Copyright© 2003by RobertFourer,David M. GayandBrian W. Kernighar

Parameters and Expressions

A large optimization model invariably uses many numerical values. As we have
explained before, only a concise symbolic description of these values need appear in an
AMPL model, while the explicit data values are given in separate data statements, to be
described in Chapter 9.

In AMPL a single named numerical value is called a parameter. Although some
parameters are defined as individual scalar values, most occur in vectors or matrices or
other collections of numerical values indexed over sets. We will thus loosely refer to an
indexed collection of parameters as ‘‘a parameter’” when the meaning is clear. To begin
this chapter, Section 7.1 describes the rules for declaring parameters and for referring to
them in an AMPL model.

Parameters and other numerical values are the building blocks of the expressions that
make up a model’s objective and constraints. Sections 7.2 and 7.3 describe arithmetic
expressions, which have a numerical value, and logical expressions, which evaluate to
true or false. Along with the standard unary and binary operators of conventional alge-
braic notation, AMPL provides iterated operators like sum and prod, and a conditional
(if-then-else) operator that chooses between two expressions, depending on the truth
of a third expression.

The expressions in objectives and constraints necessarily involve variables, whose
declaration and use will be discussed in Chapter 8. There are several common uses for
expressions that involve only sets and parameters, however. Section 7.4 describes how
logical expressions are used to test the validity of data, either directly in a parameter dec-
laration, or separately in a check statement. Section 7.5 introduces features for defining
new parameters through arithmetic expressions in previously declared parameters and
sets, and 7.6 describes randomly-generated parameters.

Although the key purpose of parameters is to represent numerical values, they can
also represent logical values or arbitrary strings. These possibilities are covered in Sec-
tions 7.7 and 7.8, respectively. AMPL provides a range of operators for strings, but as
they are most often used in AMPL commands and programming rather than in models, we
defer their introduction to Section 13.7.

109

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

110 PARAMETERS AND EXPRESSIONS CHAPTER 7

7.1 Parameter declarations

A parameter declaration describes certain data required by a model, and indicates how
the model will refer to data values in subsequent expressions.
The simplest parameter declaration consists of the keyword param and a name:

param T;

At any point after this declaration, T can be used to refer to a numerical value.
More often, the name in a parameter declaration is followed by an indexing expres-
sion:

param avail {1..T};
param demand {DEST, PROD};
param revenue {p in PROD, AREA[p], 1..T};

One parameter is defined for each member of the set specified by the indexing expres-
sion. Thus a parameter is uniquely determined by its name and its associated set mem-
ber; throughout the rest of the model, you would refer to this parameter by writing the
name and bracketed ‘‘subscripts’’:

availl[i]
demand[j,p]
revenue|[p, a, t]

If the indexing is over a simple set of objects as described in Chapter 5, there is one sub-
script. If the indexing is over a set of pairs, triples, or longer tuples as described in Chap-
ter 6, there must be a corresponding pair, triple, or longer list of subscripts separated by
commas. The subscripts can be any expressions, so long as they evaluate to members of
the underlying index set.

An unindexed parameter is a scalar value, but a parameter indexed over a simple set
has the characteristics of a vector or an array; when the indexing is over a sequence of
integers, say

param avail {1..T};

the individual subscripted parameters are avail [1], avail[2],...,avail[T], and
there is an obvious analogy to the vectors of linear algebra or the arrays of a program-
ming language like Fortran or C. AMPL’s concept of a vector is more general, however,
since parameters may also be indexed over sets of strings, which need not even be
ordered. Indexing over sets of strings is best suited for parameters that correspond to
places, products and other entities for which no numbering is especially natural. Indexing
over sequences of numbers is more appropriate for parameters that correspond to weeks,
stages, and the like, which by their nature tend to be ordered and numbered; even for
these, you may prefer to use ordered sets of strings as described in Section 5.6.

A parameter indexed over a set of pairs is like a two-dimensional array or matrix. If
the indexing is over all pairs from two sets, as in

SECTION 7.2 ARITHMETIC EXPRESSIONS 111

set ORIG;
set DEST;
param cost {ORIG,DEST};

then there is a parameter cost [i, j] for every combination of i from ORIG and j
from DEST, and the analogy to a matrix is strongest — although again the subscripts are
more likely to be strings than numbers. If the indexing is over a subset of pairs, however:

set ORIG;

set DEST;

set LINKS within {ORIG,DEST};
param cost {LINKS};

then cost [1, j] exists only for those i from ORIG and j from DEST such that (i, 3)
is a member of LINKS. In this case, you can think of cost as being a ‘‘sparse’’ matrix.

Similar comments apply to parameters indexed over triples and longer tuples, which
resemble arrays of higher dimension in programming languages.

