
8
__

Linear Programs: Variables,
Objectives and Constraints

The best-known kind of optimization model, which has served for all of our examples
so far, is the linear program. The variables of a linear program take values from some
continuous range; the objective and constraints must use only linear functions of the vari-
ables. Previous chapters have described these requirements informally or implicitly; here
we will be more specific.

Linear programs are particularly important because they accurately represent many
practical applications of optimization. The simplicity of linear functions makes linear
models easy to formulate, interpret, and analyze. They are also easy to solve; if you can
express your problem as a linear program, even in thousands of constraints and variables,
then you can be confident of finding an optimal solution accurately and quickly.

This chapter describes how variables are declared, defines the expressions that AMPL
recognizes as being linear in the variables, and gives the rules for declaring linear objec-
tives and constraints. Much of the material on variables, objectives and constraints is
basic to other AMPL models as well, and will be used in later chapters.

Because AMPL is fundamentally an algebraic modeling language, this chapter concen-
trates on features for expressing linear programs in terms of algebraic objectives and con-
straints. For linear programs that have certain special structures, such as networks, AMPL
offers alternative notations that may make models easier to write, read and solve. Such
special structures are among the topics of Chapters 15 through 17.

8.1 Variables

The variables of a linear program have much in common with its numerical parame-
ters. Both are symbols that stand for numbers, and that may be used in arithmetic expres-
sions. Parameter values are supplied by the modeler or computed from other values,

129

Robert Fourer
Typewritten Text
Copyright © 2003 by Robert Fourer, David M. Gay and Brian W. Kernighan

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

Robert Fourer
Typewritten Text

130 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

while the values of variables are determined by an optimizing algorithm (as implemented
in one of the packages that we refer to as solvers).

Syntactically, variable declarations are the same as the parameter declarations defined
in Chapter 7, except that they begin with the keyword var rather than param. The
meaning of qualifying phrases within the declaration may be different, however, when
these phrases are applied to variables rather than to parameters.

Phrases beginning with >= or <= are by far the most common in declarations of vari-
ables for linear programs. They have appeared in all of our examples, beginning with the
production model of Figure 1-4:

var Make {p in PROD} >= 0, <= market[p];

This declaration creates an indexed collection of variables Make[p], one for each mem-
ber p of the set PROD; the rules in this respect are exactly the same as for parameters.
The effect of the two qualifying phrases is to impose a restriction, or constraint, on the
permissible values of the variables. Specifically, >= 0 implies that all of the variables
Make[p] must be assigned nonnegative values by the optimizing algorithm, while the
phrase <= market[p] says that, for each product p, the value given to Make[p] may
not exceed the value of the parameter market[p].

In general, either >= or <= may be followed by any arithmetic expression in previ-
ously defined sets and parameters and currently defined dummy indices. Most linear pro-
grams are formulated in such a way that every variable must be nonnegative; an AMPL
variable declaration can specify nonnegativity either directly by >= 0, or indirectly as in
the diet model of Figure 5-1:

param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

The values following >= and <= are lower and upper bounds on the variables. Because
these bounds represent a kind of constraint, they could just as well be imposed by the
constraint declarations described later in this chapter. By placing bounds in the var dec-
laration instead, you may be able to make the model shorter or clearer, although you will
not make the optimal solution any different or easier to find. Some solvers do treat
bounds specially in order to speed up their algorithms, but with AMPL all bounds are
identified automatically, no matter how they are expressed in your model.

Variable declarations may not use the comparison operators <, > or <> in qualifying
phrases. For linear programming it makes no sense to constrain a variable to be, say, < 3,
since it could always be chosen as 2.99999... or as close to 3 as you like.

An = phrase in a variable declaration gives rise to a definition, as in a parameter dec-
laration. Because a variable is being declared, however, the expression to the right of the
= operator may contain previously declared variables as well as sets and parameters. For
example, instead of writing the complicated objective from the multi-period production
model of Figure 6-3 (steelT3.mod) as

SECTION 8.1 VARIABLES 131

maximize Total_Profit:
sum {p in PROD, t in 1..T}

(sum {a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);

you could instead define variables to represent the total revenues, production costs, and
inventory costs:

var Total_Revenue =
sum {p in PROD, t in 1..T}

sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t];
var Total_Prod_Cost =

sum {p in PROD, t in 1..T} prodcost[p] * Make[p,t];
var Total_Inv_Cost =

sum {p in PROD, t in 1..T} invcost[p] * Inv[p,t];

