Advances in Automated Conversion of Optimization Problems

> Robert Fourer, Gleb Belov, Filipe Brandão
> [4er,gleb,fdabrandao] @ampl.com
> AMPL Optimization Inc. www.ampl.com - +1 773-336-AMPL

Workshop on Recent Advances in Optimization
The Fields Institute
Toronto, 11-12 October 2023

Advances in
 Automated Conversion of Optimization Problems

We take it for granted that an optimization package accepts both minimization and maximization problems, recognizes them as equivalent, and converts all minimizations to maximizations (or viceversa) before solving. This is only the very simplest example of the conversions that large-scale optimization relies on. In the past decade, the range of expressions recognized by modeling languages and solvers has been progressively extended in ways that make conversion possibilities ever more numerous and complex. This presentation describes a range of challenges and accomplishments in detection of formulations that solvers can handle, and in transformation to forms that solvers require. Examples from integer, logic, and conic programming lead to some general recommendations for design and implementation.

Outline

Motivation

Principles

* How and where the conversion happens
* How problems are represented + a variety of examples in current software

AMPL "MP" interface

* Formulating models more like you think about them
* Extensions for MIP solvers
* Issues: implementation, solver efficiency, solver tolerances

Still-challenging cases

* Convex functions
* Second-order cones

Conversions We Take for Granted

Minimize to Maximize

* Change sign, solve maximization, change sign back
$\geq, \leq,=$ to standard form
* Add slack variables

Linear expressions to coefficient lists

* Distribute a constant over a sum of variables
* Merge appearances of the same variable
. . . what's the big deal?

Typical MIP User Complaint

```
Thank you so much for replying.
Let me show my "if-then" constraint in a more clear way as follows:
set veh := {1..16 by 1};
param veh_ind {veh};
param theory_time {veh};
param UP := 400000;
var in_lane_veh {veh} integer >=1, <=2;
var in_in_time {veh} >=0, <=UP;
Note that "in_lane_veh {veh}" are integer variables which equal }1\mathrm{ or 2,
and "in_in_time {veh}" are continuous variables.
subject to IfConstr {i in 1..card(veh)-1, j in i+1..card(veh):
    veh_ind[i] = veh_ind[j] and theory_time[i] <= theory_time[j]}:
    in_lane_veh[i] = in_lane_veh[j] ==> in_in_time[j] >= in_in_time[i] + l_veh/v;
When I run my program, there appears the following statement:
CPLEX 20.1.0.0: logical constraint _slogcon[1] is not an indicator constraint.
```


Typical Reply

```
To reformulate this model in a way that your MIP solver would accept,
you could define some more binary variables,
var in_lane_same {veh,veh} binary;
with the idea that in_lane_same[i,j] should be 1 if and only if in_lane_veh[i] = in_lane_veh[j].
Then the desired relation could be written as two constraints:
in_lane_veh[i] = in_lane_veh[j] ==> in_lane_same[i,j] = 1
in_lane_same[i,j] = 1 ==> in_in_time[j] >= in_in_time[i] + l_veh/v;
```

The second one is an indicator constraint, but you would just need to replace the first one by equivalent linear constraints.

Given that in_lane_veh can only be either 1 or 2, those constraints could be
in_lane_same[i,j] >= 3 - in_lane_veh[i] - in_lane_veh[j]
in_lane_same[i,j] >= in_lane_veh[i] + in_lane_veh[j] - 3

Typical Nonlinear User Complaint

```
So I tried out gurobi with the two commands I mentioned in my previous email, and I receive the message
Gurobi 9.0.2: Gurobi can't handle nonquadratic nonlinear constraints.
I went over the constraints, and it seems to me
the only constraint that is nonquadratic nonlinear is
subject to A2 {t in 2..card(POS), i in PATIENTS}:
    sum {a in DONORS, b in PATIENTS, c in PATIENTS: ceil(a/2) = c}
        x[b,t] * x[c,t-1] * y[a,b] = 2 * x[i,t];
where \(x\) and \(y\) are binary variables.
Is this now sufficient for gurobi to solve if I only linearize one of the term on the LHS of this constraint (e.g. \(x[b, t]\) ), while keeping the other two terms the same?
```


Typical Reply

You are right, $A 2$ has a cubic term $x[b, t]^{*} x[c, t-1]{ }^{*} y[a, b]$ that you will have to transform before you can get Gurobi to accept it.

