
17
__

Piecewise-Linear Programs

Several kinds of linear programming problems use functions that are not really linear,
but are pieced together from connected linear segments:

These ‘‘piecewise-linear’’ terms are easy to imagine, but can be hard to describe in con-
ventional algebraic notation. Hence AMPL provides a special, concise way of writing
them.

This chapter introduces AMPL’s piecewise-linear notation through examples of
piecewise-linear objective functions. In Section 17.1, terms of potentially many pieces
are used to describe costs more accurately than a single linear relationship. Section 17.2
shows how terms of two or three pieces can be valuable for such purposes as penalizing
deviations from constraints, dealing with infeasibilities, and modeling ‘‘reversible’’ activ-
ities. Finally, Section 17.3 describes piecewise-linear functions that can be written with
other AMPL operators and functions; some are most effectively handled by converting
them to the piecewise-linear notation, while others can be accommodated only through
more extensive transformations.

Although the piecewise-linear examples in this chapter are all easy to solve, seem-
ingly similar examples can be much more difficult. The last section of this chapter thus
offers guidelines for forming and using piecewise-linear terms. We explain how the easy
cases can be characterized by the convexity or concavity of the piecewise-linear terms.

365

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

366 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

__
__

Trans[i,j]..
..
..
..
..
.

..

..

..

..

..

..

..

..

..

..

.

rate1[i,j]

rate2[i,j]

rate3[i,j]

limit1[i,j] limit2[i,j]

Figure 17-1: Piecewise-linear function, with three slopes.
__

17.1 Cost terms

Piecewise-linearities are often employed to give a more realistic description of costs
than can be achieved by linear terms alone. In this kind of application, piecewise-linear
terms serve much the same purpose as nonlinear ones, but without some of the difficulties
to be described in Chapter 18.

To make the comparison explicit, we will use the same transportation example as in
Chapter 18. We introduce AMPL’s notation for piecewise-linear terms with a simple
example that has a fixed number of cost levels (and linear pieces) for each shipping link.
Then we show how an extension of the notation can use indexing expressions to specify a
varying number of pieces controlled through the data.

Fixed numbers of pieces

In a linear transportation model like Figure 3-1a, any number of units can be shipped
from a given origin to a given destination at the same cost per unit. More realistically,
however, the most favorable rate may be available for only a limited number of units;
shipments beyond this limit pay higher rates. As an example, imagine that three cost rate
levels are specified for each origin-destination pair. Then the total cost of shipments
along a link increases with the amount shipped in a piecewise-linear fashion, with three
pieces as shown in Figure 17-1.

To model the three-piece costs, we replace the parameter cost of Figure 3-1a by
three rates and two limits:

param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];

param limit1 {i in ORIG, j in DEST} > 0;
param limit2 {i in ORIG, j in DEST} > limit1[i,j];

SECTION 17.1 COST TERMS 367

Shipments from i to j are charged at rate1[i,j] per unit up to limit1[i,j]
units, then at rate2[i,j] per unit up to limit2[i,j], and then at rate3[i,j].
Normally rate2[i,j] would be greater than rate1[i,j] and rate3[i,j] would
be greater than rate2[i,j], but they may be equal if the link from i to j does not
have three distinct rates.

In the linear transportation model, the objective is expressed in terms of the variables
and the parameter cost as follows:

var Trans {ORIG,DEST} >= 0;

minimize Total_Cost:
sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];

We could express a piecewise-linear objective analogously, by introducing three collec-
tions of variables, one to represent the amount shipped at each rate:

var Trans1 {i in ORIG, j in DEST} >= 0, <= limit1[i,j];
var Trans2 {i in ORIG, j in DEST} >= 0, <= limit2[i,j]

- limit1[i,j];
var Trans3 {i in ORIG, j in DEST} >= 0;

minimize Total_Cost:
sum {i in ORIG, j in DEST} (rate1[i,j] * Trans1[i,j]

+ rate2[i,j] * Trans2[i,j] + rate3[i,j] * Trans3[i,j]);

But then the new variables would have to be introduced into all the constraints, and we
would also have to deal with these variables whenever we wanted to display the optimal
results. Rather than go to all this trouble, we would much prefer to describe the
piecewise-linear cost function explicitly in terms of the original variables. Since there is
no standard way to describe piecewise-linear functions in algebraic notation, AMPL sup-
plies its own syntax for this purpose.

The piecewise-linear function depicted in Figure 17-1 is written in AMPL as follows:

<<limit1[i,j], limit2[i,j];
rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j]

The expression between << and >> describes the piecewise-linear function, and is fol-
lowed by the name of the variable to which it applies. (You can think of it as ‘‘multiply-
ing’’ Trans[i,j], but by a series of coefficients rather than just one.) There are two
parts to the expression, a list of breakpoints where the slope of the function changes, and
a list of the slopes — which in this case are the cost rates. The lists are separated by a
semicolon, and members of each list are separated by commas. Since the first slope
applies to values before the first breakpoint, and the last slope to values after the last
breakpoint, the number of slopes must be one more than the number of breakpoints.

Although the lists of breakpoints and slopes are sufficient to describe the piecewise-
linear cost function for optimization, they do not quite specify the function uniquely. If
we added, say, 10 to the cost at every point, we would have a different cost function even
though all the breakpoints and slopes would be the same. To resolve this ambiguity,

368 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

__
__

set ORIG; # origins
set DEST; # destinations

param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];

param rate1 {i in ORIG, j in DEST} >= 0;
param rate2 {i in ORIG, j in DEST} >= rate1[i,j];
param rate3 {i in ORIG, j in DEST} >= rate2[i,j];

param limit1 {i in ORIG, j in DEST} > 0;
param limit2 {i in ORIG, j in DEST} > limit1[i,j];

var Trans {ORIG,DEST} >= 0; # units to be shipped

minimize Total_Cost:
sum {i in ORIG, j in DEST}

<<limit1[i,j], limit2[i,j];
rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];

subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

Figure 17-2: Piecewise-linear model with three slopes (transpl1.mod).
__

AMPL assumes that a piecewise-linear function evaluates to zero at zero, as in Figure
17-1. Options for other possibilities are discussed later in this chapter.

Summing the cost over all links, the piecewise-linear objective function is now writ-
ten

minimize Total_Cost:
sum {i in ORIG, j in DEST}

<<limit1[i,j], limit2[i,j];
rate1[i,j], rate2[i,j], rate3[i,j]>> Trans[i,j];

The declarations of the variables and constraints stay the same as before; the complete
model is shown in Figure 17-2.

Varying numbers of pieces

The approach taken in the preceding example is most useful when there are only a few
linear pieces for each term. If there were, for example, 12 pieces instead of three, a
model defining rate1[i,j] through rate12[i,j] and limit1[i,j] through
limit11[i,j] would be unwieldy. Realistically, moreover, there would more likely
be up to 12 pieces, rather than exactly 12, for each term; a term with fewer than 12 pieces
could be handled by making some rates equal, but for large numbers of pieces this would

SECTION 17.2 COMMON TWO-PIECE AND THREE-PIECE TERMS 369

be a cumbersome device that would require many unnecessary data values and would
obscure the actual number of pieces in each term.