The objective would then be the sum of these three defined variables:

maximize Total_Profit:
Total_Revenue - Total_Prod_Cost - Total_Inv_Cost;

The structure of the objective is clearer this way. Also the defined variables are conve-
niently available to a display statement to show how the three main components of
profit compare:

ampl: display Total_Revenue, Total_Prod_Cost, Total_Inv_Cost;
Total_Revenue = 801385
Total_Prod_Cost = 285643
Total_Inv_Cost = 1221

Declarations of defined variables like these do not give rise to additional constraints in
the resulting problem instance. Rather, the linear expression to the right of the = is sub-
stituted for every occurrence of the defined variable in the objective and constraints.
Defined variables are even more useful for nonlinear programming, where the substitu-
tion may be only implicit, so we will return to this topic in Chapter 18.

If the expression to the right of the = operator contains no variables, then you are
merely defining variables to be fixed to values given by the data. In that case you should
use a param declaration instead. On the other hand, if you only want to fix some vari-
ables temporarily while developing or analyzing a model, then you should leave the dec-
larations unchanged and instead fix them with the fix command described in Section
11.4.

A := or default phrase in a variable declaration gives initial values to the indi-
cated variables. Variables not assigned an initial value by := can also be assigned initial
values from a data file. Initial values of variables are normally changed — ideally to
optimal values — when a solver is invoked. Thus the main purpose of initial values of
variables is to give the solver a good starting solution. Solvers for linear programming
can seldom make good use of a starting solution, however, so we defer further discussion
of this topic to Chapter 18 on nonlinear programming.

Finally, variables may be declared as integer so that they must take whole number
values in any optimal solution, or as binary so that they may only take the values 0 and

132 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

1. Models that contain any such variables are integer programs, which are the topic of
Chapter 20.

8.2 Linear expressions

An arithmetic expression is linear in a given variable if, for every unit increase or
decrease in the variable, the value of the expression increases or decreases by some fixed
amount. An expression that is linear in all its variables is called a linear expression.
(Strictly speaking, these are affine expressions, and a linear expression is an affine
expression with constant term zero. For simplicity, we will ignore this distinction.)

AMPL recognizes as a linear expression any sum of terms of the form

constant-expr
variable-ref
(constant-expr) * variable-ref

provided that each constant-expr is an arithmetic expression that contains no variables,
while var-ref is a reference (possibly subscripted) to a variable. The parentheses around
the constant-expr may be omitted if the result is the same according to the rules of opera-
tor precedence (Table A-1). The following examples, from the constraints in the multi-
period production model of Figure 6-3, are all linear expressions under this definition:

avail[t]
Make[p,t] + Inv[p,t-1]
sum {p in PROD} (1/rate[p]) * Make[p,t]
sum {a in AREA[p]} Sell[p,a,t] + Inv[p,t]

The model’s objective,

sum {p in PROD, t in 1..T}
(sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -

prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t])

is also linear because subtraction of a term is the addition of its negative, and a sum of
sums is itself a sum.

Various kinds of expressions are equivalent to a sum of terms of the forms above, and
are also recognized as linear by AMPL. Division by an arithmetic expression is equiva-
lent to multiplication by its inverse, so

(1/rate[p]) * Make[p,t]

may be written in a linear program as

Make[p,t] / rate[p]

The order of multiplications is irrelevant, so the variable-ref need not come at the end of
a term; for instance,

revenue[p,a,t] * Sell[p,a,t]

SECTION 8.2 LINEAR EXPRESSIONS 133

is equivalent to

Sell[p,a,t] * revenue[p,a,t]

As an example combining these principles, imagine that revenue[p,a,t] is in dollars
per metric ton, while Sell remains in tons. If we define conversion factors

param mt_t = 0.90718474; # metric tons per ton
param t_mt = 1 / mt_t; # tons per metric ton

then both

sum {a in AREA[p]} mt_t * revenue[p,a,t] * Sell[p,a,t]

and

sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] / t_mt

are linear expressions for total revenue.
To continue our example, if costs are also in dollars per metric ton, the objective

could be written as

mt_t * sum {p in PROD, t in 1..T}
(sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -

prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t])

or as

sum {p in PROD, t in 1..T}
(sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -

prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t]) / t_mt

Multiplication and division distribute over any summation to yield an equivalent linear
sum of terms. Notice that in the first form, mt_t multiplies the entire sum {p in
PROD, t in 1..T}, while in the second t_mt divides only the summand that follows
sum {p in PROD, t in 1..T}, because the / operator has higher precedence than the
sum operator. In these examples the effect is the same, however.

