
5
__

Simple Sets and Indexing

The next four chapters of this book are a comprehensive presentation of AMPL’s facil-
ities for linear programming. The organization is by language features, rather than by
model types as in the four preceding tutorial chapters. Since the basic features of AMPL
tend to be closely interrelated, we do not attempt to explain any one feature in isolation.
Rather, we assume at the outset a basic knowledge of AMPL such as Chapters 1 through 4
provide.

We begin with sets, the most fundamental components of an AMPL model. Almost
all of the parameters, variables, and constraints in a typical model are indexed over sets,
and many expressions contain operations (usually summations) over sets. Set indexing is
the feature that permits a concise model to describe a large mathematical program.

Because sets are so fundamental, AMPL offers a broad variety of set types and opera-
tions. A set’s members may be strings or numbers, ordered or unordered; they may occur
singly, or as ordered pairs, triples or longer ‘‘tuples’’. Sets may be defined by listing or
computing their members explicitly, by applying operations like union and intersection to
other sets, or by specifying arbitrary arithmetic or logical conditions for membership.

Any model component or iterated operation can be indexed over any set, using a stan-
dard form of indexing expression. Even sets themselves may be declared in collections
indexed over other sets.

This chapter introduces the simpler kinds of sets, as well as set operations and index-
ing expressions; it concludes with a discussion of ordered sets. Chapter 6 shows how
these ideas are extended to compound sets, including sets of pairs and triples, and indexed
collections of sets. Chapter 7 is devoted to parameters and expressions, and Chapter 8 to
the variables, objectives and constraints that make up a linear program.

5.1 Unordered sets

The most elementary kind of AMPL set is an unordered collection of character strings.
Usually all of the strings in a set are intended to represent instances of the same kind of

73

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

74 SIMPLE SETS AND INDEXING CHAPTER 5

entity — such as raw materials, products, factories or cities. Often the strings are chosen
to have recognizable meanings (coils, FISH, New_York), but they could just as well
be codes known only to the modeler (23RPFG, 486/33C). A literal string that appears
in an AMPL model must be delimited by quotes, either single (’A&P’) or double
("Bell+Howell"). In all contexts, upper case and lower case letters are distinct, so
that for example "fish", "Fish", and "FISH" represent different set members.

The declaration of a set need only contain the keyword set and a name. For exam-
ple, a model may declare

set PROD;

to indicate that a certain set will be referred to by the name PROD in the rest of the model.
A name may be any sequence of letters, numerals, and underscore (_) characters that is
not a legal number. A few names have special meanings in AMPL, and may only be used
for specific purposes, while a larger number of names have predefined meanings that can
be changed if they are used in some other way. For example, sum is reserved for the iter-
ated addition operator; but prod is merely pre-defined as the iterated multiplication
operator, so you can redefine prod as a set of products:

set prod;

A list of reserved words is given in Section A.1.
A declared set’s membership is normally specified as part of the data for the model, in

the manner to be described in Chapter 9; this separation of model and data is recom-
mended for most mathematical programming applications. Occasionally, however, it is
desirable to refer to a particular set of strings within a model. A literal set of this kind is
specified by listing its members within braces:

{"bands", "coils", "plate"}

This expression may be used anywhere that a set is valid, for example in a model state-
ment that gives the set PROD a fixed membership:

set PROD = {"bands", "coils", "plate"};

This sort of declaration is best limited to cases where a set’s membership is small, is a
fundamental aspect of the model, or is not expected to change often. Nevertheless we
will see that the = phrase is often useful in set declarations, for the purpose of defining a
set in terms of other sets and parameters. The operator = may be replaced by default
to initialize the set while allowing its value to be overridden by a data statement or
changed by subsequent assignments. These options are more important for parameters,
however, so we discuss them more fully in Section 7.5.

Notice that AMPL makes a distinction between a string such as "bands" and a set
like {"bands"} that has a membership of one string. The set that has no members (the
empty set) is denoted {}.

SECTION 5.2 SETS OF NUMBERS 75

5.2 Sets of numbers

Set members may also be numbers. In fact a set’s members may be a mixture of num-
bers and strings, though this is seldom the case. In an AMPL model, a literal number is
written in the customary way as a sequence of digits, optionally preceded by a sign, con-
taining an optional decimal point, and optionally followed by an exponent; the exponent
consists of a d, D, e, or E, optionally a sign, and a sequence of digits. A number (1) and
the corresponding string ("1") are distinct; by contrast, different representations of the
same number, such as 100 and 1E+2, stand for the same set member.