You can transform to quadratic by picking two of the three variables and replacing their product by a new variable. For example, if you define a new binary variable $z[b, c, t]$ to replace $\times[b, t]$ * $\times[\mathrm{c}, \mathrm{t}-1]$, you can write

```
var z {t in 2..card(POS), b in PATIENTS, c in PATIENTS} binary;
```

subject to zDefn \{t in 2..card(POS), b in PATIENTS, c in PATIENTS\}:
$z[b, c, t]=x[b, t] * x[c, t-1] ;$

Then write your constraint A2 as $\mathrm{z}[\mathrm{b}, \mathrm{c}, \mathrm{t}]$ * $\mathrm{y}[\mathrm{a}, \mathrm{b}]=2$ * $\mathrm{x}[\mathrm{i}, \mathrm{t}]$. There are two other possibilities, corresponding to the two other ways you can pick two of the three variables.

You can also linearize the cubic term directly. In that case, you would define a new binary variable z[a,b,c,t] to replace x[b,t] * x[c,t-1] * y[a,b], and you would add the following four constraints:
$z[a, b, c, t]>=x[b, t]+x[c, t-1]+y[a, b]-2$
$z[a, b, c, t]<=x[b, t]$
$z[a, b, c, t]<=x[c, t-1]$
$z[a, b, c, t]<=y[a, b]$

Principles

Phases of automated conversion

* Detection and transformation
* Solver-dependent and solver-independent

Stages where the conversion happens

* User, modeling language, interface, solver

Problem representations

* Lists, Graphs

Examples of conversion in practice

* Libraries, file formats, transformations

Principles

Phases of Automated Conversion

Detection (solver-independent)

* Identify objectives and constraints that admit some desirable form of conversion

Transformation (solver-independent)

* Convert to equivalent forms that solvers may handle

Transformation (solver-dependent)

* Convert to specific forms required by solver APIs

Combine these?

* Yes, to support one solver most efficiently
* No, to support many solvers in a consistent way

Principles

Stages Where Conversion Happens

Not automated

* User reformulation "by hand"

Automated: Symbolic model

* Automated conversion of a modeling language representation

Automated: Explicit optimization problem
\star Conversion within a modeling system

* Conversion by the solver interface
* Conversion inside the solver

Principles

Problem Representations

Lists

* Linear coefficients
* Quadratic coefficients

Directed acyclic graphs

* Concise form of trees
* Internal nodes: operators, functions
* Terminal nodes: variables, constants

Tree Walk

Detection: isQuadr()

```
boolean isQuadr (Node);
case of Node {
    PLUS:
    MINUS: return( isQuadr(Node.left) and isQuadr(Node.right) );
    TIMES: return( isLinear(Node.left) and isLinear(Node.right) or
        isQuadr(Node.left) and isConst(Node.right) or
        isConst(Node.left) and isQuadr(Node.right) );
POWER: return( isLinear(Node.left) and
    isConst(Node.right) and value(Node.right) == 2 );
VAR: return( TRUE );
CONST: return( TRUE );
}
```

. . . to detect, test isQuadratic (root)

Examples (library \& file format)

AMPL-solver library

* C interface library and.$n l$ file format
* Coefficient lists for linear expressions
+ graphs for nonlinear \& logical expressions
* Some conversions: quadratic, indicator, piecewise-linear
* David M. Gay, "Writing .nl Files." https://ampl.github.io/nlwrite.pdf

MathOptInterface (JuMP)

* Julia interface library and JSON-based file format
* $f_{i}(x) \in S_{i}$ representations for linear, quadratic; many conic sets
* Systematic conversion between representations
* Benoît Legat, Oscar Dowson, Joaquim Dias Garcia, Miles Lubin, "MathOptInterface: A Data Structure for Mathematical Optimization Problems." INFORMS Journal on Computing 34 (2022) 672-689.