A much better approach is to let the number of pieces (that is, the number of shipping
rates) itself be a parameter of the model, indexed over the links:

param npiece {ORIG,DEST} integer >= 1;

We can then index the rates and limits over all combinations of links and pieces:

param rate {i in ORIG, j in DEST, p in 1..npiece[i,j]}
>= if p = 1 then 0 else rate[i,j,p-1];

param limit {i in ORIG, j in DEST, p in 1..npiece[i,j]-1}
> if p = 1 then 0 else limit[i,j,p-1];

For any particular origin i and destination j, the number of linear pieces in the cost term
is given by npiece[i,j]. The slopes are rate[i,j,p] for p ranging from 1 to
npiece[i,j], and the intervening breakpoints are limit[i,j,p] for p from 1 to
npiece[i,j]-1. As before, there is one more slope than there are breakpoints.

To use AMPL’s piecewise-linear function notation with these data values, we have to
give indexed lists of breakpoints and slopes, rather than the explicit lists of the previous
example. This is done by placing indexing expressions in front of the slope and break-
point values:

minimize Total_Cost:
sum {i in ORIG, j in DEST}

<<{p in 1..npiece[i,j]-1} limit[i,j,p];
{p in 1..npiece[i,j]} rate[i,j,p]>> Trans[i,j];

Once again, the rest of the model is the same. Figure 17-3a shows the whole model and
Figure 17-3b illustrates how the data would be specified. Notice that since
npiece["PITT","STL"] is 1, Trans["PITT","STL"] has only one slope and
no breakpoints; this implies a one-piece linear term for Trans["PITT","STL"] in
the objective function.

17.2 Common two-piece and three-piece terms

Simple piecewise-linear terms have a variety of uses in otherwise linear models. In
this section we present three cases: allowing limited violations of the constraints, analyz-
ing infeasibility, and representing costs for variables that are meaningful at negative as
well as positive levels.

Penalty terms for ‘‘soft’’ constraints

Linear programs most easily express ‘‘hard’’ constraints: that production must be at
least at a certain level, for example, or that resources used must not exceed those avail-
able. Real situations are often not nearly so definite. Production and resource use may

370 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

__
__

set ORIG; # origins
set DEST; # destinations

param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];

param npiece {ORIG,DEST} integer >= 1;

param rate {i in ORIG, j in DEST, p in 1..npiece[i,j]}
>= if p = 1 then 0 else rate[i,j,p-1];

param limit {i in ORIG, j in DEST, p in 1..npiece[i,j]-1}
> if p = 1 then 0 else limit[i,j,p-1];

var Trans {ORIG,DEST} >= 0; # units to be shipped

minimize Total_Cost:
sum {i in ORIG, j in DEST}

<<{p in 1..npiece[i,j]-1} limit[i,j,p];
{p in 1..npiece[i,j]} rate[i,j,p]>> Trans[i,j];

subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

Figure 17-3a: Piecewise-linear model with indexed slopes (transpl2.mod).
__

have certain preferred levels, yet we may be allowed to violate these levels by accepting
some extra costs or reduced profits. The resulting ‘‘soft’’ constraints can be modeled by
adding piecewise-linear ‘‘penalty’’ terms to the objective function.

For an example, we return to the multi-week production model developed in Chapter
4. As seen in Figure 4-4, the constraints say that, in each of weeks 1 through T, total
hours used to make all products may not exceed hours available:

subject to Time {t in 1..T}:
sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

Suppose that, in reality, a larger number of hours may be used in each week, but at some
penalty per hour to the total profit. Specifically, we replace the parameter avail[t] by
two availability levels and an hourly penalty rate:

param avail_min {1..T} >= 0;
param avail_max {t in 1..T} >= avail_min[t];

param time_penalty {1..T} > 0;

Up to avail_min[t] hours are available without penalty in week t, and up to
avail_max[t] hours are available at a loss of time_penalty[t] in profit for each
hour above avail_min[t].

To model this situation, we introduce a new variable Use[t] to represent the hours
used by production. Clearly Use[t] may not be less than zero, or greater than

SECTION 17.2 COMMON TWO-PIECE AND THREE-PIECE TERMS 371

__
__

param: ORIG: supply :=
GARY 1400 CLEV 2600 PITT 2900 ;

param: DEST: demand :=
FRA 900 DET 1200 LAN 600 WIN 400
STL 1700 FRE 1100 LAF 1000 ;

param npiece: FRA DET LAN WIN STL FRE LAF :=
GARY 3 3 3 2 3 2 3
CLEV 3 3 3 3 3 3 3
PITT 2 2 2 2 1 2 1 ;

param rate :=
[GARY,FRA,*] 1 39 2 50 3 70 [GARY,DET,*] 1 14 2 17 3 33
[GARY,LAN,*] 1 11 2 12 3 23 [GARY,WIN,*] 1 14 2 17
[GARY,STL,*] 1 16 2 23 3 40 [GARY,FRE,*] 1 82 2 98
[GARY,LAF,*] 1 8 2 16 3 24

[CLEV,FRA,*] 1 27 2 37 3 47 [CLEV,DET,*] 1 9 2 19 3 24
[CLEV,LAN,*] 1 12 2 32 3 39 [CLEV,WIN,*] 1 9 2 14 3 21
[CLEV,STL,*] 1 26 2 36 3 47 [CLEV,FRE,*] 1 95 2 105 3 129
[CLEV,LAF,*] 1 8 2 16 3 24

[PITT,FRA,*] 1 24 2 34 [PITT,DET,*] 1 14 2 24
[PITT,LAN,*] 1 17 2 27 [PITT,WIN,*] 1 13 2 23
[PITT,STL,*] 1 28 [PITT,FRE,*] 1 99 2 140
[PITT,LAF,*] 1 20 ;

param limit :=
[GARY,*,*] FRA 1 500 FRA 2 1000 DET 1 500 DET 2 1000

LAN 1 500 LAN 2 1000 WIN 1 1000
STL 1 500 STL 2 1000 FRE 1 1000
LAF 1 500 LAF 2 1000

[CLEV,*,*] FRA 1 500 FRA 2 1000 DET 1 500 DET 2 1000
LAN 1 500 LAN 2 1000 WIN 1 500 WIN 2 1000
STL 1 500 STL 2 1000 FRE 1 500 FRE 2 1000
LAF 1 500 LAF 2 1000

[PITT,*,*] FRA 1 1000 DET 1 1000 LAN 1 1000 WIN 1 1000
FRE 1 1000 ;

Figure 17-3b: Data for piecewise-linear model (transpl2.dat).
__

avail_max[t]. In place of our previous constraint, we say that the total hours used to
make all products must equal Use[t]:

var Use {t in 1..T} >= 0, <= avail_max[t];

subject to Time {t in 1..T}:
sum {p in PROD} (1/rate[p]) * Make[p,t] = Use[t];