A set of numbers is often a sequence that corresponds to some progression in the situ-
ation being modeled, such as a series of weeks or years. Just as for strings, the numbers
in a set can be specified as part of the data, or can be specified within a model as a list
between braces, such as {1,2,3,4,5,6}. This sort of set can be described more con-
cisely by the notation 1..6. An additional by clause can be used to specify an interval
other than 1 between the numbers; for instance,

1990 .. 2020 by 5

represents the set

{1990, 1995, 2000, 2005, 2010, 2015, 2020}

This kind of expression can be used anywhere that a set is appropriate, and in particular
within the assignment phrase of a set declaration:

set YEARS = 1990 .. 2020 by 5;

By giving the set a short and meaningful name, this declaration may help to make the rest
of the model more readable.

It is not good practice to specify all the numbers within a .. expression by literals
like 2020 and 5, unless the values of these numbers are fundamental to the model or will
rarely change. A better arrangement is seen in the multiperiod production example of
Figures 4-4 and 4-5, where a parameter T is declared to represent the number of periods,
and the expressions 1..T and 0..T are used to represent sets of periods over which
parameters, variables, constraints and sums are indexed. The value of T is specified in
the data, and is thus easily changed from one run to the next. As a more elaborate exam-
ple, we could write

param start integer;
param end > start integer;
param interval > 0 integer;

set YEARS = start .. end by interval;

If subsequently we were to give the data as

param start := 1990;
param end := 2020;
param interval := 5;

76 SIMPLE SETS AND INDEXING CHAPTER 5

then YEARS would be the same set as in the previous example (as it would also be if end
were 2023.) You may use any arithmetic expression to represent any of the values in a
.. expression.

The members of a set of numbers have the same properties as any other numbers, and
hence can be used in arithmetic expressions. A simple example is seen in Figure 4-4,
where the material balance constraint is declared as

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

Because t runs over the set 1..T, we can write Inv[p,t-1] to represent the inventory
at the end of the previous week. If t instead ran over a set of strings, the expression t-1
would be rejected as an error.

Set members need not be integers. AMPL attempts to store each numerical set mem-
ber as the nearest representable floating-point number. You can see how this works out
on your computer by trying an experiment like the following:

ampl: option display_width 50;
ampl: display -5/3 .. 5/3 by 1/3;
set -5/3 .. 5/3 by 1/3 :=
-1.6666666666666667 0.33333333333333326
-1.3333333333333335 0.6666666666666663
-1 0.9999999999999998
-0.6666666666666667 1.3333333333333333
-0.3333333333333335 1.6666666666666663
-2.220446049250313e-16;

You might expect 0 and 1 to be members of this set, but things do not work out that way
due to rounding error in the floating-point computations. It is unwise to use fractional
numbers in sets, if your model relies on set members having precise values. There should
be no comparable problem with integer members of reasonable size; integers are repre-
sented exactly for magnitudes up to 253 (approximately 1016) for IEEE standard arith-
metic, and up to 247 (approximately 1014) for almost any computer in current use.

5.3 Set operations

AMPL has four operators that construct new sets from existing ones:

A union B union: in either A or B
A inter B intersection: in both A and B
A diff B difference: in A but not B
A symdiff B symmetric difference: in A or B but not both

The following excerpt from an AMPL session shows how these work:

SECTION 5.3 SET OPERATIONS 77

ampl: set Y1 = 1990 .. 2020 by 5;
ampl: set Y2 = 2000 .. 2025 by 5;
ampl: display Y1 union Y2, Y1 inter Y2;
set Y1 union Y2 := 1990 1995 2000 2005 2010 2015 2020 2025;
set Y1 inter Y2 := 2000 2005 2010 2015 2020;

ampl: display Y1 diff Y2, Y1 symdiff Y2;
set Y1 diff Y2 := 1990 1995;
set Y1 symdiff Y2 := 1990 1995 2025;

The operands of set operators may be other set expressions, allowing more complex
expressions to be built up:

ampl: display Y1 symdiff (Y1 symdiff Y2);
set Y1 symdiff (Y1 symdiff Y2) :=
2000 2005 2010 2015 2020 2025;

ampl: display (Y1 union {2025,2035,2045}) diff Y2;
set Y1 union {2025, 2035, 2045} diff Y2 :=
1990 1995 2035 2045;

ampl: display 2000..2040 by 5 symdiff (Y1 union Y2);
set 2000 .. 2040 by 5 symdiff (Y1 union Y2) :=
2030 2035 2040 1990 1995;

The operands must always represent sets, however, so that for example you must write
Y1 union {2025}, not Y1 union 2025.