7.2 Arithmetic expressions

Arithmetic expressions in AMPL are much the same as in other computer languages.
Literal numbers consist of an optional sign preceding a sequence of digits, which may or
may not include a decimal point (for example, -17 or 2.71828 or +.3). At the end of
a literal there may also be an exponent, consisting of the letter d, D, e, or E and an
optional sign followed by digits (1e30 or 7.66439D-07).

Literals, parameters, and variables are combined into expressions by the standard
operations of addition (+), subtraction (-), multiplication (*), division (/), and exponen-
tiation (*). The familiar conventions of arithmetic apply. Exponentiation has higher
precedence than multiplication and division, which have higher precedence than addition
and subtraction; successive operations of the same precedence group to the left, except
for exponentiation, which groups to the right. Parentheses may be used to change the
order of evaluation.

Arithmetic expressions may also use the div operator, which returns the truncated
quotient when its left operand is divided by its right operand; the mod operator, which
computes the remainder; and the 1ess operator, which returns its left operand minus its
right operand if the result is positive, or zero otherwise. For purposes of precedence and
grouping, AMPL treats div and mod like division, and 1ess like subtraction.

A list of arithmetic operators (and logical operators, to be described shortly) is given
in Table 7-1. As much as possible, AMPL follows common programming languages in its
choice of operator symbols, such as * for multiplication and / for division. There is
sometimes more than one standard, however, as with exponentiation, where some lan-
guages use ~ while others use **. In this and other cases, AMPL provides alternate
forms. Table 7-1 shows the more common forms to the left, and the alternatives (if any)

112 PARAMETERS AND EXPRESSIONS CHAPTER 7

Usual alternative type of type of
style style operands result
if-then-else logical, arithmetic arithmetic
or || logical logical
exists forall logical logical
and && logical logical
not (unary) ! logical logical
< <= = <> > >= < <= == l= > >= arithmetic logical
in not in object, set logical
+ - less arithmetic arithmetic
sum prod min max arithmetic arithmetic
* / div mod arithmetic arithmetic
+ - (unary) arithmetic arithmetic
~ * % arithmetic arithmetic

Exponentiation and if-then-else are right-associative; the other operators are
left-associative. The logical operand of if-then-else appears after 1f, and the
arithmetic operands after then and (optionally) else.

Table 7-1: Arithmetic and logical operators, in increasing precedence.

to the right; you can mix them as you like, but your models will be easier to read and
understand if you are consistent in your choices.

Another way to build arithmetic expressions is by applying functions to other expres-
sions. A function reference consists of a name followed by a parenthesized argument or
comma-separated list of arguments; an arithmetic argument can be any arithmetic expres-
sion. Here are a few examples, which compute the minimum, absolute value, and square
root of their arguments, respectively:

min (T, 20)
abs(sum {i in ORIG} supply[i] - sum {j in DEST} demand[j])
sgrt((tan[j]l-tan[k]) "2)

Table 7-2 lists the built-in arithmetic functions that are typically found in models. Except
for min and max, the names of any of these functions may be redefined, but their original
meanings will become inaccessible. For example, a model may declare a parameter
named tan as in the last example above, but then it cannot also refer to the function
tan.

The set functions card and ord, which were described in Chapter 5, also produce an
arithmetic result. In addition, AMPL provides several ‘‘rounding’’ functions (Section
11.3) and a variety of random-number functions (Section 7.6 below). A mechanism for
“‘importing’” functions defined by your own programs is described in Appendix A.22.

SECTION 7.2 ARITHMETIC EXPRESSIONS 113

abs (x) absolute value, | x|

acos (x) inverse cosine, cos~! (x)

acosh (x) inverse hyperbolic cosine, cosh™!(x)
asin (x) invemeshm,ﬁn’l(x)

asinh (x) inverse hyperbolic sine, sinh~! (x)
atan (x) inverse tangent, tan~! (x)

atan2 (y, x) inverse tangent, tan~! (y/x)

atanh (x) inverse hyperbolic tangent, tanh ™! (x)
cos (x) cosine

cosh (x) hyperbolic cosine

exp (x) exponential, e”

log (x) natural logarithm, log, (x)

1logl0 (x) common logarithm, log ;o (x)

max (x,y, ..) maximum (2 or more arguments)
min(x,y, ...) minimum (2 or more arguments)
sin(x) sine

sinh (x) hyperbolic sine

sgrt (x) square root

tan (x) tangent

tanh (x) hyperbolic tangent

Table 7-2: Built-in arithmetic functions for use in models.