We can now describe the hourly penalty in terms of this new variable. If Use[t] is
between 0 and avail_min[t], there is no penalty; if Use[t] is between
avail_min[t] and avail_max[t], the penalty is time_penalty[t] per hour

372 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

__
__

avail_min[t]

← slope = time_penalty[t]

Use[t]

penalty

Figure 17-4: Piecewise-linear penalty function for hours used.
__

that it exceeds avail_min[t]. That is, the penalty is a piecewise-linear function of
Use[t] as shown in Figure 17-4, with slopes of 0 and time_penalty[t] surround-
ing a breakpoint at avail_min[t]. Using the syntax previously introduced, we can
rewrite the expression for the objective function as:

maximize Net_Profit:
sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -

prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t])
- sum {t in 1..T} <<avail_min[t]; 0,time_penalty[t]>> Use[t];

The first summation is the same expression for total profit as before, while the second is
the sum of the piecewise-linear penalty functions over all weeks. Between << and >> are
the breakpoint avail_min[t] and a list of the surrounding slopes, 0 and
time_penalty[t]; this is followed by the argument Use[t].

The complete revised model is shown in Figure 17-5a, and our small data set from
Chapter 4 is expanded with the new availabilities and penalties in Figure 17-5b. In the
optimal solution, we find that the hours used are as follows:

ampl: model steelpl1.mod; data steelpl1.dat; solve;
MINOS 5.5: optimal solution found.
21 iterations, objective 457572.8571

ampl: display avail_min,Use,avail_max;
: avail_min Use avail_max :=
1 35 35 42
2 35 42 42
3 30 30 40
4 35 42 42
;

In weeks 1 and 3 we use only the unpenalized hours available, while in weeks 2 and 4 we
also use the penalized hours. Solutions to piecewise-linear programs usually display this
sort of solution, in which many (though not necessarily all) of the variables ‘‘stick’’ at
one of the breakpoints.

SECTION 17.2 COMMON TWO-PIECE AND THREE-PIECE TERMS 373

__
__

set PROD; # products
param T > 0; # number of weeks

param rate {PROD} > 0; # tons per hour produced
param inv0 {PROD} >= 0; # initial inventory
param commit {PROD,1..T} >= 0; # minimum tons sold in week
param market {PROD,1..T} >= 0; # limit on tons sold in week

param avail_min {1..T} >= 0; # unpenalized hours available
param avail_max {t in 1..T} >= avail_min[t]; # total hours avail
param time_penalty {1..T} > 0;

param prodcost {PROD} >= 0; # cost/ton produced
param invcost {PROD} >= 0; # carrying cost/ton of inventory
param revenue {PROD,1..T} >= 0; # revenue/ton sold

var Make {PROD,1..T} >= 0; # tons produced
var Inv {PROD,0..T} >= 0; # tons inventoried
var Sell {p in PROD, t in 1..T}

>= commit[p,t], <= market[p,t]; # tons sold

var Use {t in 1..T} >= 0, <= avail_max[t]; # hours used

maximize Total_Profit:
sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -

prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t])
- sum {t in 1..T} <<avail_min[t]; 0,time_penalty[t]>> Use[t];

Objective: total revenue less costs in all weeks

subject to Time {t in 1..T}:
sum {p in PROD} (1/rate[p]) * Make[p,t] = Use[t];

Total of hours used by all products
may not exceed hours available, in each week

subject to Init_Inv {p in PROD}: Inv[p,0] = inv0[p];

Initial inventory must equal given value

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

Tons produced and taken from inventory
must equal tons sold and put into inventory

Figure 17-5a: Piecewise-linear objective with penalty function (steelpl1.mod).
__

Dealing with infeasibility

The parameters commit[p,t] in Figure 17-5b represent the minimum production
amounts for each product in each week. If we change the data to raise these commit-
ments:

param commit: 1 2 3 4 :=
bands 3500 5900 3900 6400
coils 2500 2400 3400 4100 ;

374 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

__
__

param T := 4;
set PROD := bands coils;

param: rate inv0 prodcost invcost :=
bands 200 10 10 2.5
coils 140 0 11 3 ;

param: avail_min avail_max time_penalty :=
1 35 42 3100
2 35 42 3000
3 30 40 3700
4 35 42 3100 ;

param revenue: 1 2 3 4 :=
bands 25 26 27 27
coils 30 35 37 39 ;

param commit: 1 2 3 4 :=
bands 3000 3000 3000 3000
coils 2000 2000 2000 2000 ;

param market: 1 2 3 4 :=
bands 6000 6000 4000 6500
coils 4000 2500 3500 4200 ;

Figure 17-5b: Data for Figure 17-5a (steelpl1.dat).
__

then there are not enough hours to produce even these minimum amounts, and the solver
reports that the problem is infeasible:

ampl: model steelpl1.mod;
ampl: data steelpl2.dat;

ampl: solve;
MINOS 5.5: infeasible problem.
13 iterations

In the solution that is returned, the inventory of coils in the last period is negative:

ampl: option display_1col 0;
ampl: display Inv;
Inv [*,*] (tr)
: bands coils :=
0 10 0
1 0 937
2 0 287
3 0 0
4 0 -2700
;

and production of coils in several periods is below the minimum required:

SECTION 17.2 COMMON TWO-PIECE AND THREE-PIECE TERMS 375

__
__

avail_min[t]
..
..
..
..
..
..
.

← slope = time_penalty[t]

avail_max[t]
Use[t]

penalty

Figure 17-6: Penalty function for hours used, with two breakpoints.
__

ampl: display commit,Make,market;
: commit Make market :=
bands 1 3500 3490 6000
bands 2 5900 5900 6000
bands 3 3900 3900 4000
bands 4 6400 6400 6500
coils 1 2500 3437 4000
coils 2 2400 1750 2500
coils 3 3400 2870 3500
coils 4 4100 1400 4200
;

These are typical of the infeasible results that solvers return. The infeasibilities are scat-
tered around the solution, so that it is hard to tell what changes might be necessary to
achieve feasibility. By extending the idea of penalties, we can better concentrate the
infeasibility where it can be understood.

Suppose that we want to view the infeasibility in terms of a shortage of hours. Imag-
ine that we extend the piecewise-linear penalty function of Figure 17-4 to the one shown
in Figure 17-6. Now Use[t] is allowed to increase past avail_max[t], but only
with an extremely steep penalty per hour — so that the solution will use hours above
avail_max[t] only to the extent absolutely necessary.