Finally, an if-then-else operator produces a linear result if the expressions fol-
lowing then and else are both linear and no variables appear in the logical expression
between if and else. The following example appeared in a constraint in Section 7.3:

Make[j,t] +
(if t = first(WEEKS) then inv0[j] else Inv[j,prev(t)])

The variables in a linear expression may not appear as the operands to any other opera-
tors, or in the arguments to any functions. This rule applies to iterated operators like
max, min, abs, forall, and exists, as well as ˆ and standard numerical functions
like sqrt, log, and cos.

To summarize, a linear expression may be any sum of terms in the forms

134 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

constant-expr
var-ref
(constant-expr) * (linear-expr)
(linear-expr) * (constant-expr)
(linear-expr) / (constant-expr)
if logical-expr then linear-expr else linear-expr

where constant-expr is any arithmetic expression that contains no references to variables,
and linear-expr is any other (simpler) linear expression. Parentheses may be omitted if
the result is the same by the rules of operator precedence in Table A-1. AMPL automati-
cally performs the transformations that convert any such expression to a simple sum of
linear terms.

8.3 Objectives

The declaration of an objective function consists of one of the keywords minimize
or maximize, a name, a colon, and a linear expression in previously defined sets,
parameters and variables. We have seen examples such as

minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];

and

maximize Total_Profit:
sum {p in PROD, t in 1..T}

(sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -
prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t]);

The name of the objective plays no further role in the model, with the exception of certain
‘‘columnwise’’ declarations to be introduced in Chapters 15 and 16. Within AMPL com-
mands, the objective’s name refers to its value. Thus for example after solving a feasible
instance of the Figure 2-1 diet model we could issue the command

ampl: display {j in FOOD} 100 * cost[j] * Buy[j] / Total_Cost;
100*cost[j]*Buy[j]/Total_Cost [*] :=
BEEF 14.4845
CHK 4.38762
FISH 3.8794
HAM 24.4792
MCH 16.0089
MTL 16.8559
SPG 15.6862
TUR 4.21822
;

to show the percentage of the total cost spent on each food.
Although a particular linear program must have one objective function, a model may

contain more than one objective declaration. Moreover, any minimize or maximize
declaration may define an indexed collection of objective functions, by including an

SECTION 8.3 OBJECTIVES 135

indexing expression after the objective name. In these cases, you may issue an
objective command, before typing solve, to indicate which objective is to be opti-
mized.

As an example, recall that when trying to solve the model of Figure 2-1 with the data
of Figure 2-2, we found that no solution could satisfy all of the constraints; we subse-
quently increased the sodium (NA) limit to 50000 to make a feasible solution possible. It
is reasonable to ask: How much of an increase in the sodium limit is really necessary to
permit a feasible solution? For this purpose we can introduce a new objective equal to
the total sodium in the diet:

minimize Total_NA: sum {j in FOOD} amt["NA",j] * Buy[j];

(We create this objective only for sodium, because we have no reason to minimize most
of the other nutrients.) We can solve the linear program for total cost as before, since
AMPL chooses the model’s first objective by default:

ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: display n_max["NA"];
n_max[’NA’] = 50000

ampl: minimize Total_NA: sum {j in FOOD} amt["NA",j] * Buy[j];
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032
Objective = Total_Cost

The solver tells us the minimum cost, and we can also use display to look at the total
sodium, even though it’s not currently being minimized:

ampl: display Total_NA;
Total_NA = 50000

Next we can use the objective command to switch the objective to minimization of
total sodium. The solve command then re-optimizes with this alternative objective, and
we display Total_Cost to determine the resulting cost:

ampl: objective Total_NA;

ampl: solve;
MINOS 5.5: optimal solution found.
1 iterations, objective 48186

ampl: display Total_Cost;
Total_Cost = 123.627

We see that sodium can be brought down by about 1800, though the cost is forced up by
about $5.50 as a result. (Healthier diets are in general more expensive, because they
force the solution away from the one that minimizes costs.)