Examples (transformation)

MiniZinc

* Modeling language for Constraint Programming
* Linearization of diverse logical conditions to support MIP solvers
* Gleb Belov, Peter J. Stuckey, Guido Tack, Mark Wallace, "Improved Linearization of Constraint Programming Models." CP 2016: International Conference on Principles and Practice of Constraint Programming. Lecture Notes in Computer Science 9892 (Springer, 2016) 49-65.

gurobipy

* Python modeling language \& interface to Gurobi solver
* Linear, quadratic + "general" constraints
* max, abs, or, norm, indicator, piecewise-linear
* exp, log, power, sin, cos...
* Transformation to linear-quadratic MIPs
* https://www.gurobi.com/documentation/current/refman/constraints.html

Example (library \& transformation)

MP library

* C++ library for building efficient, configurable solver interfaces
* High-performance .nl file reader
* Coefficient lists + expression graphs
* Extensive toolset for detection and transformation
* "MP Library." https://amplmp.readthedocs.io/
* Gleb Belov, "How to Hook Your Solver to AMPL MP." https://mp.ampl.com/howto.html, https://github.com/ampl/mp/tree/develop/solvers/visitor

Writing (MIP) Models More Like You Think About Them

General context

* AMPL has logical and "not linear" expressions
* Previous ASL interface had very limited support for these
* New interfaces, built with MP, allow these expressions to be used and combined generally

Gurobi context

* AMPL should support Gurobi's general constraints
* Existing gurobipy offers only limited generality
* New interfaces, built with MP, convert much more general expressions to work with Gurobi

Maximum in gurobipy

```
TypeError: unsupported operand type(s) for *: 'int' and 'GenExprMax'
Hi
I'm trying to solve a production problem. when the x change, it will cost a different additional cost. I need to
compare the (x[i] -x[i-1]) with 0. how can I solve this.
production_change_cost = gp.quicksum(3 * gp.max_(0,(x[i] - x[i-1] for i in periods)) \
    + 0.8 * gp.max_(0,(x[i-1] - x[i] for i in periods)))
```


Maximum in gurobipy (reply)

```
General constraints are meant to be used to define single constraints. It is not possible to use these constructs
in other expressions, i.e., it is not possible to use gp.max_ in a more complex constraint other than y = gp.max_.
Moreover, as described in the documentation of the addGenConstrMax method, gp.max_ only accepts single
variables as inputs. Thus, it is not possible to pass expressions x[i] -x [i-1]. To achieve what you want, you
have to introduce additional auxiliary variables aux[i] = x[i] -x[i-1] and additional equality constraints
z1 = gp.max_ and z2 = gp.max_
```

```
aux1 = mod.addVars(periods, lb=-GRB.INFINITY, name="auxvar1")
```

aux1 = mod.addVars(periods, lb=-GRB.INFINITY, name="auxvar1")
aux2 = mod.addVars(periods, lb=-GRB.INFINITY, name="auxvar2")
aux2 = mod.addVars(periods, lb=-GRB.INFINITY, name="auxvar2")

are you sure that i-1 does not lead to a wrong key access?

are you sure that i-1 does not lead to a wrong key access?

m.addConstrs((aux1[i] = x[i]-x[i-1| for i in periods), name = "auxconstr1")
m.addConstrs((aux1[i] = x[i]-x[i-1| for i in periods), name = "auxconstr1")
m.addConstrs((aux2[i] = x[i-1]-x[i| for i in periods), name = "auxconstr2")
m.addConstrs((aux2[i] = x[i-1]-x[i| for i in periods), name = "auxconstr2")
z1 = m.addVar(}1\textrm{l}=-\mathrm{ GRB.INFINITY, name=" z1")
z1 = m.addVar(}1\textrm{l}=-\mathrm{ GRB.INFINITY, name=" z1")
z2 = m.addVar(lb = -GRB.INFINITY, name="z2")
z2 = m.addVar(lb = -GRB.INFINITY, name="z2")
m.addConstr(z1 = gp.max_(0,aux1), name="maxconstr1")
m.addConstr(z1 = gp.max_(0,aux1), name="maxconstr1")
m.addConstr(z2 = gp.max_(}0,\mathrm{ aux2), name="maxconstr2")
m.addConstr(z2 = gp.max_(}0,\mathrm{ aux2), name="maxconstr2")
[...]
[...]
production_change_cost = gp.quicksum(3 * z1 + 0.8* z2)

```
production_change_cost = gp.quicksum(3 * z1 + 0.8* z2)
```


Example:

Multi-Product Network Flow

Motivation

* Ship products efficiently to meet demands

Context

* a transportation network * nodes \bigcirc representing cities
$*$ arcs \longrightarrow representing roads
* supplies $--->$ at nodes
* demands ---> at nodes
* capacities on arcs
* shipping costs on arcs

Example:
 Multi-Product Network Flow

Decide

* how much of each product to ship on each arc

So that

* shipping costs are kept low
* shipments on each arc respect capacity of the arc
* supplies, demands, and shipments are in balance at each node