Set operators group to the left unless parentheses are used to indicate otherwise. The
union, diff, and symdiff operators have the same precedence, just below that of
inter. Thus, for example,

A union B inter C diff D

is parsed as

(A union (B inter C)) diff D

A precedence hierarchy of all AMPL operators is given in Table A-1 of Section A.4.
Set operations are often used in the assignment phrase of a set declaration, to define a

new set in terms of already declared sets. A simple example is provided by a variation on
the diet model of Figure 2-1. Rather than specifying a lower limit and an upper limit on
the amount of every nutrient, suppose that you want to specify a set of nutrients that have
a lower limit, and a set of nutrients that have an upper limit. (Every nutrient is in one set
or the other; some nutrients might be in both.) You could declare:

set MINREQ; # nutrients with minimum requirements
set MAXREQ; # nutrients with maximum requirements
set NUTR; # all nutrients (DUBIOUS)

But then you would be relying on the user of the model to make sure that NUTR contains
exactly all the members of MINREQ and MAXREQ. At best this is unnecessary work, and
at worst it will be done incorrectly. Instead you can define NUTR as the union:

set NUTR = MINREQ union MAXREQ;

78 SIMPLE SETS AND INDEXING CHAPTER 5

__
__

set MINREQ; # nutrients with minimum requirements
set MAXREQ; # nutrients with maximum requirements

set NUTR = MINREQ union MAXREQ; # nutrients
set FOOD; # foods

param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

param n_min {MINREQ} >= 0;
param n_max {MAXREQ} >= 0;

param amt {NUTR,FOOD} >= 0;

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];

subject to Diet_Min {i in MINREQ}:
sum {j in FOOD} amt[i,j] * Buy[j] >= n_min[i];

subject to Diet_Max {i in MAXREQ}:
sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

Figure 5-1: Diet model using union operator (dietu.mod).
__

All three of these sets are needed, since the nutrient minima and maxima are indexed over
MINREQ and MAXREQ,

param n_min {MINREQ} >= 0;
param n_max {MAXREQ} >= 0;

while the amounts of nutrients in the foods are indexed over NUTR:

param amt {NUTR,FOOD} >= 0;

The modification of the rest of the model is straightforward; the result is shown in Figure
5-1.

As a general principle, it is a bad idea to set up a model so that redundant information
has to be provided. Instead a minimal necessary collection of sets should be chosen to be
supplied in the data, while other relevant sets are defined by expressions in the model.

5.4 Set membership operations and functions

Two other AMPL operators, in and within, test the membership of sets. As an
example, the expression

"B2" in NUTR

is true if and only if the string "B2" is a member of the set NUTR. The expression

MINREQ within NUTR

SECTION 5.5 INDEXING EXPRESSIONS 79

is true if all members of the set MINREQ are also members of NUTR — that is, if
MINREQ is a subset of (or is the same as) NUTR. The in and within operators are the
AMPL counterparts of ∈ and ⊆ in traditional algebraic notation. The distinction between
members and sets is especially important here; the left operand of in must be an expres-
sion that evaluates to a string or number, whereas the left operand of within must be an
expression that evaluates to a set.

AMPL also provides operators not in and not within, which reverse the truth
value of their result.

You may apply within directly to a set you are declaring, to say that it must be a
subset of some other set. Returning to the diet example, if all nutrients have a minimum
requirement, but only some subset of nutrients has a maximum requirement, it would
make sense to declare the sets as:

set NUTR;
set MAXREQ within NUTR;

AMPL will reject the data for this model if any member specified for MAXREQ is not also
a member of NUTR.

The built-in function card computes the number of members in (or cardinality of) a
set; for example, card(NUTR) is the number of members in NUTR. The argument of
the card function may be any expression that evaluates to a set.