Finally, the indexed operators such as X and IT from algebraic notation are generalized
in AMPL by expressions for iterating operations over sets. In particular, most large-scale
linear programming models contain iterated summations:

sum {i in ORIG} supplyl[i]

The keyword sum may be followed by any indexing expression. The subsequent arith-
metic expression is evaluated once for each member of the index set, and all the resulting
values are added. Thus the sum above, from the transportation model of Figure 3-1a, rep-
resents the total supply available, at all origins. The sum operator has lower precedence
than *, so the objective of the same model can be written

sum {i in ORIG, j in DEST} cost([i,j] * Trans([i,j]

to represent the total of cost[1i,j] * Trans[i, j] over all combinations of origins
and destinations. The precedence of sum is higher than that of + or -, however, so for
the objective of the multiperiod production model in Figure 6-3 we must write

sum {p in PROD, t in 1..T}
(sum {a in AREA[p]} revenue(p,a,t]*Sell(p,a,t] -
prodcost[p] *Make[p,t] - invcost[pl*Invip,t]);

The outer sum applies to the entire parenthesized expression following it, while the inner
sum applies only to the term revenue[p,a,t] * Sell[p,a, t].

114 PARAMETERS AND EXPRESSIONS CHAPTER 7

Other iterated arithmetic operators are prod for multiplication, min for minimum,
and max for maximum. As an example, we could use

max {i in ORIG} supply[i]

to describe the greatest supply available at any origin.

Bear in mind that, while an AMPL arithmetic function or operator may be applied to
variables as well as to parameters or to numeric members of sets, most operations on vari-
ables are not linear. AMPL’s requirements for arithmetic expressions in a linear program
are described in Section 8.2. Some of the nonlinear functions of variables that can be
handled by certain solvers are discussed in Chapter 18.

7.3 Logical and conditional expressions

The values of arithmetic expressions can be tested against each other by comparison
operators:

= equal to

<> not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

The result of a comparison is either ‘‘true’” or ‘‘false’’. Thus T > 1 is true if the parame-
ter T has a value greater than 1, and is false otherwise; and

sum {i in ORIG} supply[i] = sum {j in DEST} demand[j]

is true if and only if total supply equals total demand.

Comparisons are one example of AMPL’s logical expressions, which evaluate to true
or false. Set membership tests using in and within, described in Section 5.4, are
another example. More complex logical expressions can be built up with logical opera-
tors. The and operator returns true if and only if both its operands are true, while or
returns true if and only if at least one of its operands is true; the unary operator not
returns false for true and true for false. Thus the expression

T >> 0 and T <= 10
is only true if T lies in the interval [0, 10], while the following from Section 5.5,
i in MAXREQ or n_min[i] > 0

is true if 1 is a member of MAXREQ, or n_min[i] is positive, or both. Where several
operators are used together, any comparison, membership or arithmetic operator has
higher precedence than the logical operators; and has higher precedence than or, while
not has higher precedence than either. Thus the expression

not i in MAXREQ or n_min[i] > 0 and n_min[i] <= 10

SECTION 7.3 LOGICAL AND CONDITIONAL EXPRESSIONS 115

is interpreted as

(not (i in MAXREQ)) or ((n_min[i] > 0) and (n_min[i] <= 10))
Alternatively, the not in operator could be used:

1 not in MAXREQ or n_min[i] > 0 and n_min[i] <= 10

The precedences are summarized in Table 7-1, which also gives alternative forms.
Like + and *, the operators or and and have iterated versions. The iterated or is
denoted by exists, and the iterated and by forall. For example, the expression

exists {i in ORIG} demand[i] > 10

is true if and only if at least one origin has a demand greater than 10, while

forall {i in ORIG} demand[i] > 10

is true if and only if every origin has demand greater than 10.

Another use for a logical expression is as an operand to the conditional or if-then-
else operator, which returns one of two different arithmetic values depending on
whether the logical expression is true or false. Consider the two collections of inventory
balance constraints in the multiperiod production model of Figure 5-3:

subject to Balance0O {p in PROD}:
Make[p, first (WEEKS)] + invO0[p]
= Sell[p,first (WEEKS)] + Inv[p, first (WEEKS)];

subject to Balance {p in PROD, t in WEEKS: ord(t) > 1}:
Make[p,t] + Invp,prev(t)] = Sell[p,t] + Invip,t];

The BalanceO constraints are basically the Balance constraints with t set to
first (WEEKS). The only difference is in the second term, which represents the previ-
ous week’s inventory; it is given as inv0 [p] for the first week (in the Balance0 con-
straints) but is represented by the variable Inv [p, prev (t)] for subsequent weeks (in
the Balance constraints). We would like to combine these constraints into one declara-
tion, by having a term that takes the value inv0 [p] when t is the first week, and takes
the value Inv [p, prev (t)] otherwise. Such a term is written in AMPL as:

if t = first(WEEKS) then inv0[p] else Inv[p,prev(t)]

Placing this expression into the constraint declaration, we can write

subject to Balance {p in PROD, t in WEEKS}:
Make[p,t] +
(if t = first (WEEKS) then inv0[p] else Inv[p,prev(t)])
= Sell[p,t] + Invip,t];

This form communicates the inventory balance constraints more concisely and directly
than two separate declarations.
The general form of a conditional expression is

if a then b else ¢

116 PARAMETERS AND EXPRESSIONS CHAPTER 7

where a is a logical expression. If a evaluates to true, the conditional expression takes the
value of b; if a is false, the expression takes the value of ¢. If ¢ is zero, the else c part
can be dropped. Most often b and c are arithmetic expressions, but they can also be string
or set expressions, so long as both are expressions of the same kind. Because then and
else have lower precedence than any other operators, a conditional expression needs to
be parenthesized (as in the example above) unless it occurs at the end of a statement.