Example with complications: Multi-Product Network Flow

Decide also

* whether to use each arc

So that

* variable plus fixed shipping costs are kept low
* shipments are not too small
* not too many arcs are used

Multi-Product Flow

Formulation (data)

Given
P set of products
N set of network nodes
$A \subseteq N \times N$ set of arcs connecting nodes
and
$u_{i j} \quad$ capacity of arc from i to j, for each $(i, j) \in A$
$s_{p j}$ supply/demand of product p at node j, for each $p \in P, j \in N$
>0 implies supply, < 0 implies demand
$c_{p i j}$ cost per unit to ship product p on arc (i, j), for each $p \in P,(i, j) \in A$
$d_{i j}$ fixed cost for using the arc from i to j, for each $(i, j) \in A$
$m \quad$ smallest total shipments on any arc that is used
n largest number of arcs that may be used

Multi-Product Flow

Linearized Formulation (variables, objective)

Determine

$X_{p i j}$ amount of commodity p to be shipped on $\operatorname{arc}(i, j)$,
for each $p \in P,(i, j) \in A$
$Y_{i j} 1$ if any amount is shipped from node i to node j, 0 otherwise, for each $(i, j) \in A$
to minimize

$$
\sum_{p \in P} \sum_{(i, j) \in A} c_{p i j} X_{p i j}+\sum_{(i, j) \in A} d_{i j} Y_{i j}
$$

total cost of shipments

Multi-Product Flow

Linearized Formulation (constraints)

Subject to

$$
\sum_{p \in P} X_{p i j} \leq u_{i j} Y_{i j}, \quad \text { for all }(i, j) \in A
$$

when the arc from node i to node j is used for shipping, total shipments must not exceed capacity, and $Y_{i j}$ must be 1

$$
\sum_{p \in P} X_{p i j} \geq m Y_{i j}, \quad \text { for all }(i, j) \in A
$$

when the arc from node i to node j is used for shipping, total shipments from i to j must be at least m

$$
\sum_{(i, j) \in A} X_{p i j}+s_{p j}=\sum_{(j, i) \in A} X_{p j i}, \text { for all } p \in P, j \in N
$$

shipments in plus supply/demand must equal shipments out
$\sum_{(i, j) \in A} Y_{i j} \leq n$
At most n arcs can be used

Multi-Product Flow

Linearized Model in AMPL

Symbolic data, variables, objective

```
set PRODUCTS;
set NODES;
set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;
param inflow {PRODUCTS,NODES};
param min_ship >= 0;
param max_arcs >= 0;
param var_cost {PRODUCTS,ARCS} >= 0;
var Flow {PRODUCTS,ARCS} >= 0;
param fix_cost {ARCS} >= 0;
var Use {ARCS} binary;
minimize TotalCost:
    sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] +
    sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];
```


Multi-Product Flow

Linearized Model in AMPL

Constraints

```
subject to Capacity {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];
subject to Min_Shipment {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
subject to Conservation {p in PRODUCTS, j in NODES}:
    sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
    sum {(j,i) in ARCS} Flow[p,j,i];
subject to Max_Used:
    sum {(i,j) in ARCS} Use[i,j] <= max_arcs;
```

Formulating

Positive Shipments Incur Fixed Costs

Linearized formulation

```
sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];
```

Natural formulation

```
sum {(i,j) in ARCS}
    if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j]
```


Formulating

Shipments Can't Be Too Small

Linearized formulation

```
sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];
```

Natural formulation

```
sum {p in PRODUCTS} Flow[p,i,j] = 0 or
min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j]
```


Formulating

Can't Use Too Many Arcs

Linearized formulation

```
sum {(i,j) in ARCS} Use[i,j] <= max_arcs;
```


Natural formulation

```
atmost max_arcs {(i,j) in ARCS}
    (sum {p in PRODUCTS} Flow[p,i,j] > 0);
```


Solving: AMPL \& Gurobi on Google Colab

https://colab.research.google.com/drive/1RteMlfHd2N9hdV4q7luEf5X9ElgxeYR0?usp=sharing

Solving

AMPL Model in Notebook Cell

Solving

Python Data for the Model

Solving

Passing the Data to AMPL

Solving

Invoking the Solver

Formulating

Supported Extensions and Solvers

Operators and functions

* Conditional: if-then-else; ==>, <==, <==>
* Logical: or, and, not; exists, forall
* Piecewise linear: abs; min, max; <<breakpoints; slopes>>
* Counting: count; atmost, atleast, exactly; numberof
* Comparison: >, <, ! =; alldiff
* Complementarity: complements
* Nonlinear: *, /, ^; exp, log; sin, cos, tan; sinh, cosh, tanh
* Set membership: in