5.5 Indexing expressions

In algebraic notation, the use of sets is indicated informally by phrases such as ‘‘for
all i ∈P ’’ or ‘‘for t = 1 , . . . , T ’’ or ‘‘for all j ∈R such that c j > 0.’’ The AMPL counter-
part is the indexing expression that appears within braces { . . . } in nearly all of our exam-
ples. An indexing expression is used whenever we specify the set over which a model
component is indexed, or the set over which a summation runs. Since an indexing
expression defines a set, it can be used in any place where a set is appropriate.

The simplest form of indexing expression is just a set name or expression within
braces. We have seen this in parameter declarations such as these from the multiperiod
production model of Figure 4-4:

param rate {PROD} > 0;
param avail {1..T} >= 0;

Later in the model, references to these parameters are subscripted with a single set mem-
ber, in expressions such as avail[t] and rate[p]. Variables can be declared and
used in exactly the same way, except that the keyword var takes the place of param.

The names such as t and i that appear in subscripts and other expressions in our
models are examples of dummy indices that have been defined by indexing expressions.
In fact, any indexing expression may optionally define a dummy index that runs over the
specified set. Dummy indices are convenient in specifying bounds on parameters:

80 SIMPLE SETS AND INDEXING CHAPTER 5

param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

and on variables:

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

They are also essential in specifying the sets over which constraints are defined, and the
sets over which summations are done. We have often seen these uses together, in decla-
rations such as

subject to Time {t in 1..T}:
sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

and

subject to Diet_Min {i in MINREQ}:
sum {j in FOOD} amt[i,j] * Buy[j] >= n_min[i];

An indexing expression consists of an index name, the keyword in, and a set expression
as before. We have been using single letters for our index names, but this is not a
requirement; an index name can be any sequence of letters, digits, and underscores that is
not a valid number, just like the name for a model component.

Although a name defined by a model component’s declaration is known throughout
all subsequent statements in the model, the definition of a dummy index name is effective
only within the scope of the defining indexing expression. Normally the scope is evident
from the context. For instance, in the Diet_Min declaration above, the scope of {i in
MINREQ} runs to the end of the statement, so that i can be used anywhere in the descrip-
tion of the constraint. On the other hand, the scope of {j in FOOD} covers only the
summand amt[i,j] * Buy[j]. The scope of indexing expressions for sums and other
iterated operators is discussed further in Chapter 7.

Once an indexing expression’s scope has ended, its dummy index becomes undefined.
Thus the same index name can be defined again and again in a model, and in fact it is
good practice to use relatively few different index names. A common convention is to
associate certain index names with certain sets, so that for example i always runs over
NUTR and j always runs over FOOD. This is merely a convention, however, not a restric-
tion imposed by AMPL. Indeed, when we modified the diet model so that there was a
subset MINREQ of NUTR, we used i to run over MINREQ as well as NUTR. The opposite
situation occurs, for example, if we want to specify a constraint that the amount of each
food j in the diet is at least some fraction min_frac[j] of the total food in the diet:

subject to Food_Ratio {j in FOOD}:
Buy[j] >= min_frac[j] * sum {jj in FOOD} Buy[jj];

Since the scope of j in FOOD extends to the end of the declaration, a different index jj
is defined to run over the set FOOD in the summation within the constraint.

As a final option, the set in an indexing expression may be followed by a colon (:)
and a logical condition. The indexing expression then represents only the subset of mem-
bers that satisfy the condition. For example,

SECTION 5.5 INDEXING EXPRESSIONS 81

{j in FOOD: f_max[j] - f_min[j] < 1}

describes the set of all foods whose minimum and maximum amounts are nearly the
same, and

{i in NUTR: i in MAXREQ or n_min[i] > 0}

describes the set of nutrients that are either in MAXREQ or for which n_min is positive.
The use of operators such as or and < to form logical conditions will be fully explained
in Chapter 7.