In AMPL, the new penalty function is introduced through the following changes:

var Use {t in 1..T} >= 0;

maximize Total_Profit:
sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -

prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t])
- sum {t in 1..T} <<avail_min[t],avail_max[t];

0,time_penalty[t],100000>> Use[t];

The former bound avail_max[t] has become a breakpoint, and to its right a very
large slope of 100,000 has been introduced. Now we get a feasible solution, which uses
hours as follows:

376 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

__
__

commit[p,t]
Sell[p,t]

penalty

Figure 17-7: Penalty function for sales.
__

ampl: model steelpl2.mod; data steelpl2.dat; solve;
MINOS 5.5: optimal solution found.
19 iterations, objective -1576814.857

ampl: display avail_max,Use;
: avail_max Use :=
1 42 42
2 42 42
3 40 41.7357
4 42 61.2857
;

This table implies that the commitments can be met only by adding about 21 hours,
mostly in the last week.

Alternatively, we may view the infeasibility in terms of an excess of commitments.
For this purpose we subtract a very large penalty from the objective for each unit that
Sell[p,t] falls below commit[p,t]; the penalty as a function of Sell[p,t] is
depicted in Figure 17-7.

Since this function has a breakpoint at commit[p,t], with a slope of 0 to the right
and a very negative value to the left, it would seem that the AMPL representation could be

<<commit[p,t]; -100000,0>> Sell[p,t]

Recall, however, AMPL’s convention that such a function takes the value zero at zero.
Figure 17-7 clearly shows that we want our penalty function to take a positive value at
zero, so that it will fall to zero at commit[p,t] and beyond. In fact we want the func-
tion to take a value of 100000 * commit[p,t] at zero, and we could express the
function properly by adding this constant to the penalty expression:

<<commit[p,t]; -100000,0>> Sell[p,t] + 100000*commit[p,t]

The same thing may be said more concisely by using a second argument that states
explicitly where the piecewise-linear function should evaluate to zero:

<<commit[p,t]; -100000,0>> (Sell[p,t],commit[p,t])

This says that the function should be zero at commit[p,t], as Figure 17-7 shows. In
the completed model, we have:

SECTION 17.2 COMMON TWO-PIECE AND THREE-PIECE TERMS 377

var Sell {p in PROD, t in 1..T} >= 0, <= market[p,t];

maximize Total_Profit:
sum {p in PROD, t in 1..T} (revenue[p,t]*Sell[p,t] -

prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t])
- sum {t in 1..T} <<avail_min[t]; 0,time_penalty[t]>> Use[t]
- sum {p in PROD, t in 1..T}

<<commit[p,t]; -100000,0>> (Sell[p,t],commit[p,t]);

The rest of the model is the same as in Figure 17-5a. Notice that Sell[p,t] appears in
both a linear and a piecewise-linear term within the objective function; AMPL automati-
cally recognizes that the sum of these terms is also piecewise-linear.

This version, using the same data, produces a solution in which the amounts sold are
as follows:

ampl: model steelpl3.mod; data steelpl2.dat; solve;
MINOS 5.5: optimal solution found.
24 iterations, objective -293856347

ampl: display Sell,commit;
: Sell commit :=
bands 1 3500 3500
bands 2 5900 5900
bands 3 3900 3900
bands 4 6400 6400
coils 1 0 2500
coils 2 2400 2400
coils 3 3400 3400
coils 4 3657 4100
;

To get by with the given number of hours, commitments to deliver coils are cut by 2500
tons in the first week and 443 tons in the fourth week.

Reversible activities

Almost all of the linear programs in this book are formulated in terms of nonnegative
variables. Sometimes a variable makes sense at negative as well as positive values, how-
ever, and in many such cases the associated cost is piecewise-linear with a breakpoint at
zero.

One example is provided by the inventory variables in Figure 17-5a. We have
defined Inv[p,t] to represent the tons of product p inventoried at the end of week t.
That is, after week t there are Inv[p,t] tons of product p that have been made but not
sold. A negative value of Inv[p,t] could thus reasonably be interpreted as represent-
ing tons of product p that have been sold but not made — tons backordered, in effect.
The material balance constraints,

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

remain valid under this interpretation.

378 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

This analysis suggests that we remove the >= 0 from the declaration of Inv in our
model. Then backordering might be especially attractive if the sales price were expected
to drop in later weeks, like this:

param revenue: 1 2 3 4 :=
bands 25 26 23 20
coils 30 35 31 25 ;

When we re-solve with appropriately revised model and data files, however, the results
are not what we expect:

ampl: model steelpl4.mod; data steelpl4.dat; solve;
MINOS 5.5: optimal solution found.
15 iterations, objective 1194250

ampl: display Make,Inv,Sell;
: Make Inv Sell :=
bands 0 . 10 .
bands 1 0 -5990 6000
bands 2 0 -11990 6000
bands 3 0 -15990 4000
bands 4 0 -22490 6500
coils 0 . 0 .
coils 1 0 -4000 4000
coils 2 0 -6500 2500
coils 3 0 -10000 3500
coils 4 0 -14200 4200
;

The source of difficulty is in the objective function, where invcost[p] * Inv[p,t]
is subtracted from the sales revenue. When Inv[p,t] is negative, a negative amount is
subtracted, increasing the apparent total profit. The greater the amount backordered, the
more the total profit is increased — hence the odd solution in which the maximum possi-
ble sales are backordered, while nothing is produced!

A proper inventory cost function for this model looks like the one graphed in Figure
17-8. It increases both as Inv[p,t] becomes more positive (greater inventories) and as
Inv[p,t] becomes more negative (greater backorders). We represent this piecewise-
linear function in AMPL by declaring a backorder cost to go with the inventory cost:
__
__

← Backordered Inventoried →
Inv

Figure 17-8: Inventory cost function.
__

SECTION 17.3 OTHER PIECEWISE-LINEAR FUNCTIONS 379

param invcost {PROD} >= 0;
param backcost {PROD} >= 0;

Then the slopes for the Inv[p,t] term in the objective are -backcost[p] and
invcost[p], with the breakpoint at zero, and the correct objective function is:

maximize Total_Profit:
sum {p in PROD, t in 1..T}

(revenue[p,t]*Sell[p,t] - prodcost[p]*Make[p,t]
- <<0; -backcost[p],invcost[p]>> Inv[p,t])

- sum {t in 1..T} <<avail_min[t]; 0,time_penalty[t]>> Use[t];

In contrast to our first example, the piecewise-linear function is subtracted rather than
added. The result is still piecewise-linear, though; it’s the same as if we had added the
expression <<0; backcost[p], -invcost[p]>> Inv[p,t].

When we make this change, and add some backorder costs to the data, we get a more
reasonable-looking solution. Nevertheless, there remains a tendency to make nothing and
backorder everything in the later periods; this is an ‘‘end effect’’ that occurs because the
model does not account for the eventual production cost of items backordered past the
last period. As a quick fix, we can rule out any remaining backorders at the end, by
adding a constraint that final-week inventory must be nonnegative:

subject to Final {p in PROD}: Inv[p,T] >= 0;

Solving with this constraint, and with backcost values of 1.5 for band and 2 for coils:

ampl: model steelpl5.mod; data steelpl5.dat; solve;
MINOS 5.5: optimal solution found.
20 iterations, objective 370752.8571

ampl: display Make,Inv,Sell;
: Make Inv Sell :=
bands 0 . 10 .
bands 1 4142.86 0 4152.86
bands 2 6000 0 6000
bands 3 3000 0 3000
bands 4 3000 0 3000
coils 0 . 0 .
coils 1 2000 0 2000
coils 2 1680 -820 2500
coils 3 2100 -800 2080
coils 4 2800 0 2000
;

About 800 tons of coils for weeks 2 and 3 will be delivered a week late under this plan.