Expressions and constraints

* High-order polynomials
* Second-order and exponential cones

Formulating

Extensions for MIP Solvers

Conditional operators

* if constraint then var-expr1 [else var-expr2]
* constraint $1==>$ constraint 2 [else constraint3]
constraint1 <== constraint 2
constraint1 <==> constraint2

```
minimize TotalCost:
    sum {j in JOBS, k in MACHINES}
        if MachineForJob[j] = k then cost[j,k];
```

```
subject to Multi_Min_Ship {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] >= 1 ==>
        minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];
```


Formulating

Extensions for MIP Solvers

Logical operators

* constraint1 or constraint2 constraint1 and constraint2 not constraint2
* exists \{indexing\} constraint-expr forall \{indexing\} constraint-expr

```
subject to NoMachineConflicts
    {m1 in 1..nMach, m2 in m1+1..nMach, j in 1..nJobs}:
    Start[m1,j] + duration[m1,j] <= Start[m2,j] or
    Start[m2,j] + duration[m2,j] <= Start[m1,j];
```

```
subj to HostNever {j in BOATS}:
    isH[j] = 1 ==> forall {t in TIMES} H[j,t] = j;
```


Formulating

Extensions for MIP Solvers

Piecewise-linear functions and operators

* << breakpoint-list ; slope-list >> variable
<< breakpoint-list; slope-list >> (variable, zero-point)
* abs (var-expr)

```
min(var-expr-list) min {indexing} var-expr
```

$\max (v a r$-expr-list) $\max \{$ indexing\} var-expr

```
x = mod.addVars(periods)
```

production_change_cost $=\backslash$
gp.quicksum(3.0*gp. $\max _{-}(0,(x[i]-x[i-1]$ for i in periods)) \backslash
$+0.8 * g p \cdot \max _{-}(0,(x[i-1]-x[i]$ for i in periods)))

```
var x {0..T} >= 0;
var production_change_cost =
    3.0 * max(0, {i in 1..T} x[i] - x[i-1]) +
    0.8 * max(0, {i in 1..T} x[i-1] - x[i]);
```

 (AMPL)

Formulating

Extensions for MIP Solvers

Piecewise-linear functions and operators

* << breakpoint-list ; slope-list >> variable << breakpoint-list; slope-list >> (variable, zero-point)
* abs (var-expr)

```
min(var-expr-list) min {indexing} var-expr
max(var-expr-list) max {indexing} var-expr
```

```
maximize WeightSum:
    sum {t in TRAJ} max {n in NODE} weight[t,n] * Use[n];
```

```
minimize Total_Cost:
    sum {i in ORIG, j in DEST}
        <<{p in 1..npiece[i,j]-1} limit[i,j,p];
        {p in 1..npiece[i,j]} rate[i,j,p]>> Trans[i,j];
```


Formulating

Extensions for MIP Solvers

Counting operators

* count \{indexing\} (constraint-expr)
* atmost k \{indexing\} (constraint-expr)
atleast k \{indexing $\}$ (constraint-expr)
exactly k \{indexing $\}$ (constraint-expr)
* numberof k in (var-expr-list)

```
subject to Limit_Used:
    count {(i,j) in ARCS}
        (sum {p in PRODUCTS} Flow[p,i,j] > 0) <= max_arcs;
```

```
subj to CapacityOfMachine {k in MACHINES}:
    numberof k in ({j in JOBS} MachineForJob[j]) <= cap[k];
```


Formulating

Extensions for MIP Solvers

Comparison operators

```
* var-expr1 ! = var-expr2
    var-expr \(1>\) var-expr 2
    var-expr1 < var-expr2
* alldiff (var-expr-list)
    alldiff \{indexing\} var-expr
```

```
subj to Different_Colors {(c1,c2) in Neighbors}:
    Color[c1] != Color[c2];
```

subject to OnePersonPerPosition:
alldiff \{i in 1..nPeople\} Pos[i];