By specifying a condition, an indexing expression defines a new set. You can use the
indexing expression to represent this set not only in indexed declarations and summa-
tions, but anywhere else that a set expression may appear. For example, you could say
either of

set NUTREQ = {i in NUTR: i in MAXREQ or n_min[i] > 0};
set NUTREQ = MAXREQ union {i in MINREQ: n_min[i] > 0};

to define NUTREQ to represent our preceding example of a set expression, and you could
use either of

set BOTHREQ = {i in MINREQ: i in MAXREQ};
set BOTHREQ = MINREQ inter MAXREQ;

to define BOTHREQ to be the set of all nutrients that have both minimum and maximum
requirements. It’s not unusual to find that there are several ways of describing some
complicated set, depending on how you combine set operations and indexing expression
conditions. Of course, some possibilities are easier to read than others, so it’s worth tak-
ing some trouble to find the most readable. In Chapter 6 we also discuss efficiency con-
siderations that sometimes make one alternative preferable to another in specifying com-
pound sets.

In addition to being valuable within the model, indexing expressions are useful in
display statements to summarize characteristics of the data or solution. The following
example is based on the model of Figure 5-1 and the data of Figure 5-2:

ampl: model dietu.mod;
ampl: data dietu.dat;

ampl: display MAXREQ union {i in MINREQ: n_min[i] > 0};
set MAXREQ union {i in MINREQ: n_min[i] > 0} := A NA CAL C;

ampl: solve;
CPLEX 8.0.0: optimal solution; objective 74.27382022
2 dual simplex iterations (0 in phase I)

ampl: display {j in FOOD: Buy[j] > f_min[j]};
set {j in FOOD: Buy[j] > f_min[j]} := CHK MTL SPG;

ampl: display {i in MINREQ: Diet_Min[i].slack = 0};
set {i in MINREQ: (Diet_Min[i].slack) == 0} := C CAL;

AMPL interactive commands are allowed to refer to variables and constraints in the con-
dition phrase of an indexing expression, as illustrated by the last two display state-

82 SIMPLE SETS AND INDEXING CHAPTER 5

__
__

set MINREQ := A B1 B2 C CAL ;
set MAXREQ := A NA CAL ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;

param: cost f_min f_max :=
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10 ;

param: n_min n_max :=
A 700 20000
C 700 .
B1 0 .
B2 0 .
NA . 50000
CAL 16000 24000 ;

param amt (tr): A C B1 B2 NA CAL :=
BEEF 60 20 10 15 938 295
CHK 8 0 20 20 2180 770
FISH 8 10 15 10 945 440
HAM 40 40 35 10 278 430
MCH 15 35 15 15 1182 315
MTL 70 30 15 15 896 400
SPG 25 50 25 15 1329 370
TUR 60 20 15 10 1397 450 ;

Figure 5-2: Data for diet model (dietu.dat).
__

ments above. Within a model, however, only sets, parameters and dummy indices may
be mentioned in any indexing expression.

The set BOTHREQ above might well be empty, in the case where every nutrient has
either a minimum or a maximum requirement in the data, but not both. Indexing over an
empty set is not an error. When a model component is declared to be indexed over a set
that turns out to be empty, AMPL simply skips generating that component. A sum over
an empty set is zero, and other iterated operators over empty sets have the obvious inter-
pretations (see A.4).

5.6 Ordered sets

Any set of numbers has a natural ordering, so numbers are often used to represent
entities, like time periods, whose ordering is essential to the specification of a model. To

SECTION 5.6 ORDERED SETS 83

describe the difference between this week’s inventory and the previous week’s inventory,
for example, we need the weeks to be ordered so that the ‘‘previous’’ week is always well
defined.

An AMPL model can also define its own ordering for any set of numbers or strings, by
adding the keyword ordered or circular to the set’s declaration. The order in
which you give the set’s members, in either the model or the data, is then the order in
which AMPL works with them. In a set declared circular, the first member is consid-
ered to follow the last one, and the last to precede the first; in an ordered set, the first
member has no predecessor and the last member has no successor.