AMPL also has an i f-then-else for use in programming; like the conditional state-
ments in many programming languages, it executes one or another block of statements
depending on the truth of some logical expression. We describe it with other AMPL pro-
gramming features in Chapter 13. The if-then-else that we have described here is
not a statement, but rather an expression whose value is conditionally determined. It
therefore belongs inside a declaration, in a place where an expression would normally be
evaluated.

7.4 Restrictions on parameters

If T is intended to represent the number of weeks in a multiperiod model, it should be
an integer and greater than 1. By including these conditions in T’s declaration,

param T > 1 integer;
you instruct AMPL to reject your data if you inadvertently set T to 1:
error processing param T:

failed check: param T =
is not > 1;

|
=

or to 2.5:

error processing param T:
failed check: param T = 2.5
is not an integer;

AMPL will not send your problem instance to a solver as long as any errors of this kind
remain.

In the declaration of an indexed collection of parameters, a simple restriction such as
integer or >= 0 applies to every parameter defined. Our examples often use this
option to specify that vectors and arrays are nonnegative:

param demand {DEST,PROD} >= 0;

If you include dummy indices in the indexing expression, however, you can use them to
specify a different restriction for each parameter:

param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

SECTION 7.4 RESTRICTIONS ON PARAMETERS 117

The effect of these declarations is to define a pair of parameters f_max[j] >=
f_min[j] forevery j in the set FOOD.

A restriction phrase for a parameter declaration may be the word integer or
binary or a comparison operator followed by an arithmetic expression. While
integer restricts a parameter to integral (whole-number) values, binary restricts it to
zero or one. The arithmetic expression may refer to sets and parameters previously
defined in the model, and to dummy indices defined by the current declaration. There
may be several restriction phrases in the same declaration, in which case they may
optionally be separated by commas.

In special circumstances, a restriction phrase may even refer to the parameter in
whose declaration it appears. Some multiperiod production models, for example, are
defined in terms of a parameter cumulative_market[p, t] that represents the
cumulative demand for product p in weeks 1 through t. Since cumulative demand does
not decrease, you might try to write a restriction phrase like this:

param cumulative_market {p in PROD, t in 1..T}
>= cumulative_market[p,t-1]; # ERROR

For the parameters cumulative_market [p, 1], however, the restriction phrase will
refer to cumulative_market [p, 0], which is undefined; AMPL will reject the decla-
ration with an error message. What you need here again is a conditional expression that
handles the first period specially:

param cumulative_market {p in PROD, t in 1..T}
>= if t = 1 then 0 else cumulative_market[p,t-11;

The same thing could be written a little more compactly as

param cumulative_market {p in PROD, t in 1..T}
>= if t > 1 then cumulative_market[p,t-11;

since ‘‘else 0’ is assumed. Almost always, some form of if-then-else expression
is needed to make this kind of self-reference possible.

As you might suspect from this last example, sometimes it is desirable to place a more
complex restriction on the model’s data than can be expressed by a restriction phrase
within a declaration. This is the purpose of the check statement. For example, in the
transportation model of Figure 3-1a, total supply must equal total demand:

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];

The multicommodity version, in Figure 4-1, uses an indexed check to say that total sup-
ply must equal total demand for each product:

check {p in PROD}:
sum {i in ORIG} supplyl[i,p] = sum {j in DEST} demand[j,p];

Here the restriction is tested once for each member p of PROD. If the check fails for any
member, AMPL prints an error message and rejects all of the data.

You can think of the check statement as specifying a kind of constraint, but only on
the data. The restriction clause is a logical expression, which may use any previously

118 PARAMETERS AND EXPRESSIONS CHAPTER 7

defined sets and parameters as well as dummy indices defined in the statement’s indexing
expression. After the data values have been read, the logical expression must evaluate to
true; if an indexing expression has been specified, the logical expression is evaluated sep-
arately for each assignment of set members to the dummy indices, and must be true for
each.