Formulating

Extensions for MIP Solvers

Complementarity operators

* single-inequality1 complements single-inequality2
* double-inequality complements var-expr var-expr complements double-inequality

```
subject to Pri_Compl {i in PROD}:
    max(500.0, Price[i]) >= 0 complements
        sum {j in ACT} io[i,j] * Level[j] >= demand[i];
```

```
subject to Lev_Compl {j in ACT}:
    level_min[j] <= Level[j] <= level_max[j] complements
        cost[j] - sum {i in PROD} Price[i] * io[i,j];
```


Formulating

Extensions for MIP Solvers

Nonlinear expressions and operators

* var-expr1 * var-expr2
var-expr1 / var-expr2
var-expr $-k$
* $\exp (v a r-e x p r) \log (v a r-e x p r)$
$\sin (v a r-\operatorname{expr}) \cos (v a r-e x p r) \tan (v a r-e x p r)$

```
subj to Eq {i in J} :
    x[i+neq] / (b[i+neq] * sum {j in J} x[j+neq] / b[j+neq]) =
    c[i] * x[i] / (40 * b[i] * sum {j in J} x[j] / b[j]);
```

```
minimize Chichinadze:
    x[1]~2 - 12*x[1] + 11 + 10*cos(pi*x[1]/2)
    + 8*sin(pi*5*x[1]) - exp(-(x[2]-.5)~2/2)/sqrt(5);
```


Formulating

Extensions for MIP Solvers

Discrete variable domains

* var varname \{indexing\} in set-expr;

```
var Buy {f in FOODS} in {0,10,30,45,55};
```

$\operatorname{var} \operatorname{Ship}\{(i, j)$ in ARCS $\}$
in $\{0\}$ union interval[min_ship,capacity[i,j]];

```
var Work {j in SCHEDS} integer
    in {0} union interval[least, max {i in SHIFT_LIST[j]} req[i]];
```


Formulating

Implementation Issues

Is an expression repeated?

* Detect common subexpressions

```
subject to Shipment_Limits {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] = 0 or
min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];
```


Is there an easy reformulation?

* Yes for min-max, no for max-min

```
minimize Worst_Rank:
    max {i in PEOPLE} sum {j in PROJECTS} rank[i,j] * Assign[i,j];
```

maximize Max_Value:
sum $\{t$ in $T\} \max \{n$ in $N\}$ weight $[t, n] * \operatorname{Value}[n] ;$

Formulating

Implementation Issues (cont'd)

Does an exact linearization exist?

* Yes if constraint set is "closed"
* No if constraint set is "open"

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0;
```

subj to Use_Definition $\{(i, j)$ in ARCS $\}$:
Flow[i,j] = $0==>$ Use[i,j] $=0$ else Use[i,j] = 1;

Formulating

Implementation Issues (cont'd)

Does an exact linearization exist?

* Yes if constraint set is "closed"
* No if constraint set is "open"

```
var Flow {ARCS} >= 0;
var Use {ARCS} binary;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] >= 0;
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = O else Flow[i,j] > 0;
```


Formulating

Solver Efficiency Issues

Bounds on subexpressions

* Define auxiliary variables that can be bounded

```
var x {1..2}<= 2, >= -2;
minimize Goldstein-Price:
    (1 + (x[1] + x[2] + 1)~2
        * (19-14*x[1] + 3*x[1]^2-14*x[2] + 6*x[1]*x[2] + 3*x[2]~2))
* (30 + (2*x[1] - 3*x[2])^2
    * (18-32*x[1] + 12*x[1]~2+48*x[2] - 36*x[1]*x[2] + 27*x[2]^2));
```

```
var t1 >= 0, <= 25; subj to t1def: t1 = (x[1] + x[2] + 1) ~2;
var t2 >= 0, <= 100; subj to t2def: t2 = (2*x[1] - 3*x[2])~2;
minimize Goldstein-Price:
    (1 + t1
        * (19-14*x[1] + 3*x[1] 2 - 14*x[2] + 6*x[1]*x[2] + 3*x[2]^2))
* (30 + t2
    * (18-32*x[1] + 12*x[1]~2+48*x[2] - 36*x[1]*x[2] + 27*x[2]~ 2));
```


Formulating

Solver Efficiency Issues (cont'd)

Simplification of logic

* Replace an iterated exists with a sum

```
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if exists {p in PRODUCTS} Flow[p,i,j] > O then fix_cost[i,j];
```

```
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if sum {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```


Formulating

Solver Efficiency Issues (cont'd)