Ordered sets of strings often provide better documentation for a model’s data than sets
of numbers. Returning to the multiperiod production model of Figure 4-4, we observe
that there is no way to tell from the data which weeks the numbers 1 through T refer to, or
even that they are weeks instead of days or months. Suppose that instead we let the
weeks be represented by an ordered set that contains, say, 27sep, 04oct, 11oct and
18oct. The declaration of T is replaced by

set WEEKS ordered;

and all subsequent occurrences of 1..T are replaced by WEEKS. In the Balance con-
straint, the expression t-1 is replaced by prev(t), which selects the member before t
in the set’s ordering:

subject to Balance {p in PROD, t in WEEKS}:
Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t]; # WRONG

This is not quite right, however, because when t is the first week in WEEKS, the member
prev(t) is not defined. When you try to solve the problem, you will get an error mes-
sage like this:

error processing constraint Balance[’bands’,’27sep’]:
can’t compute prev(’27sep’, WEEKS) --

’27sep’ is the first member

One way to fix this is to give a separate balance constraint for the first period, in which
Inv[p,prev(t)] is replaced by the initial inventory, inv0[p]:

subject to Balance0 {p in PROD}:
Make[p,first(WEEKS)] + inv0[p]

= Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];

The regular balance constraint is limited to the remaining weeks:

subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

The complete model and data are shown in Figures 5-3 and 5-4. As a tradeoff for more
meaningful week names, we have to write a slightly more complicated model.

As our example demonstrates, AMPL provides a variety of functions that apply specif-
ically to ordered sets. These functions are of three basic types.

84 SIMPLE SETS AND INDEXING CHAPTER 5

__
__

set PROD; # products
set WEEKS ordered; # number of weeks

param rate {PROD} > 0; # tons per hour produced
param inv0 {PROD} >= 0; # initial inventory
param avail {WEEKS} >= 0; # hours available in week
param market {PROD,WEEKS} >= 0; # limit on tons sold in week

param prodcost {PROD} >= 0; # cost per ton produced
param invcost {PROD} >= 0; # carrying cost/ton of inventory
param revenue {PROD,WEEKS} >= 0; # revenue/ton sold

var Make {PROD,WEEKS} >= 0; # tons produced
var Inv {PROD,WEEKS} >= 0; # tons inventoried
var Sell {p in PROD, t in WEEKS} >= 0, <= market[p,t]; # tons sold

maximize Total_Profit:
sum {p in PROD, t in WEEKS} (revenue[p,t]*Sell[p,t] -

prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);

Objective: total revenue less costs in all weeks

subject to Time {t in WEEKS}:
sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

Total of hours used by all products
may not exceed hours available, in each week

subject to Balance0 {p in PROD}:
Make[p,first(WEEKS)] + inv0[p]

= Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];

subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

Tons produced and taken from inventory
must equal tons sold and put into inventory

Figure 5-3: Production model with ordered sets (steelT2.mod).
__

First, there are functions that return a member from some absolute position in a set.
You can write first(WEEKS) and last(WEEKS) for the first and last members of
the ordered set WEEKS. To pick out other members, you can use member(5,WEEKS),
say, for the 5th member of WEEKS. The arguments of these functions must evaluate to an
ordered set, except for the first argument of member, which can be any expression that
evaluates to a positive integer.

A second kind of function returns a member from a position relative to another mem-
ber. Thus you can write prev(t,WEEKS) for the member immediately before t in
WEEKS, and next(t,WEEKS) for the member immediately after. More generally,
expressions such as prev(t,WEEKS,5) and next(t,WEEKS,3) refer to the 5th
member before and the 3rd member after t in WEEKS. There are also ‘‘wraparound’’
versions prevw and nextw that work the same except that they treat the end of the set
as wrapping around to the beginning; in effect, they treat all ordered sets as if their decla-

SECTION 5.6 ORDERED SETS 85

__
__

set PROD := bands coils ;
set WEEKS := 27sep 04oct 11oct 18oct ;

param avail := 27sep 40 04oct 40 11oct 32 18oct 40 ;

param rate := bands 200 coils 140 ;
param inv0 := bands 10 coils 0 ;

param prodcost := bands 10 coils 11 ;
param invcost := bands 2.5 coils 3 ;

param revenue: 27sep 04oct 11oct 18oct :=
bands 25 26 27 27
coils 30 35 37 39 ;

param market: 27sep 04oct 11oct 18oct :=
bands 6000 6000 4000 6500
coils 4000 2500 3500 4200 ;

Figure 5-4: Data for production model (steelT2.dat).
__

rations were circular. In all of these functions, the first argument must evaluate to a
number or string, the second argument to an ordered set, and the third to an integer. Nor-
mally the integer is positive, but zero and negative values are interpreted in a consistent
way; for instance, next(t,WEEKS,0) is the same as t, and next(t,WEEKS,-5) is
the same as prev(t,WEEKS,5).