We strongly recommend the use of restriction phrases and check statements to vali-
date a model’s data. These features will help you to catch data errors at an early stage,
when they are easy to fix. Data errors not caught will, at best, cause errors in the genera-
tion of the variables and constraints, so that you will get some kind of error message from
AMPL. In other cases, data errors lead to the generation of an incorrect linear program. If
you are fortunate, the incorrect LP will have a meaningless optimal solution, so that —
possibly after a good deal of effort — you will be able to work backward to find the error
in the data. At worst, the incorrect LP will have a plausible solution, and the error will go
undetected.

7.5 Computed parameters

It is seldom possible to arrange that the data values available to a model are precisely
the coefficient values required by the objective and constraints. Even in the simple pro-
duction model of Figure 1-4, for example, we wrote the constraint as

sum {p in PROD} (l/rate[p]) * Make[p] <= avail;

because production rates were given in tons per hour, while the coefficient of Make [p]
had to be in hours per ton. Any parameter expression may be used in the constraints and
objective, but the expressions are best kept simple. When more complex expressions are
needed, the model is usually easier to understand if new, computed parameters are
defined in terms of the data parameters.

The declaration of a computed parameter has an assignment phrase, which resembles
the restriction phrase described in the previous section except for the use of an = operator
to indicate that the parameter is being set equal to a certain expression, rather than merely
being restricted by an inequality. As a first example, suppose that the data values pro-
vided to the multicommodity transportation model of Figure 4-1 consist of the total
demand for each product, together with each destination’s share of demand. The destina-
tions’ shares are percentages between zero and 100, but their sum over all destinations
might not exactly equal 100%, because of rounding and approximation. Thus we declare
data parameters to represent the shares, and a computed parameter equal to their sum:

param share {DEST} >= 0, <= 100;
param tot_sh = sum {j in DEST} sharel[j];

We can then declare a data parameter to represent total demands, and a computed param-
eter that equals demand at each destination:

SECTION 7.5 COMPUTED PARAMETERS 119

param tot_dem {PROD} >= 0;
param demand {j in DEST, p in PROD}
= share[j] * tot_dem[p] / tot_sh;

The division by tot_sh acts as a correction factor for a sum not equal to 100%. Once
demand has been defined in this way, the model can use it as in Figure 4-1:

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[]j,p];

We could avoid computed parameters by substituting the formulas for tot_sh and
demand[j, p] directly into this constraint:

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,Jj,p]
= share[j] * tot_dem[p] / sum {k in DEST} sharelk];

This alternative makes the model a little shorter, but the computation of the demand and
the structure of the constraint are both harder to follow.

As another example, consider a scenario for the multiperiod production model (Figure
4-4) in which minimum inventories are computed. Specifically, suppose that the inven-
tory of product p for week t must be at least a certain fraction of market [p, t+11], the
maximum that can be sold in the following week. We thus use the following declarations
for the data to be supplied:

param frac > 0;
param market {PROD,1..T+1} >= 0;

and then declare

param mininv {p in PROD, t in 0..T} = frac * market[p,t+1];
var Inv {p in PROD, t in 0..T} >= mininv([p,t];

to define and use parameters mininv [p, t] that represent the minimum inventory of
product p for week t. AMPL keeps all = definitions of parameters up to date throughout
a session. Thus for example if you change the value of frac the values of all the
mininv parameters automatically change accordingly.

If you define a computed parameter as in the examples above, then you cannot also
specify a data value for it. An attempt to do so will result in an error message:

mininv was defined in the model
context: param >>> mininv <<< := bands 2 3000

However, there is an alternative way in which you can define an initial value for a param-
eter but allow it to be changed later.

If you define a parameter using the default operator in place of =, then the parame-
ter is initialized rather than defined. Its value is taken from the value of the expression to
the right of the default operator, but does not change if the expression’s value later
changes. Initial values can be overridden by data statements, and they also may be
changed by subsequent assignment statements. This feature is most useful for writing
AMPL scripts that update certain values repeatedly, as shown in Section 13.2.

120 PARAMETERS AND EXPRESSIONS CHAPTER 7

If you define a parameter using the operator default in place of =, then you can
specify values in data statements to override the ones that would otherwise be computed.
For instance, by declaring

param mininv {p in PROD, t in 0..T}
default frac * market[p,t+1l];

you can allow a few exceptional minimum inventories to be specified as part of the data
for the model, either in a list:

param mininv :=
bands 2 3000
coils 2 2000
coils 3 2000 ;

or in a table:

param market: 1 2 3 4 :=
bands . 3000 . .
coils . 2000 2000 .o
(AMPL uses ‘‘.”’ in a data statement to indicate an omitted entry, as explained in Chapter
9and A.12.2.)

The expression that gives the default value of a parameter is evaluated only when the
parameter’s value is first needed, such as when an objective or constraint that uses the
parameter is processed by a solve command.

