Wed3 Thu3 Fri3 ;

param Nsched := 126 ;

set SHIFT_LIST[1] := Mon1 Tue1 Wed1 Thu1 Fri1 ;
set SHIFT_LIST[2] := Mon1 Tue1 Wed1 Thu1 Fri2 ;
set SHIFT_LIST[3] := Mon1 Tue1 Wed1 Thu1 Fri3 ;
set SHIFT_LIST[4] := Mon1 Tue1 Wed1 Thu1 Sat1 ;
set SHIFT_LIST[5] := Mon1 Tue1 Wed1 Thu1 Sat2 ;

(117 lines omitted)

set SHIFT_LIST[123] := Tue1 Wed1 Thu1 Fri2 Sat2 ;
set SHIFT_LIST[124] := Tue1 Wed1 Thu2 Fri2 Sat2 ;
set SHIFT_LIST[125] := Tue1 Wed2 Thu2 Fri2 Sat2 ;
set SHIFT_LIST[126] := Tue2 Wed2 Thu2 Fri2 Sat2 ;

param rate default 1 ;

param required := Mon1 100 Mon2 78 Mon3 52
Tue1 100 Tue2 78 Tue3 52
Wed1 100 Wed2 78 Wed3 52
Thu1 100 Thu2 78 Thu3 52
Fri1 100 Fri2 78 Fri3 52
Sat1 100 Sat2 78 ;

Figure 16-5: Partial data for scheduling model (sched.dat).
__

simpler — and for larger examples, more efficient — to specify the coefficients by vari-
able.

Models of this kind are used for a variety of scheduling problems. As a convenience,
the keyword cover may be used (in the manner of from and to for networks) to spec-
ify a coefficient of 1:

362 COLUMNWISE FORMULATIONS CHAPTER 16

var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j],
cover {i in SHIFT_LIST[j]} Shift_Needs[i];

Some of the best known and largest examples are in airline crew scheduling, where the
variables may represent the assignment of crews rather than individuals, the shifts
become flights, and the requirement is one crew for each flight. We then have what is
known as a set covering problem, in which the objective is to most economically cover
the set of all flights with subsets representing crew schedules.

16.3 Rules for columnwise formulations

The algebraic description of an AMPL constraint can be written in any of the follow-
ing ways:

arith-expr <= arith-expr
arith-expr = arith-expr
arith-expr >= arith-expr

const-expr <= arith-expr <= const-expr
const-expr >= arith-expr >= const-expr

Each const-expr must be an arithmetic expression not containing variables, while an
arith-expr may be any valid arithmetic expression — though it must be linear in the vari-
ables (Section 8.2) if the result is to be a linear program. To permit a columnwise formu-
lation, one of the arith-exprs may be given as:

to_come
to_come + arith-expr
arith-expr + to_come

Most often a ‘‘template’’ constraint of this kind consists, as in our examples, of
to_come, a relational operator and a const-expr; the constraint’s linear terms are all pro-
vided in subsequent var declarations, and to_come shows where they should go. If the
template constraint does contain variables, they must be from previous var declarations,
and the model becomes a sort of hybrid between row-wise and columnwise forms.

The expression for an objective function may also incorporate to_come in one of the
ways shown above. If the objective is a sum of linear terms specified entirely by subse-
quent var declarations, as in our examples, the expression for the objective is just
to_come and may be omitted.

In a var declaration, constraint coefficients may be specified by one or more phrases
consisting of the keyword coeff, an optional indexing expression, a constraint name,
and an arith-expr. If an indexing expression is present, a coefficient is generated for each
member of the indexing set; otherwise, one coefficient is generated. The indexing
expression may also take the special form {if logical-expr} as seen in Section 8.4 or
15.3, in which case a coefficient is generated only if the logical-expr evaluates to true.
Our simple examples have required just one coeff phrase in each var declaration, but