Finally, there are functions that return the position of a member within a set. The
expression ord(t,WEEKS) returns the numerical position of t within the set WEEKS,
or gives you an error message if t is not a member of WEEKS. The alternative
ord0(t,WEEKS) is the same except that it returns 0 if t is not a member of WEEKS.
For these functions the first argument must evaluate to a positive integer, and the second
to an ordered set.

If the first argument of next, nextw, prev, prevw, or ord is a dummy index that
runs over an ordered set, its associated indexing set is assumed if a set is not given as the
second argument. Thus in the constraint

subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

the functions ord(t) and prev(t) are interpreted as if they had been written
ord(t,WEEKS) and prev(t,WEEKS).

Ordered sets can also be used with any of the AMPL operators and functions that
apply to sets generally. The result of a diff operation preserves the ordering of the left
operand, so the material balance constraint in our example could be written:

subject to Balance {p in PROD, t in WEEKS diff {first(WEEKS)}}:
Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

For union, inter and symdiff, however, the ordering of the result is not well
defined; AMPL treats the result as an unordered set.

86 SIMPLE SETS AND INDEXING CHAPTER 5

For a set that is contained in an ordered set, AMPL provides a way to say that the
ordering should be inherited. Suppose for example that you want to try running the mul-
tiperiod production model with horizons of different lengths. In the following declara-
tions, the ordered set ALL_WEEKS and the parameter T are given in the data, while the
subset WEEKS is defined by an indexing expression to include only the first T weeks:

set ALL_WEEKS ordered;
param T > 0 integer;

set WEEKS = {t in ALL_WEEKS: ord(t) <= T} ordered by ALL_WEEKS;

We specify ordered by ALL_WEEKS so that WEEKS becomes an ordered set, with its
members having the same ordering as they do in ALL_WEEKS. The ordered by and
circular by phrases have the same effect as the within phrase of Section 5.4
together with ordered or circular, except that they also cause the declared set to
inherit the ordering from the containing set. There are also ordered by reversed
and circular by reversed phrases, which cause the declared set’s ordering to be
the opposite of the containing set’s ordering. All of these phrases may be used either
with a subset supplied in the data, or with a subset defined by an expression as in the
example above.

Predefined sets and interval expressions

AMPL provides special names and expressions for certain common intervals and other
sets that are either infinite or potentially very large. Indexing expressions may not iterate
over these sets, but they can be convenient for specifying the conditional phrases in set
and param declarations.

AMPL intervals are sets containing all numbers between two bounds. There are inter-
vals of real (floating-point) numbers and of integers, introduced by the keywords
interval and integer respectively. They may be specified as closed, open, or half-
open, following standard mathematical notation,

interval [a , b] ≡ {x: a ≤ x ≤ b},
interval (a , b] ≡ {x: a < x ≤ b},
interval [a , b) ≡ {x: a ≤ x < b},
interval (a , b) ≡ {x: a < x < b},
integer [a , b] ≡ {x ∈I : a ≤ x ≤ b},
integer (a , b] ≡ {x ∈I : a < x ≤ b},
integer [a , b) ≡ {x ∈I : a ≤ x < b},
integer (a , b) ≡ {x ∈I : a < x < b}

where a and b are any arithmetic expressions, and I denotes the set of integers. In the
declaration phrases

in interval
within interval
ordered by [reversed] interval
circular by [reversed] interval

SECTION 5.6 ORDERED SETS 87

the keyword interval may be omitted.
As an example, in declaring Chapter 1’s parameter rate, you can declare

param rate {PROD} in interval (0,maxrate];

to say that the production rates have to be greater than zero and not more than some pre-
viously defined parameter maxrate; you could write the same thing more concisely as

param rate {PROD} in (0,maxrate];

or equivalently as

param rate {PROD} > 0, <= maxrate;

An open-ended interval can be specified by using the predefined AMPL parameter
Infinity as the right-hand bound, or -Infinity as the left-hand bound, so that

param rate {PROD} in (0,Infinity];

means exactly the same thing as

param rate {PROD} > 0;

in Figure 1-4a. In general, intervals do not let you say anything new in set or parameter
declarations; they just give you alternative ways to say things. (They have a more essen-
tial role in defining imported functions, as discussed in Section A.22.)