17.3 Other piecewise-linear functions

Many simple piecewise-linear functions can be modeled in several equivalent ways in
AMPL. The function of Figure 17-4, for example, could be written as

380 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

if Use[t] > avail_min[t]
then time_penalty[t] * (Use[t] - avail_min[t]) else 0

or more concisely as

max(0, time_penalty[t] * (Use[t] - avail_min[t]))

The current version of AMPL does not detect that these expressions are piecewise-linear,
so you are unlikely to get satisfactory results if you try to solve a model that has expres-
sions like these in its objective. To take advantage of linear programming techniques that
can be applied for piecewise-linear terms, you need to use the piecewise-linear terminol-
ogy

<<avail_min[t]; 0,time_penalty[t]>> Use[t]

so the structure can be noted and passed to a solver.
The same advice applies to the function abs. Imagine that we would like to encour-

age the number of hours used to be close to avail_min[t]. Then we would want the
penalty term to equal time_penalty[t] times the amount that Use[t] deviates
from avail_min[t], either above or below. Such a term can be written as

time_penalty[t] * abs(Use[t] - avail_min[t])

To express it in an explicitly piecewise-linear fashion, however, you should write it as

time_penalty[t] * <<avail_min[t]; -1,1>> Use[t]

or equivalently,

<<avail_min[t]; -time_penalty[t],time_penalty[t]>> Use[t]

As this example shows, multiplying a piecewise-linear function by a constant is the same
as multiplying each of its slopes individually.

As a final example of a common piecewise-linearity in the objective, we return to the
kind of assignment model that was discussed in Chapter 15. Recall that, for i in the set
PEOPLE and j in the set PROJECTS, cost[i,j] is the cost for person i to work an
hour on project j, and the decision variable Assign[i,j] is the number of hours that
person i is assigned to work on project j:

set PEOPLE;
set PROJECTS;

param cost {PEOPLE,PROJECTS} >= 0;
var Assign {PEOPLE,PROJECTS} >= 0;

We originally formulated the objective as the total cost of all assignments,

sum {i in PEOPLE, j in PROJECTS} cost[i,j] * Assign[i,j]

What if we want the fairest assignment instead of the cheapest? Then we might minimize
the maximum cost of any one person’s assignments:

SECTION 17.3 OTHER PIECEWISE-LINEAR FUNCTIONS 381

__
__

set PEOPLE;
set PROJECTS;

param supply {PEOPLE} >= 0; # hours each person is available
param demand {PROJECTS} >= 0; # hours each project requires

check: sum {i in PEOPLE} supply[i]
= sum {j in PROJECTS} demand[j];

param cost {PEOPLE,PROJECTS} >= 0; # cost per hour of work
param limit {PEOPLE,PROJECTS} >= 0; # maximum contributions

to projects

var M;
var Assign {i in PEOPLE, j in PROJECTS} >= 0, <= limit[i,j];

minimize Max_Cost: M;

subject to M_def {i in PEOPLE}:
M >= sum {j in PROJECTS} cost[i,j] * Assign[i,j];

subject to Supply {i in PEOPLE}:
sum {j in PROJECTS} Assign[i,j] = supply[i];

subject to Demand {j in PROJECTS}:
sum {i in PEOPLE} Assign[i,j] = demand[j];

Figure 17-9: Min-max assignment model (minmax.mod).
__

minimize Max_Cost:
max {i in PEOPLE}

sum {j in PROJECTS} cost[i,j] * Assign[i,j];

This function is also piecewise-linear, in a sense; it is pieced together from the linear
functions sum {j in PROJECTS} cost[i,j] * Assign[i,j] for different people
i. However, it is not piecewise-linear in the individual variables — in mathematical jar-
gon, it is not separable — and hence it cannot be written using the << . . . >> notation.

This is a case in which piecewise-linearity can only be handled by rewriting the model
as a linear program. We introduce a new variable M to represent the maximum. Then we
write constraints to guarantee that M is greater than or equal to each cost of which it is the
maximum:

var M;
minimize Max_Cost: M;

subject to M_def {i in PEOPLE}:
M >= sum {j in PROJECTS} cost[i,j] * Assign[i,j];

Because M is being minimized, at the optimal solution it will in fact equal the maximum
of sum {j in PROJECTS} cost[i,j] * Assign[i,j] over all i in PEOPLE.
The other constraints are the same as in any assignment problem, as shown in Figure
17-9.

382 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

This kind of reformulation can be applied to any problem that has a ‘‘min-max’’
objective. The same idea works for the analogous ‘‘max-min’’ objective, with
maximize instead of minimize and with M <= . . . in the constraints.

17.4 Guidelines for piecewise-linear optimization

AMPL’s piecewise-linear notation has the power to specify a variety of useful func-
tions. We summarize below its various forms, most of which have been illustrated earlier
in this chapter.

Because this notation is so general, it can be used to specify many functions that are
not readily optimized by any efficient and reliable algorithms. We conclude by describ-
ing the kinds of piecewise-linear functions that are most likely to appear in tractable mod-
els, with particular emphasis on the property of convexity or concavity.

Forms for piecewise-linear expressions

An AMPL piecewise-linear term has the general form

<<breakpoint - list; slope - list>> pl - argument

where breakpoint-list and slope-list each consist of a comma-separated list of one or more
items. An item may be an individual arithmetic expression, or an indexing expression
followed by an arithmetic expression. In the latter case, the indexing expression must be
an ordered set; the item is expanded to a list by evaluating the arithmetic expression once
for each set member (as in the example of Figure 17-3a).

After any indexed items are expanded, the number of slopes must be one more than
the number of breakpoints, and the breakpoints must be nondecreasing. The resulting
piecewise-linear function is constructed by interleaving the slopes and breakpoints in the
order given, with the first slope to the left of the first breakpoint, and the last slope to the
right of the last breakpoint. By indexing breakpoints over an empty set, it is possible to
specify no breakpoints and one slope, in which case the function is linear.

The pl-argument may have one of the forms

var - ref
(arg - expr)
(arg - expr, zero - expr)

The var-ref (a reference to a previously declared variable) or the arg-expr (an arithmetic
expression) specifies the point where the piecewise-linear function is to be evaluated.
The zero-expr is an arithmetic expression that specifies a place where the function is zero;
when the zero-expr is omitted, the function is assumed to be zero at zero.