In most = and default phrases, the operator is followed by an arithmetic expression
in previously defined sets and parameters (but not variables) and currently defined
dummy indices. Some parameters in an indexed collection may be given a computed or
default value in terms of others in the same collection, however. As an example, you can
smooth out some of the variation in the minimum inventories by defining the mininv
parameter to be a running average like this:

param mininv {p in PROD, t in 0..T} =
if t = 0 then inv0[p]
else 0.5 * (mininv[p,t-1] + frac * market[p,t+1]);

The values of mininv for week O are set explicitly to the initial inventories, while the
values for each subsequent week t are defined in terms of the previous week’s values.
AMPL permits any ‘‘recursive’’ definition of this kind, but will signal an error if it detects
a circular reference that causes a parameter’s value to depend directly or indirectly on
itself.

You can use the phrases defined in this section together with the restriction phrases of
the previous section, to further check the values that are computed. For example the dec-
laration

param mininv {p in PROD, t in 0..T}
= frac * market[p,t+1l], >= 0;

SECTION 7.6 RANDOMLY GENERATED PARAMETERS 121

will cause an error to be signaled if the computed value of any of the mininv parameters
is negative. This check is triggered whenever an AMPL session uses mininv for any

purpose.

7.6 Randomly generated parameters

When you’re testing out a model, especially in the early stages of development, you
may find it convenient to let randomly generated data stand in for actual data to be
obtained later. Randomly generated parameters can also be useful in experimenting with
alternative model formulations or solvers.

Randomly generated parameters are like the computed parameters introduced in the
preceding section, except that their defining expressions are made random by use of
AMPL’s built-in random number generation functions listed in Table A-3. As an example
of the simplest case, the individual parameter avail representing hours available in
steel.mod may be defined to equal a random function:

param avail_mean > 0;
param avail_variance > 0, < avail_mean / 2;

param avail = max(Normal (avail_mean, avail_variance), 0);

Adding some indexing gives a multi-stage version of this model:

param avail {STAGE} =
max (Normal (avail_mean, avail_variance), 0);

For each stage s, this gives avail [s] a different random value from the same random
distribution. To specify stage-dependent random distributions, you would add indexing
to the mean and variance parameters as well:

param avail_mean {STAGE} > 0;
param avail_variance {s in STAGE} > 0, < avail_mean[s] / 2;

param avail {s in STAGE} =
max (Normal (avail_mean[s], avail_variance[s]), 0);

The max (..., 0) expression is included to handle the rare case in which the normal distri-
bution with a positive mean returns a negative value.

More general ways of randomly computing parameters arise naturally from the pre-
ceding section’s examples. In the multicommodity transportation problem, you can
define random shares of demand:

param share {DEST} = Uniform(0,100);
param tot_sh = sum {j in DEST} sharel[j];

param tot_dem {PROD} >= 0;
param demand {j in DEST, p in PROD}
= share[j] * tot_dem([p] / tot_sh;

122 PARAMETERS AND EXPRESSIONS CHAPTER 7

Parameters tot_sh and demand then also become random, because they are defined in
terms of random parameters. In the multiperiod production model, you can define the
demand quantities market [p, t] in terms of an initial value and a random amount of
increase per period:

param marketl {PROD} >= 0;
param max_incr {PROD} >= 0;

param market {p in PROD, t in 1..T+1} =
if t = 1 then marketl[p]
else Uniform(0,max_incr) * market([p,t-11;

A recursive definition of this kind provides a way of generating simple random processes
over time.

All of the AMPL random functions are based on a uniform random number generator
with a very long period. When you start AMPL or give a reset command, however, the
generator is reset and the ‘‘random’’ values are the same as before. You can request dif-
ferent values by changing the AMPL option randseed to some integer other than its
default value of 1; the command for this purpose is

option randseed n;

where n is some integer value. Nonzero values give sequences that repeat each time
AMPL is reset. A value of 0 requests AMPL to pick a seed based on the current value of
the system clock, resulting (for practical purposes) in a different seed at each reset.

AMPL’s reset data command, when applied to a randomly computed parameter,
also causes a new sample of random values to be determined. The use of this command
is discussed in Section 11.3.

7.7 Logical parameters

Although parameters normally represent numeric values, they can optionally be used
to stand for true-false values or for character strings.