The predefined infinite sets Reals and Integers are the sets of all floating-point
numbers and integers, respectively, in numeric order. The predefined infinite sets
ASCII, EBCDIC, and Display all represent the universal set of strings and numbers
from which members of any one-dimensional set are drawn. ASCII and EBCDIC are
ordered by the ASCII and EBCDIC collating sequences, respectively. Display has the
ordering used in AMPL’s display command (Section A.16): numbers precede literals
and are ordered numerically; literals are sorted by the ASCII collating sequence.

As an example, you can declare

set PROD ordered by ASCII;

to make AMPL’s ordering of the members of PROD alphabetical, regardless of their order-
ing in the data. This reordering of the members of PROD has no effect on the solutions of
the model in Figure 1-4a, but it causes AMPL listings of most entities indexed over PROD
to appear in the same order (see A.6.2).

Exercises

5-1. (a) Display the sets

-5/3 .. 5/3 by 1/3
0 .. 1 by .1

Explain any evidence of rounding error in your computer’s arithmetic.

88 SIMPLE SETS AND INDEXING CHAPTER 5

(b) Try the following commands from Sections 5.2 and 5.4 on your computer:

ampl: set HUGE = 1..1e7;
ampl: display card(HUGE);

When AMPL runs out of memory, how many bytes does it say were available? (If your computer
really does have enough memory, try 1..1e8.) Experiment to see how big a set HUGE your com-
puter can hold without running out of memory.

5-2. Revise the model of Exercise 1-6 so that it makes use of two different attribute sets: a set of
attributes that have lower limits, and a set of attributes that have upper limits. Use the same
approach as in Figure 5-1.

5-3. Use the display command, together with indexing expressions as demonstrated in Section
5.5, to determine the following sets relating to the diet model of Figures 5-1 and 5-2:

– Foods that have a unit cost greater than $2.00.

– Foods that have a sodium (NA) content of more than 1000.

– Foods that contribute more than $10 to the total cost in the optimal solution.

– Foods that are purchased at more than the minimum level but less than the maximum level in
the optimal solution.

– Nutrients that the optimal diet supplies in exactly the minimum allowable amount.

– Nutrients that the optimal diet supplies in exactly the maximum allowable amount.

– Nutrients that the optimal diet supplies in more than the minimum allowable amount but less
than the maximum allowable amount.

5-4. This exercise refers to the multiperiod production model of Figure 4-4.

(a) Suppose that we define two additional scalar parameters,

param Tbegin integer >= 1;
param Tend integer > Tbegin, <= T;

We want to solve the linear program that covers only the weeks from Tbegin through Tend. We
still want the parameters to use the indexing 1..T, however, so that we don’t need to change the
data tables every time we try a different value for Tbegin or Tend.

To start with, we can change every occurrence of 1..T in the variable, objective and constraint
declarations to Tbegin..Tend. By making these and other necessary changes, create a model
that correctly covers only the desired weeks.

(b) Now suppose that we define a different scalar parameter,

param Tagg integer >= 1;

We want to ‘‘aggregate’’ the model, so that one ‘‘period’’ in our LP becomes Tagg weeks long,
rather than one week. This would be appropriate if we have, say, a year of weekly data, which
would yield an LP too large to be convenient for analysis.

To aggregate properly, we must define the availability of hours in each period to be the sum of the
availabilities in all weeks of the period:

param avail_agg {t in 1..T by Tagg}
= sum {u in t..t+Tagg-1} avail[u];

The parameters market and revenue must be similarly summed. Make all the necessary
changes to the model of Figure 4-4 so that the resulting LP is properly aggregated.

SECTION 5.6 ORDERED SETS 89

(c) Re-do the models of (a) and (b) to use an ordered set of strings for the periods, as in Figure 5-3.

5-5. Extend the transportation model of Figure 3-1a to a multiperiod version, in which the periods
are months represented by an ordered set of character strings such as "Jan", "Feb" and so forth.
Use inventories at the origins to link the periods.

5-6. Modify the model of Figure 5-3 to merge the Balance0 and Balance constraints, as in
Figure 4-4. Hint: 0..T and 1..T are analogous to

set WEEKS0 ordered;
set WEEKS = {i in WEEKS0: ord(i) > 1} ordered by WEEKS0;