SECTION 17.4 GUIDELINES FOR PIECEWISE-LINEAR OPTIMIZATION 383

Suggestions for piecewise-linear models

As seen in all of our examples, AMPL’s terminology for piecewise-linear functions of
variables is limited to describing functions of individual variables. In model declarations,
no variables may appear in the breakpoint-list, slope-list and zero-expr (if any), while an
arg-expr can only be a reference to an individual variable. (Piecewise-linear expressions
in commands like display may use variables without limitation, however.)

A piecewise-linear function of an individual variable remains such a function when
multiplied or divided by an arithmetic expression without variables. AMPL also treats a
sum or difference of piecewise-linear and linear functions of the same variable as repre-
senting one piecewise-linear function of that variable. A separable piecewise-linear
function of a model’s variables is a sum or difference (using +, - or sum) of piecewise-
linear or linear functions of the individual variables. Optimizers can effectively handle
these separable functions, which are the ones that appear in our examples.

A piecewise-linear function is convex if successive slopes are nondecreasing (along
with the breakpoints), and is concave if the slopes are nonincreasing. The two kinds of
piecewise-linear optimization most easily handled by solvers are minimizing a separable
convex piecewise-linear function, and maximizing a separable concave piecewise-linear
function, subject to linear constraints. You can easily check that all of this chapter’s
examples are of these kinds. AMPL can obtain solutions in these cases by translating to
an equivalent linear program, applying any LP solver, and then translating the solution
back; the whole sequence occurs automatically when you type solve.

Outside of these two cases, optimizing a separable piecewise-linear function must be
viewed as an application of integer programming — the topic of Chapter 20 — and
AMPL must translate piecewise-linear terms to equivalent integer programming forms.
This, too, is done automatically, for solution by an appropriate solver. Because integer
programs are usually much harder to solve than similar linear programs of comparable
size, however, you should not assume that just any separable piecewise-linear function
can be readily optimized; a degree of experimentation may be necessary to determine
how large an instance your solver can handle. The best results are likely to be obtained
by solvers that accept an option known (mysteriously) as ‘‘special ordered sets of type
2’’; check the solver-specific documentation for details.

The situation for the constraints can be described in a similar way. However, a sepa-
rable piecewise-linear function in a constraint can be handled through linear program-
ming only under a restrictive set of circumstances:

• If it is convex and on the left-hand side of a ≤ constraint (or equivalently, the
right-hand side of a ≥ constraint);

• If it is concave and on the left-hand side of a ≥ constraint (or equivalently, the
right-hand side of a ≤ constraint).

Other piecewise-linearities in the constraints must be dealt with through integer program-
ming techniques, and the preceding comments for the case of the objective apply.

If you have access to a solver that can handle piecewise-linearities directly, you can
turn off AMPL’s translation to the linear or integer programming form by setting the

384 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

option pl_linearize to 0. The case of minimizing a convex or maximizing a con-
cave separable piecewise-linear function can in particular be handled very efficiently by
piecewise-linear generalizations of LP techniques. A solver intended for nonlinear pro-
gramming may also accept piecewise-linear functions, but it is unlikely to handle them
reliably unless it has been specially designed for ‘‘nondifferentiable’’ optimization.

The differences between hard and easy piecewise-linear cases can be slight. This
chapter’s transportation example is easy, in particular because the shipping rates increase
along with shipping volume. The same example would be hard if economies of scale
caused shipping rates to decrease with volume, since then we would be minimizing a con-
cave rather than a convex function. We cannot say definitively that shipping rates ought
to be one way or the other; their behavior depends upon the specifics of the situation
being modeled.

In all cases, the difficulty of piecewise-linear optimization gradually increases with
the total number of pieces. Thus piecewise-linear cost functions are most effective when
the costs can be described or approximated by relatively few pieces. If you need more
than about a dozen pieces to describe a cost accurately, you may be better off using a
nonlinear function as described in Chapter 18.

Bibliography

Robert Fourer, ‘‘A Simplex Algorithm for Piecewise-Linear Programming III: Computational
Analysis and Applications.’’ Mathematical Programming 53 (1992) pp. 213–235. A survey of
conversions from piecewise-linear to linear programs, and of applications.

Robert Fourer and Roy E. Marsten, ‘‘Solving Piecewise-Linear Programs: Experiments with a
Simplex Approach.’’ ORSA Journal on Computing 4 (1992) pp. 16–31. Descriptions of varied
applications and of experience in solving them.

Spyros Kontogiorgis, ‘‘Practical Piecewise-Linear Approximation for Monotropic Optimization.’’
INFORMS Journal on Computing 12 (2000) pp. 324–340. Guidelines for choosing the breakpoints
when approximating a nonlinear function by a piecewise-linear one.

Exercises

17-1. Piecewise-linear models are sometimes an alternative to the nonlinear models described in
Chapter 18, replacing a smooth curve by a series of straight-line segments. This exercise deals
with the model shown in Figure 18-4.

(a) Reformulate the model of Figure 18-4 so that it approximates each nonlinear term

Trans[i,j] / (1 - Trans[i,j]/limit[i,j])

by a piecewise-linear term having three pieces. Set the breakpoints at (1/3) * limit[i,j]
and (2/3) * limit[i,j]. Pick the slopes so that the approximation equals the original nonlin-
ear term when Trans[i,j] is 0, 1/3 * limit[i,j], 2/3 * limit[i,j], or 11/12 *
limit[i,j]; you should find that the three slopes are 3/2, 9/2 and 36 in every term, regardless

SECTION 17.4 GUIDELINES FOR PIECEWISE-LINEAR OPTIMIZATION 385

of the size of limit[i,j]. Finally, place an explicit upper limit of 0.99 * limit[i,j] on
Trans[i,j].

(b) Solve the approximation with the data given in Figure 18-5, and compare the optimal shipment
amounts to the amounts recommended by the nonlinear model.

(c) Formulate a more sophisticated version in which the number of linear pieces for each term is
given by a parameter nsl. Pick the breakpoints to be at (k/nsl) * limit[i,j] for k from 1
to nsl-1. Pick the slopes so that the piecewise-linear function equals the original nonlinear func-
tion when Trans[i,j] is (k/nsl) * limit[i,j] for any k from 0 to nsl-1, or when
Trans[i,j] is (nsl-1/4)/nsl * limit[i,j].

Check your model by showing that you get the same results as in (b) when nsl is 3. Then, by try-
ing higher values of nsl, determine how many linear pieces the approximation requires in order to
determine all shipment amounts to within about 10% of the amounts recommended by the original
nonlinear model.

17-2. This exercise asks how you might convert the demand constraints in the transportation
model of Figure 3-1a into the kind of ‘‘soft’’ constraints described in Section 17.2.

Suppose that instead of a single parameter called demand[j] at each destination j, you are given
the following four parameters that describe a more complicated situation:

dem_min_abs[j] absolute minimum that must be shipped to j
dem_min_ask[j] preferred minimum amount shipped to j
dem_max_ask[j] preferred maximum amount shipped to j
dem_max_abs[j] absolute maximum that may be shipped to j

There are also two penalty costs for shipment amounts outside of the preferred limits:

dem_min_pen penalty per unit that shipments fall below dem_min_ask[j]
dem_max_pen penalty per unit that shipments exceed dem_max_ask[j]

Because the total shipped to j is no longer fixed, a new variable Receive[j] is introduced to
represent the amount received at j.