The current version of AMPL does not support a full-fledged ‘logical’’ type of param-
eter that would stand for only the values true and false, but a parameter of type binary
may be used to the same effect. As an illustration, we describe an application of the pre-
ceding inventory example to consumer goods. Certain products in each week may be
specially promoted, in which case they require a higher inventory fraction. Using param-
eters of type binary, we can represent this situation by the following declarations:

param fr_reg > 0; # regular inventory fraction
param fr_pro > fr_reg; # fraction for promoted items

param promote {PROD,1..T+1} binary;
param market {PROD,1..T+1} >= O0;

SECTION 7.8 SYMBOLIC PARAMETERS 123

The binary parameters promote [p, t] are O when there is no promotion, and 1 when
there is a promotion. Thus we can define the minimum-inventory parameters by use of
an if-then-else expression as follows:

param mininv {p in PROD, t in 0..T} =

(if promote[p,t] = 1 then fr_pro else fr_reqg)
* market[p,t+1];

We can also say the same thing more concisely:

param mininv {p in PROD, t in 0..T} =
(i1f promotel[p,t] then fr_pro else fr_reg) * market[p,t+1l];

When an arithmetic expression like promote [p, t] appears where a logical expression
is required, AMPL interprets any nonzero value as true, and zero as false. You do need to
exercise a little caution to avoid being tripped up by this implicit conversion. For exam-
ple, in Section 7.4 we used the expression

if t = 1 then 0 else cumulative_market[p,t-1]

If you accidentally write

if t then 0 else cumulative_market[p,t-1] # DIFFERENT

it’s perfectly legal, but it doesn’t mean what you intended.

7.8 Symbolic parameters

You may permit a parameter to represent character string values, by including the
keyword symbolic in its declaration. A symbolic parameter’s values may be strings or
numbers, just like a set’s members, but the string values may not participate in arithmetic.

A major use of symbolic parameters is to designate individual set members that are to
be treated specially. For example, in a model of traffic flow, there is a set of intersec-
tions, two of whose members are designated as the entrance and exit. Symbolic parame-
ters can be used to represent these two members:

set INTER;

param entr symbolic in INTER;
param exit symbolic in INTER, <> entr;

In the data statements, an appropriate string is assigned to each symbolic parameter:

set INTER := a bc de f g ;
param entr := a ;
param exit := g ;

These parameters are subsequently used in defining the objective and constraints; the
complete model is developed in Section 15.2.

124 PARAMETERS AND EXPRESSIONS CHAPTER 7

Another use of symbolic parameters is to associate descriptive strings with set mem-
bers. Consider for example the set of ‘‘origins’’ in the transportation model of Figure
3-1a. When we introduced this set at the beginning of Chapter 3, we described each orig-
inating city by means of a 4-character string and a longer descriptive string. The short
strings became the members of the AMPL set ORIG, while the longer strings played no
further role. To make both available, we could declare

set ORIG;
param orig_name {ORIG} symbolic;
param supply {ORIG} >= 0;

Then in the data we could specify

param: ORIG: orig_name supply :=
GARY "Gary, Indiana" 1400
CLEV "Cleveland, Ohio" 2600
PITT "Pittsburgh, Pennsylvania" 2900 ;

Since the long strings do not have the form of AMPL names, they do need to be quoted.
They still play no role in the model or the resulting linear program, but they can be
retrieved for documentary purposes by the display and printf commands described
in Chapter 12.

Just as there are arithmetic and logical operators and functions, there are AMPL string
operators and functions for working with string values. These features are mostly used in
AMPL command scripts rather than in models, so we defer their description to Section
13.7.

Exercises

7-1. Show how the multicommodity transportation model of Figure 4-1 could be modified so that
it applies the following restrictions to the data. Use either a restriction phrase in a set or param
declaration, or a check statement, whichever is appropriate.

— No city is a member of both ORIG and DEST.

— The number of cities in DEST must be greater than the number in ORIG.

— Demand does not exceed 1000 at any one city in DEST.

— Total supply for each product at all origins must equal total demand for that product at all des-
tinations.

— Total supply for all products at all origins must equal total demand for all products at all desti-
nations.

— Total supply of all products at an origin must not exceed total capacity for all shipments from
that origin.

— Total demand for all products at a destination must not exceed total capacity for all shipments
to that destination.

7-2. Show how the multiperiod production model of Figure 4-4 could be modified so that it
applies the following restrictions to the data.

SECTION 7.8 SYMBOLIC PARAMETERS 125

— The number of weeks is a positive integer greater than 1.

— The initial inventory of a product does not exceed the total market demand for that product
over all weeks.

— The inventory cost for a product is never more than 10% of the expected revenue for that prod-
uct in any one week.

— The number of hours in a week is between 24 and 40, and does not change by more than 8
hours from one week to the next.

— For each product, the expected revenue never decreases from one week to the next.

7-3. The solutions to the following exercises involve the use of an if-then-else operator to
formulate a constraint.

(a) In the example of the constraint Balance in Section 7.3, we used an expression beginning

if t = first (WEEKS) then

Find an equivalent expression that uses the function ord (t).

(b) Combine the Diet_Min and Diet_Max constraints of Figure 5-1’s diet model into one con-
straint declaration.

(c) In the multicommodity transportation model of Figure 4-1, imagine that there is more demand
at the destinations than we can meet from the supply produced at the origins. To make up the dif-
ference, a limited number of additional tons can be purchased (rather than manufactured) for ship-
ment at certain origins.