As another example, here’s how we could experiment with different optimal solutions
for the office assignment problem of Figure 3-2. First we solve the original problem:

136 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

ampl: model transp.mod; data assign.dat; solve;
CPLEX 8.0.0: optimal solution; objective 28
24 dual simplex iterations (0 in phase I)

ampl: option display_1col 1000, omit_zero_rows 1;
ampl: option display_eps .000001;

ampl: display Total_Cost,
ampl? {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
Total_Cost = 28

cost[i,j]*Trans[i,j] :=
Coullard C118 6
Daskin D241 4
Hazen C246 1
Hopp D237 1
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C251 3
White M239 1
;

To keep the objective value at this optimal level while we experiment, we add a con-
straint that fixes the expression for the objective equal to the current value, 28:

ampl: subject to Stay_Optimal:
ampl? sum {i in ORIG, j in DEST}
ampl? cost[i,j] * Trans[i,j] = 28;

Next, recall that cost[i,j] is the ranking that person i has given to office j, while
Trans[i,j] is set to 1 if it’s optimal to put person i in office j, or 0 otherwise. Thus

sum {j in DEST} cost[i,j] * Trans[i,j]

always equals the ranking of person i for the office to which i is assigned. We use this
expression to declare a new objective function:

ampl: minimize Pref_of {i in ORIG}:
ampl? sum {j in DEST} cost[i,j] * Trans[i,j];

This statement creates, for each person i, an objective Pref_of[i] that minimizes the
ranking of i for the room that i is assigned. Then we can select any one person and opti-
mize his or her ranking in the assignment:

ampl: objective Pref_of["Coullard"];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 3
3 simplex iterations (0 in phase I)

Looking at the new assignment, we see that the original objective is unchanged, and that
the selected individual’s situation is in fact improved, although of course at the expense
of others:

SECTION 8.4 CONSTRAINTS 137

ampl: display Total_Cost,
ampl? {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
Total_Cost = 28

cost[i,j]*Trans[i,j] :=
Coullard D241 3
Daskin D237 1
Hazen C246 1
Hopp C251 5
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C118 5
White M239 1
;

We were able to make this change because there are several optimal solutions to the origi-
nal total-ranking objective. A solver arbitrarily returns one of these, but by use of a sec-
ond objective we can force it toward others.

8.4 Constraints

The simplest kind of constraint declaration begins with the keywords subject to, a
name, and a colon. Even the subject to is optional; AMPL assumes that any declara-
tion not beginning with a keyword is a constraint. Following the colon is an algebraic
description of the constraint, in terms of previously defined sets, parameters and vari-
ables. Thus in the production model introduced in Figure 1-4, we have the following
constraint imposed by limited processing time:

subject to Time:
sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

The name of a constraint, like the name of an objective, is not used anywhere else in an
algebraic model, though it figures in alternative ‘‘columnwise’’ formulations (Chapter
16) and is used in the AMPL command environment to specify the constraint’s dual value
and other associated quantities (Chapter 14).

Most of the constraints in large linear programming models are defined as indexed
collections, by giving an indexing expression after the constraint name. The constraint
Time, for example, is generalized in subsequent examples to say that the production time
may not exceed the time available in each processing stage s (Figure 1-6a):

subject to Time {s in STAGE}:
sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];

or in each week t (Figure 4-4):

138 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

subject to Time {t in 1..T}:
sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

Another constraint from the latter example says that production, sales and inventories
must balance for each product p in each week t:

subject to Balance {p in PROD, t in 1..T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

A constraint declaration can specify any valid indexing expression, which defines a set
(as explained in Chapters 5 and 6); there is one constraint for each member of this set.
The constraint name can be subscripted, so that Time[1] or Balance[p,t+1] refers
to a particular constraint from an indexed collection.

The indexing expression in a constraint declaration should specify a dummy index
(like s, t and p in the preceding examples) for each dimension of the indexing set. Then
when the constraint corresponding to a particular indexing-set member is processed by
AMPL, the dummy indices take their values from that member. This use of dummy
indices is what permits a single constraint expression to represent many constraints; the
indexing expression is AMPL’s translation of a phrase such as ‘‘for all products p and
weeks t = 1 to T’’ that might be seen in an algebraic statement of the model.