(a) Modify the model of Figure 3-1a to use this new information. The modifications will involve
declaring Receive[j] with the appropriate lower and upper bounds, adding a three-piece
piecewise-linear penalty term to the objective function, and substituting Receive[j] for
demand[j] in the constraints.

(b) Add the following demand information to the data of Figure 3-1b:

dem_min_abs dem_min_ask dem_max_ask dem_max_abs
FRA 800 850 950 1100
DET 975 1100 1225 1250
LAN 600 600 625 625
WIN 350 375 450 500
STL 1200 1500 1800 2000
FRE 1100 1100 1100 1125
LAF 800 900 1050 1175

Let dem_min_pen and dem_max_pen be 2 and 4, respectively. Find the new optimal solution.
In the solution, which destinations receive shipments that are outside the preferred levels?

17-3. When the diet model of Figure 2-1 is run with the data of Figure 2-3, there is no feasible
solution. This exercise asks you to use the ideas of Section 17.2 to find some good near-feasible
solutions.

386 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

(a) Modify the model so that it is possible, at a very high penalty, to purchase more than the speci-
fied maximum of a food. In the resulting solution, which maximums are exceeded?

(b) Modify the model so that it is possible, at a very high penalty, to supply more than the specified
maximum of a nutrient. In the resulting solution, which maximums are exceeded?

(c) Using extremely large penalties, such as 1020 may give the solver numerical difficulties.
Experiment to see how available solvers behave when you use penalty terms like 1020 and 1030.

17-4. In the model of Exercise 4-4(b), the change in crews from one period to the next is limited
to some number M. As an alternative to imposing this limit, suppose that we introduce a new vari-
able D t that represents the change in number of crews (in all shifts) at period t. This variable may
be positive, indicating an increase in crews over the previous period, or negative, indicating a
decrease in crews.

To make use of this variable, we introduce a defining constraint,

D t = Σ s ∈S
(Y st − Y s ,t − 1),

for each t = 1, . . . , T. We then estimate costs of c + per crew added from period to period, and c −

per crew dropped from period to period; as a result, the following cost must be included in the
objective for each month t:

c − D t , if D t < 0;

c + D t , if D t > 0.

Reformulate the model in AMPL accordingly, using a piecewise-linear function to represent this
extra cost.

Solve using c − = –20000 and c + = 100000, together with the data previously given. How does this
solution compare to the one from Exercise 4-4(b)?

17-5. The following ‘‘credit scoring’’ problem appears in many contexts, including the process-
ing of credit card applications. A set APPL of people apply for a card, each answering a set QUES
of questions on the application. The response of person i to question j is converted to a number,
ans[i,j]; typical numbers are years at current address, monthly income, and a home ownership
indicator (say, 1 if a home is owned and 0 otherwise).

To summarize the responses, the card issuer chooses weights Wt[j], from which a score for each
person i in APPL is computed by the linear formula

sum {j in QUES} ans[i,j] * Wt[j]

The issuer also chooses a cutoff, Cut; credit is granted when an applicant’s score is greater than or
equal to the cutoff, and is denied when the score is less than the cutoff. In this way the decision
can be made objectively (if not always most wisely).

To choose the weights and the cutoff, the card issuer collects a sample of previously accepted
applications, some from people who turned out to be good customers, and some from people who
never paid their bills. If we denote these two collections of people by sets GOOD and BAD, then the
ideal weights and cutoff (for this data) would satisfy

sum {j in QUES} ans[i,j] * Wt[j] >= Cut for each i in GOOD
sum {j in QUES} ans[i,j] * Wt[j] < Cut for each i in BAD

Since the relationship between answers to an application and creditworthiness is imprecise at best,
however, no values of Wt[j] and Cut can be found to satisfy all of these inequalities. Instead,

SECTION 17.4 GUIDELINES FOR PIECEWISE-LINEAR OPTIMIZATION 387

the issuer has to choose values that are merely the best possible, in some sense. There are any
number of ways to make such a choice; here, naturally, we consider an optimization approach.

(a) Suppose that we define a new variable Diff[i] that equals the difference between person i’s
score and the cutoff:

Diff[i] = sum {j in QUES} ans[i,j] * Wt[j] - Cut

Clearly the undesirable cases are where Diff[i] is negative for i in GOOD, and where it is non-
negative for i in BAD. To discourage these cases, we can tell the issuer to minimize the function

sum {i in GOOD} max(0,-Diff[i]) + sum {i in BAD} max(0,Diff[i])

Explain why minimizing this function tends to produce a desirable choice of weights and cutoff.

(b) The expression above is a piecewise-linear function of the variables Diff[i]. Rewrite it
using AMPL’s notation for piecewise-linear functions.

(c) Incorporate the expression from (b) into an AMPL model for finding the weights and cutoff.

(d) Given this approach, any positive value for Cut is as good as any other. We can fix it at a con-
venient round number — say, 100. Explain why this is the case.

(e) Using a Cut of 100, apply the model to the following imaginary credit data:

set GOOD := _17 _18 _19 _22 _24 _26 _28 _29 ;
set BAD := _15 _16 _20 _21 _23 _25 _27 _30 ;

set QUES := Q1 Q2 R1 R2 R3 S2 T4 ;

param ans: Q1 Q2 R1 R2 R3 S2 T4 :=
_15 1.0 10 15 20 10 8 10
_16 0.0 5 15 40 8 10 8
_17 0.5 10 25 35 8 10 10
_18 1.5 10 25 30 8 6 10
_19 1.5 5 20 25 8 8 8
_20 1.0 5 5 30 8 8 6
_21 1.0 10 20 30 8 10 10
_22 0.5 10 25 40 8 8 10
_23 0.5 10 25 25 8 8 14
_24 1.0 10 15 40 8 10 10
_25 0.0 5 15 15 10 12 10
_26 0.5 10 15 20 8 10 10
_27 1.0 5 10 25 10 8 6
_28 0.0 5 15 40 8 10 8
_29 1.0 5 15 40 8 8 10
_30 1.5 5 20 25 10 10 14 ;

What are the chosen weights? Using these weights, how many of the good customers would be
denied a card, and how many of the bad risks would be granted one?

You should find that a lot of the bad risks have scores right at the cutoff. Why does this happen in
the solution? How might you adjust the cutoff to deal with it?

(f) To force scores further away from the cutoff (in the desired direction), it might be preferable to
use the following objective,

sum {i in GOOD} max(0,-Diff[i]+offset) +
sum {i in BAD} max(0,Diff[i]+offset)

where offset is a positive parameter whose value is supplied. Explain why this change has the
desired effect. Try offset values of 2 and 10 and compare the results with those in (e).