To model this situation, suppose that we declare a subset of origins,

set BUY_ORIG within ORIG;

where the additional tons can be bought. The relevant data values and decision variables could be
indexed over this subset:

param buy_supply {BUY_ORIG,PROD} >= 0; # available for purchase
param buy_cost {BUY_ORIG,PROD} > O0; # purchase cost per ton

var Buy {i in BUY_ORIG, p in PROD} >= 0, <= buy_supplyli,pl;

amount to buy

Revise the objective function to include the purchase costs. Revise the Supply constraints to say
that, for each origin and each product, total tons shipped out must equal tons of supply from pro-
duction plus (if applicable) tons purchased.

(d) Formulate the same model as in (c), but with BUY_ORIG being the set of pairs (i,p) such
that product p can be bought at origin i.

7-4. This exercise is concerned with the following sets and parameters from Figure 4-1:

set ORIG; # origins
set DEST; # destinations
set PROD; # products

param supply {ORIG,PROD} >= 0;
param demand {DEST,PROD} >= 0;

(a) Write param declarations, using the = operator, to compute parameters having the following
definitions:

— prod_supply [p] is the total supply of product p at all origins.

126 PARAMETERS AND EXPRESSIONS CHAPTER 7

— dest_demand[j] is the total demand for all products at destination j.

— true_limit[1i,J,p] is the largest quantity of product p that can be shipped from i to j
— that is, the largest value that does not exceed 1imit [i, j], or the supply of p at i, or the
demand for p at j.

— max_supply [p] is the largest supply of product p available at any origin.

—max_diff [p] is the largest difference, over all combinations of origins and destinations,
between the supply and demand for product p.

(b) Write set declarations, using the = operator, to compute these sets:
— Products p whose demand is at least 500 at some destination j.
— Products p whose demand is at least 250 at all destinations j.
— Products p whose demand is equal to 500 at some destination j.
7-5. AMPL parameters can be defined to contain many kinds of series, especially by using recur-

sive definitions. For example, we can make s [J] equal the sum of the first j integers, for j from
1 to some given limit N, by writing

param N;
param s {j in 1..N} = sum {3jj in 1..3} Jj3;

or, using a formula for the sum,

jo* (3+1) / 2;

param s {j in 1..N}

or, using a recursive definition,
param s {j in 1..N} = if j = 1 then 1 else s[j-1]1 + J;

This exercise asks you to play with some other possibilities.
(a) Define fact [n] to be n factorial, the product of the first n integers. Give both a recursive
and a nonrecursive definition as above.
(b) The Fibonacci numbers are defined mathematically by f, = f; = 1l and f,, = f,_1 + fn._»-
Using a recursive declaration, define £ib[n] in AMPL to equal the n-th Fibonacci number.
Use another AMPL declaration to verify that the n-th Fibonacci number equals the closest integer
to (4 +%V5)" /5.
(c) Here’s another recursive definition, called Ackermann’s function, for positive integers i and j:
A(i,0) =i+ 1
A0, j+ 1) = A(L,)
A+ 1,j+1) = AAG, j+ 1),))

Using a recursive declaration, define ack[i,j] in AMPL so that it will equal A(i, j). Use
display to print ack[0,0], ack[1,1], ack[2,2] and so forth. What difficulty do you
encounter?

(d) What are the values odd [1] defined by the following odd declaration?

param odd {i in 1..N} =
if 1 = 1 then 3 else
min {j in odd[i-1]+2 .. odd[i-1]*2 by 2:
not exists {k in 1 .. i-1} j mod odd[k] = 0} J;

Once you’ve figured it out, create a simpler and more efficient declaration that gives a set rather
than an array of these numbers.

SECTION 7.8 SYMBOLIC PARAMETERS 127

(e) A “‘tree’’ consists of a collection of nodes, one of which we designate as the ‘‘root’’. Each
node except the root has a unique predecessor node in the tree, such that if you work backwards
from a node to its predecessor, then to its predecessor’s predecessor, and so forth, you always
eventually reach the root. A tree can be drawn like this, with the root at the left and an arrow from
each node to its successors:

We can store the structure of a tree in AMPL sets and parameters as follows:

set NODES;

param Root symbolic in NODES;

param pred {i in NODES diff {Root}} symbolic in NODES diff {i};
Every node i, except Root, has a predecessor pred[i].

The depth of a node is the number of predecessors that you encounter on tracing back to the root;
the depth of the root is 0. Give an AMPL definition for depth[1i] that correctly computes the
depth of each node i. To check your answer, apply your definition to AMPL data for the tree
depicted above; after reading in the data, use display to view the parameter depth.

An error in the data could give a tree plus a disconnected cycle, like this:

If you enter such data, what will happen when you try to display depth?