By using more complex indexing expressions, you can specify more precisely the
constraints to be included in a model. Consider, for example, the following variation on
the production time constraint:

subject to Time {t in 1..T: avail[t] > 0}:
sum {p in PROD} (1/rate[p]) * Make[p,t] <= avail[t];

This says that if avail[t] is specified as zero in the data for any week t, it is to be
interpreted as meaning ‘‘no constraint on time available in week t’’ rather than ‘‘limit of
zero on time available in week t’’. In the simpler case where there is just one Time con-
straint not indexed over weeks, you can specify an analogous conditional definition as
follows:

subject to Time {if avail > 0}:
sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

The pseudo-indexing expression {if avail > 0} causes one constraint, named Time,
to be generated if the condition avail > 0 is true, and no constraint at all to be gener-
ated if the condition is false. (The same notation can be used to conditionally define
other model components.)

AMPL’s algebraic description of a constraint may consist of any two linear expres-
sions separated by an equality or inequality operator:

linear-expr <= linear-expr
linear-expr = linear-expr
linear-expr >= linear-expr

While it is customary in mathematical descriptions of linear programming to place all
terms containing variables to the left of the operator and all other terms to the right (as in
constraint Time), AMPL imposes no such requirement (as seen in constraint Balance).

SECTION 8.4 CONSTRAINTS 139

Convenience and readability should determine what terms you place on each side of the
operator. AMPL takes care of canonicalizing constraints, such as by combining linear
terms involving the same variable and moving variables from one side of a constraint to
the other. The expand command described in Section 1.4 shows the canonical forms of
the constraints.

AMPL also allows double-inequality constraints such as the following from the diet
model of Figure 2-1:

subject to Diet {i in NUTR}:
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

This says that the middle expression, the amount of nutrient i supplied by all foods, must
be greater than or equal to n_min[i] and also less than or equal to n_max[i]. The
permissible forms for a constraint of this kind are

const-expr <= linear-expr <= const-expr
const-expr >= linear-expr >= const-expr

where each const-expr must contain no variables. The effect is to give upper and lower
bounds on the value of the linear-expr. If your model requires variables in the left-hand
or right-hand const-expr, you must define two different constraints in separate declara-
tions.

For most applications of linear programming, you need not worry about the form of
the constraints. If you simply write the constraints in the most convenient way, they will
be recognized as proper linear constraints according to the rules in this chapter. There do
exist situations, however, in which your choice of formulation will determine whether
AMPL recognizes your model as linear. Imagine that we want to further constrain the
production model so that no product p may represent more than a certain fraction of total
production. We define a parameter max_frac to represent the limiting fraction; the
constraint then says that production of p divided by total production must be less than or
equal to max_frac:

subject to Limit {p in PROD}:
Make[p] / sum {q in PROD} Make[q] <= max_frac;

This is not a linear constraint to AMPL, because its left-hand expression contains a divi-
sion by a sum of variables. But if we rewrite it as

subject to Limit {p in PROD}:
Make[p] <= max_frac * sum {q in PROD} Make[q];

then AMPL does recognize it as linear.
AMPL simplifies constraints as it prepares the model and data for handing to a solver.

For example, it may eliminate variables fixed at a value, combine single-variable con-
straints with the simple bounds on the variables, or drop constraints that are implied by
other constraints. You can normally ignore this presolve phase, but there are ways to
observe its effects and modify its actions, as explained in Section 14.1.

140 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

Exercises

8-1. In the diet model of Figure 5-1, add a := phrase to the var declaration (as explained in Sec-
tion 8.1) to initialize each variable to a value midway between its lower and upper bounds.

Read this model into AMPL along with the data from Figure 5-2. Using display commands,
determine which constraints (if any) the initial solution fails to satisfy, and what total cost this solu-
tion gives. Is the total cost more or less than the optimal total cost?

8-2. This exercise asks you to reformulate various kinds of constraints to make them linear.

(a) The following constraint says that the inventory Inv[p,t] for product p in any period t must
not exceed the smallest one-period production Make[p,t] of product p:

subject to Inv_Limit {p in PROD, t in 1..T}:
Inv[p,t] <= min {tt in 1..T} Make[p,tt];

This constraint is not recognized as linear by AMPL, because it applies the min operator to vari-
ables. Formulate a linear constraint that has the same effect.