388 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

(g) Suppose that giving a card to a bad credit risk is considered much more undesirable than refus-
ing a card to a good credit risk. How would you change the model to take this into account?

(h) Suppose that when someone’s application is accepted, his or her score is also used to suggest an
initial credit limit. Thus it is particularly important that bad credit risks not receive very large
scores. How would you add pieces to the piecewise-linear objective function terms to account for
this concern?

17-6. In Exercise 18-3, we suggest a way to estimate position, velocity and acceleration values
from imprecise data, by minimizing a nonlinear ‘‘sum of squares’’ function:

j = 1
Σ
n

[h j − (a 0 − a 1 t j − 1⁄2 a 2 tj
2)]2.

An alternative approach instead minimizes a sum of absolute values:

j = 1
Σ
n

h j − (a 0 − a 1 t j − 1⁄2 a 2 tj
2) .

(a) Substitute the sum of absolute values directly for the sum of squares in the model from Exercise
18-3, first with the abs function, and then with AMPL’s explicit piecewise-linear notation.

Explain why neither of these formulations is likely to be handled effectively by any solver.

(b) To model this situation effectively, we introduce variables e j to represent the individual formu-
las h j − (a 0 − a 1 t j − 1⁄2 a 2 tj

2) whose absolute values are being taken. Then we can express the
minimization of the sum of absolute values as the following constrained optimization problem:

Minimize
j = 1
Σ
n

e j

Subject to e j = h j − (a 0 − a 1 t j − 1⁄2 a 2 tj
2), j = 1, . . . , n

Write an AMPL model for this formulation, using the piecewise-linear notation for the terms e j .

(c) Solve for a 0, a 1, and a 2 using the data from Exercise 18-3. How much difference is there
between this estimate and the least-squares one?

Use display to print the e j values for both the least-squares and the least-absolute-values solu-
tions. What is the most obvious qualitative difference?

(d) Yet another possibility is to focus on the greatest absolute deviation, rather than the sum:

j = 1 , . . . ,n
max h j − (a 0 − a 1 t j − 1⁄2 a 2 tj

2) .

Formulate an AMPL linear program that will minimize this quantity, and test it on the same data as
before. Compare the resulting estimates and e j values. Which of the three estimates would you
choose in this case?

17-7. A planar structure consists of a set of joints connected by bars . For example, in the fol-
lowing diagram, the joints are represented by circles, and the bars by lines between two circles:

1

2

3

4

5

SECTION 17.4 GUIDELINES FOR PIECEWISE-LINEAR OPTIMIZATION 389

Consider the problem of finding a minimum-weight structure to meet certain external forces. We
let J be the set of joints, and B⊆J×J be the set of admissible bars; for the diagram above, we could
take J = { 1 , 2 , 3 , 4 , 5 }, and

B = { (1 , 2) , (1 , 3) , (1 , 4) , (2 , 3) , (2 , 5) , (3 , 4) , (3 , 5) , (4 , 5) }.

The ‘‘origin’’ and ‘‘destination’’ of a bar are arbitrary. The bar between joints 1 and 2, for exam-
ple, could be represented in B by either (1,2) or (2,1), but it need not be represented by both.

We can use two-dimensional Euclidean coordinates to specify the position of each joint in the
plane, taking some arbitrary point as the origin:

ai
x horizontal position of joint i relative to the origin

ai
y vertical position of joint i relative to the origin

For the example, if the origin lies exactly at joint 2, we might have

(a1
x , a1

y) = (0, 2), (a2
x , a2

y) = (0, 0), (a3
x , a3

y) = (2, 1),

(a4
x , a4

y) = (4, 2), (a5
x , a5

y) = (4, 0).

The remaining data consist of the external forces on the joints:

fi
x horizontal component of the external force on joint i

fi
y vertical component of the external force on joint i

To resist this force, a subset S⊆J of joints is fixed in position. (It can be proved that fixing two
joints is sufficient to guarantee a solution.)

The external forces induce stresses on the bars, which we can represent as

F i j if > 0, tension on bar (i , j)

if < 0, compression of bar (i , j)

A set of stresses is in equilibrium if the external forces, tensions and compressions balance at all
joints, in both the horizontal and vertical components — except at the fixed joints. That is, for
each joint k ∉S,

Σ i ∈J: (i ,k) ∈B
cik

x F ik − Σ j ∈J: (k, j) ∈B
ck j

x F k j = fk
x

Σ i ∈J: (i ,k) ∈B
cik

y F ik − Σ j ∈J: (k, j) ∈B
ck j

y F k j = fk
y,

where cst
x and cst

y are the cosines of the direction from joint s to joint t with the horizontal and verti-
cal axes,

cst
x = (at

x − as
x)/ l st ,

cst
y = (at

y − as
y)/ l st ,

and l st is the length of the bar (s ,t):

l st = √ (at
x − as

x)2 + (at
y − as

y)2 .

In general, there are infinitely many different sets of equilibrium stresses. However, it can be
shown that a given system of stresses will be realized in a structure of minimum weight if and only
if the cross-sectional areas of the bars are proportional to the absolute values of the stresses. Since
the weight of a bar is proportional to the cross section times length, we can take the (suitably
scaled) weight of bar (i , j) to be

w i j = l i j
.F i j .

The problem is then to find a system of stresses F i j that meet the equilibrium conditions, and that
minimize the sum of the weights w i j over all bars (i , j) ∈B.

(a) The indexing sets for this linear program can be declared in AMPL as:

390 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

set joints;
set fixed within joints;
set bars within {i in joints, j in joints: i <> j};

Using these set declarations, formulate an AMPL model for the minimum-weight structural design
problem. Use the piecewise-linear notation of this chapter to represent the absolute-value terms in
the objective function.

(b) Now consider in particular a structure that has the following joints:

1 2 3 4 5 6

3.25 7 8 9 10 11

1.75 12 13 14 15

Assume that there is one unit horizontally and vertically between joints, and that the origin is at the
lower left; thus (a1

x ,a1
y) = (0, 2) and (a15

x ,a15
y) = (5, 0).

Let there be external forces of 3.25 and 1.75 units straight downward on joints 1 and 7, so that f1
y =

–3.25, f7
y = –1.75, and otherwise all fi

x = 0 and fi
y = 0. Let S = {6,15}. Finally, let the admissible

bars consist of all possible bars that do not go directly through a joint; for example, (1, 2) or (1, 9)
or (1, 13) would be admissible, but not (1, 3) or (1, 12) or (1, 14).

Determine all the data for the problem that is needed by the linear program, and represent it as
AMPL data statements.

(c) Use AMPL to solve the linear program and to examine the minimum-weight structure that is
determined.

Draw a diagram of the optimal structure, indicating the cross sections of the bars and the nature of
the stresses. If there is zero force on a bar, it has a cross section of zero, and may be left out of
your diagram.

(d) Repeat parts (b) and (c) for the case in which all possible bars are admissible. Is the resulting
structure different? Is it any lighter?