Creation of common constraint expressions

* Substitute a stronger bound from a constraint

```
subject to Shipment_Limits {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] = 0 or
    min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if sum {p in PRODUCTS} Flow[p,i,j] > 0
            then fix_cost[i,j];
```

```
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if sum {p in PRODUCTS} Flow[p,i,j] >= min_ship
            then fix_cost[i,j];
```

. . . consider automating all these improvements

Formulating

Solver Tolerance Issues

Tolerances are applied to linearized expressions

* AMPL might not compute same values as solvers

```
var x {1..2} >=0, <=100;
maximize Total:
    if x[1] <= 4.9999999 and x[2] >= 5.00000001
        then x[1] + x[2] else 0;
subj to con: x[1] = x[2];
```

```
ampl: solve;
Gurobi 10.0.2: optimal solution; objective 9.9999998
ampl: display x;
14.9999999
24.9999999
ampl: display Total;
Total = 0
```

Formulating

Solver Tolerance Issues (cont'd)

Warning added (needs work)

```
var x {1..2} >=0, <=100;
maximize Total:
    if x[1] <= 4.9999999 and x[2] >= 5.00000001
        then x[1] + x[2] else 0;
subj to con: x[1] = x[2];
```

```
ampl: solve;
Gurobi 10.0.2: optimal solution; objective 9.9999998
------------ WARNINGS
WARNING: "Solution Check (Idealistic)"،
    [ sol:chk:feastol=1e-06, :feastolrel=1e-06, :inttol=1e-05,
        :round='', :prec=', ]
Objective value violations:
    - 1 objective value(s) violated,
        up to 1E+01 (abs)
Idealistic check is an indicator only, see documentation.
```

MP Interface

General use with MIP solvers

Read objectives \& constraints from AMPL

* Store initially as linear coefficients + expression trees
* Analyze trees to determine if linearizable

Generate linearizations

* Walk trees to build linearizations (flatten)
* Define auxiliary variables (usually zero-one)
* Generate equivalent constraints

Solve

* Send to solver through its API
* Convert optimal solution back to the original AMPL variables
* Write solution to AMPL

MP Interface

Special Alternatives in Gurobi

Apply our linearization (count)

* Use Gurobi's linear API

Have Gurobi linearize (or, abs)

* Simplify and "flatten" the expression tree
* Use Gurobi’s "general constraint" API
* addGenConstrOr (resbinvar, [binvars]) tells Gurobi: resbinvar $=1$ iff at least one item in [binvars] = 1
* addGenConstrAbs (resvar, argvar)
tells Gurobi: resvar $=\mid$ argvar \mid
Have Gurobi piecewise-linearize (exp, sin)
* Replace univariate nonlinear functions by p-l approximations
* Use Gurobi's "function constraint" API
* addGenContstrExp (xvar, yvar)
tells Gurobi: yvar = a piecewise-linear approximation of $\exp (x v a r)$

MP Interface

Special Alternatives in Gurobi

Apply our linearization (count)

* Use Gurobi's linear API

Have Gurobi linearize (or, abs)

* Simplify and "flatten" the expression tree
* Use Gurobi’s "general constraint" API
* addGenConstrOr (resbinvar, [binvars]) tells Gurobi: resbinvar $=1$ iff at least one item in [binvars] = 1
* addGenConstrAbs (resvar, argvar) tells Gurobi: resvar $=\mid$ argvar \mid

Have Gurobi apply its global optimizer (exp, sin)

* Replace univariate nonlinear functions by p-l approximations
* Use Gurobi's "function constraint" API
* addGenContstrExp (xvar, yvar) tells Gurobi: yvar $=\exp ($ xvar $)$

Still Challenging

Convex functions

* Detection

Second-order cones

* Detection and transformation

Still Challenging

Convex Functions

Test convexity

* Tree walk using rules for elementary functions
* Linear functions are convex
* Sum or maximum of convex functions is convex
* Negative of a concave function is convex
* A nondecreasing function of a convex function is convex
* Need rules for convex, concave, nondecreasing, nonincreasing

Test nonconvexity

* Check random line segments
* Check $\nabla^{2} f(x)$ at random x values
$* \operatorname{Min}_{d} g^{T} d+\frac{1}{2} d^{T} \nabla^{2} f(x) d$ subject to $\|d\|^{2} \leq \Delta$ and stop when curvature is negative $\left(d^{T} \nabla^{2} f(x) d<-\epsilon\right)$

Return "convex" or "nonconvex" or "inconclusive"