(b) The following constraint says that the change in total inventories from one period to the next
may not exceed a certain parameter max_change:

subject to Max_Change {t in 1..T}:
abs(sum {p in PROD} Inv[p,t-1] - sum {p in PROD} Inv[p,t])

<= max_change;

This constraint is not linear because it applies the abs function to an expression involving vari-
ables. Formulate a linear constraint that has the same effect.

(c) The following constraint says that the ratio of total production to total inventory in a period may
not exceed max_inv_ratio:

subject to Max_Inv_Ratio {t in 1..T}:
(sum {p in PROD} Inv[p,t]) / (sum {p in PROD} Make[p,t])

<= max_inv_ratio;

This constraint is not linear because it divides one sum of variables by another. Formulate a linear
constraint that has the same effect.

(d) What can you say about formulation of an alternative linear constraint for the following cases?

– In (a), min is replaced by max.

– In (b), <= max_change is replaced by >= min_change.

– In (c), the parameter max_inv_ratio is replaced by a new variable, Ratio[t].

8-3. This exercise deals with some more possibilities for using more than one objective function
in a diet model. Here we consider the model of Figure 5-1, together with the data from Figure 5-2.

Suppose that the costs are indexed over stores as well as foods:

set STORE:
param cost {STORE,FOOD} > 0;

A separate objective function may then be defined for each store:

minimize Total_Cost {s in STORE}:
sum {j in FOOD} cost[s,j] * Buy[j];

Consider the following data for three stores:

SECTION 8.4 CONSTRAINTS 141

set STORE := "A&P" JEWEL VONS ;

param cost: BEEF CHK FISH HAM MCH MTL SPG TUR :=
"A&P" 3.19 2.59 2.29 2.89 1.89 1.99 1.99 2.49
JEWEL 3.09 2.79 2.29 2.59 1.59 1.99 2.09 2.30
VONS 2.59 2.99 2.49 2.69 1.99 2.29 2.00 2.69 ;

Using the objective command, find the lowest-cost diet for each store. Which store offers the
lowest total cost?

Consider now an additional objective that represents total packages purchased, regardless of cost:

minimize Total_Number:
sum {j in FOOD} Buy[j];

What is the minimum value of this objective? What are the costs at the three stores when this
objective is minimized? Explain why you would expect these costs to be higher than the costs
computed in (a).

8-4. This exercise relates to the assignment example of Section 8.3.

(a) What is the best-ranking office that you can assign to each individual, given that the total of the
rankings must stay at the optimal value of 28? How many different optimal assignments do there
seem to be, and which individuals get different offices in different assignments?

(b) Modify the assignment example so that it will find the best-ranking office that you can assign to
each individual, given that the total of the rankings may increase from 28, but may not exceed 30.

(c) After making the modification suggested in (b), the person in charge of assigning offices has
tried again to minimize the objective Pref_of["Coullard"]. This time, the reported solution
is as follows:

ampl: display Total_Cost,
ampl? {i in ORIG, j in DEST} cost[i,j]*Trans[i,j];
Total_Cost = 30

cost[i,j]*Trans[i,j] :=
Coullard M239 1
Daskin D241 4
Hazen C246 1
Hopp C251 2.5
Hopp D237 0.5
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C118 5
White C251 2.5
White D237 1.5
;

Coullard is now assigned her first choice, but what is the difficulty with the overall solution? Why
doesn’t it give a useful resolution to the assignment problem as we have stated it?

8-5. Return to the assignment version of the transportation model, in Figures 3-1a and 3-2.

(a) Add parameters worst[i] for each i in ORIG, and constraints saying that Trans[i,j]
must equal 0 for every combination of i in ORIG and j in DEST such that cost[i,j] is greater

142 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

than worst[i]. (See the constraint Time in Section 8.4 for a similar example.) In the assign-
ment interpretation of this model, what do the new constraints mean?

(b) Use the model from (a) to show that there is an optimal solution, with the objective equal to 28,
in which no one gets an office worse than their fifth choice.

(c) Use the model from (a) to show that at least one person must get an office worse than fourth
choice.

(d) Use the model from (a) to show that if you give Nelson his first choice, without any restrictions
on the other individuals’ choices, the objective cannot be made smaller than 31. Determine simi-
larly how small the objective can be made if each other individual is given first choice.