SECTION 16.3 RULES FOR COLUMNWISE FORMULATIONS 363

__
__

set CITIES;
set LINKS within (CITIES cross CITIES);

set PRODS;

param supply {CITIES,PRODS} >= 0; # amounts available at cities
param demand {CITIES,PRODS} >= 0; # amounts required at cities

check {p in PRODS}:
sum {i in CITIES} supply[i,p] = sum {j in CITIES} demand[j,p];

param cost {LINKS,PRODS} >= 0; # shipment costs/1000 packages
param capacity {LINKS,PRODS} >= 0; # max packages shipped
param cap_joint {LINKS} >= 0; # max total packages shipped/link

minimize Total_Cost;

node Balance {k in CITIES, p in PRODS}:
net_in = demand[k,p] - supply[k,p];

subject to Multi {(i,j) in LINKS}:
to_come <= cap_joint[i,j];

arc Ship {(i,j) in LINKS, p in PRODS} >= 0, <= capacity[i,j,p],
from Balance[i,p], to Balance[j,p],
coeff Multi[i,j] 1.0,
obj Total_Cost cost[i,j,p];

Figure 16-6: Columnwise formulation of Figure 15-13 (netmcol.mod).
__

in general a separate coeff phrase is needed for each different indexed collection of
constraints in which a variable appears.

Objective function coefficients may be specified in the same way, except that the key-
word obj is used instead of coeff.

The obj phrase in a var declaration is the same as the obj phrase used in arc dec-
larations for networks (Section 15.4). The constraint coefficients for the network vari-
ables defined by an arc declaration are normally given in from and to phrases, but
coeff phrases may be present as well; they can be useful if you want to give a column-
wise description of ‘‘side’’ constraints that apply in addition to the balance-of-flow con-
straints. As an example, Figure 16-6 shows how a coeff phrase can be used to rewrite
the multicommodity flow model of Figure 15-13 in an entirely columnwise manner.

Bibliography

Gerald Kahan, ‘‘Walking Through a Columnar Approach to Linear Programming of a Business.’’
Interfaces 12, 3 (1982) pp. 32–39. A brief for the columnwise approach to linear programming,
with a small example.

364 COLUMNWISE FORMULATIONS CHAPTER 16

Exercises

16-1. (a) Construct a columnwise formulation of the diet model of Figure 2-1.

(b) Construct a columnwise formulation of the diet model of Figure 5-1. Since there are two sepa-
rate collections of constraints in this diet model, you will need two coeff phrases in the var dec-
laration.

16-2. Expand the columnwise production model of Figure 16-3 to incorporate variables Buy[i]
that represent purchases of raw materials.

16-3. Formulate a multiperiod version of the model of Figure 16-3, using the approach introduced
in Section 4.2: first replicate the model over a set of weeks, then introduce inventory variables to
tie the weeks together. Use only columnwise declarations for all of the variables, including those
for inventory.

16-4. The ‘‘roll trim’’ or ‘‘cutting stock’’ problem has much in common with the scheduling
problem described in this chapter. Review the description of the roll trim problem in Exercise 2-6,
and use it to answer the following questions.

(a) What is the relationship between the available cutting patterns in the roll trim problem, and the
coefficients of the variables in the linear programming formulation?

(b) Formulate an AMPL model for the roll trim problem that uses only columnwise declarations of
the variables.

(c) Solve the roll trim problem for the data given in Exercise 2-6. As a test of your formulation,
show that it gives the same optimal value as a row-wise formulation of the model.

16-5. The set covering problem, mentioned at the end of Section 16.2, can be stated in a general
way as follows. You are given a set S, and certain subsets T 1, T 2, . . . , T n of S; a cost is associated
with each of the subsets. A selection of some of the subsets T j is said to cover S if every member
of S is also a member of at least one of the selected subsets. For example, if

S = {1,2,3,4}

and

T1 = {1,2,4} T2 = {2,3} T3 = {1} T4 = {3,4} T5 = {1,3}

the selections (T1,T2) and (T2,T4,T5) cover S, but the selection (T3,T4,T5) does not.

The goal of the set covering problem is to find the least costly selection of subsets that covers S.
Formulate a columnwise linear program that solves this problem for any given set and subsets.