Convex Functions

Examples

Searching line segments for nonconvexity

* John W. Chinneck, "Analyzing Mathematical Programs Using MProbe." Annals of Operations Research 104 (2001) 33-48. MProbe
"Disciplined" convex programming via convexity rules
* Michael Grant, Stephen Boyd, and Yinyu Ye, "Disciplined convex programming." In L. Liberti, N. Maculan, eds., Global Optimization:
From Theory to Implementation. Nonconvex Optimization and Its Applications Series, Springer, Dordrecht, The Netherlands (2006) 155-210. CVX

Convexity rules + searching for negative curvature

* Robert Fourer, Chandrakant Maheshwari, Arnold Neumaier, Dominique Orban, Hermann Schichl, "Convexity and Concavity Detection in Computational Graphs: Tree Walks for Convexity Assessment." INFORMS Journal on Computing 22 (2010) 26-43.

Convex Functions

Prospects for Implementation

Build into a local nonlinear solver

* Can report "globally optimal" when convex
* A lot of work to benefit only one solver

Build into a general solver interface

* Further complicates the interface library
* Benefits many solvers

Implement as a standalone system

* Run as a "pseudo-solver" that returns convexity status
* Use result as guidance for interpreting solver results

Still Challenging

Second-Order Cones

Basic forms

* $\sum_{i=1}^{n} x_{i}^{2} \leq x_{n+1}^{2}, x_{n+1} \geq 0$
$* \sum_{i=1}^{n} x_{i}^{2} \leq x_{n+1} x_{n+2}, \quad x_{n+1} \geq 0, x_{n+2} \geq 0$

Detection

* Tree walk looks for SOC-equivalent formulations . . .
* SOC-representable functions in objectives or constraints
* 2-norms, quadratic-linear ratios
* Generalized geometric mean, p-norm
* General affine function $a_{i}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)$ in place of x_{i}
* Additional objectives
* Product of positive rational powers: $\prod_{i=1}^{n}\left(\mathbf{f}_{i} \mathbf{x}+g_{i}\right)^{\alpha_{i}}$
* Logarithmic Chebychev: $\max _{i=1}^{n}\left|\log \left(\mathbf{f}_{i} \mathbf{x}\right)-\log \left(g_{i}\right)\right|$

Transformation

* Tree walk for each SOC equivalent that was found

Second-Order Cones

Examples

Basic forms recognized by solvers

* Quadratic: many MIP solvers
* 2-norm: MOSEK

General Detection and Transformation

* Jared Erickson and Robert Fourer, "Detection and Transformation of Second-Order Cone Programming Problems in a General-Purpose Algebraic Modeling Language." Optimization Online, https://optimization-online.org/2019/05/7194/.

Second-Order Cones

Survey of Test Problems

13.5\% of 1238 nonlinear problems were SOC-solvable

> * from Vanderbei's CUTE \& non-CUTE, and netlib/ampl

* 5.3% ordinary elliptic quadratic
* 1.7% basic SOC cases detected by solvers
* 6.5% additional SOC cases detected

A variety offorms detected
$* \mathrm{hs} 064$ has $4 / x_{1}+32 / x_{2}+120 / x_{3} \leq 1$
$* \mathrm{hs} 036$ minimizes $-x_{1} x_{2} x_{3}$
$* \mathrm{hs} 073$ has $1.645 \sqrt{0.28 x_{1}^{2}+0.19 x_{2}^{2}+20.5 x_{3}^{2}+0.62 x_{4}^{2}} \leq \ldots$
\star hs049 minimizes $\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}-1\right)^{2}+\left(x_{4}-1\right)^{4}+\left(x_{5}-1\right)^{6}$

* emfl_nonconvex has $\sum_{k=1}^{2}\left(x_{j k}-a_{i k}\right)^{2} \leq s_{i j}^{2}$

Second-Order Cones

Prospects for Implementation

Extend recognition already built into solvers

* Quadratic and 2-norm cases only
* more general forms are not passed to MIP solvers
* functional forms are not passed to local nonlinear solvers
* Benefits all modeling languages
* Benefits only one solver

Build into a general solver interface

* Some SOC-equivalents are very complicated to process
* consider implementing just the easier cases
* Benefits many solvers

Links

https://github.com/ampl/

* all AMPL open-source projects
https://github.com/ampl/mp
* MP solver interface
https://dev.ampl.com
* new AMPL development projects
https://colab.ampl.com/
* AMPL Colaboratory links

