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ABSTRACT

This report tells how to make solvers work with AMPL’s sol ve command. It
describes an interface library, anpl sol ver. a, whose source is available from the
AMPL web sitein htt p: //anpl . comf netli b/ anpl (where updates first appear)
and from netlib. Examples include programs for listing L Ps, automatic conversion to the
LP dual (shell-script as solver), solvers for various nonlinear problems (with first and
sometimes second derivatives computed by automatic differentiation), and getting C or
Fortran 77 for nonlinear constraints, objectives, and their first derivatives. Drivers for
various well known linear, mixed-integer, and nonlinear solvers provide more examples.
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1. Introduction

The AMPL modeling system [6, 7] lets you express constrained optimization problemsin an algebraic
notation close to conventional mathematics. AMPL’ssol ve command causes AMPL to instantiate the cur-
rent problem, send it to a solver, and attempt to read a solution computed by the solver (for use in subse-
guent commands, e.g., to print values computed from the solution). This technical report tells how to
arrange for your own solver to work with AMPL's sol ve command. See the AMPL web site
(http://ampl.com) for much more information about AMPL.

Stub. nl files

AMPL runs solvers as separate programs and communicates with them by writing and reading files.
The files have names of the form stub. suffix; AMPL usually chooses the stub automatically, but one can
specify the stub explicitly with AMPL’s wri t e command. Before invoking a solver, AMPL normally
writes a file named stub. nl . This file contains a description of the problem to be solved. AMPL invokes
the solver with two arguments, the stub and a string whose first five characters are - AMPL, and expects the
solver to write afile named stub. sol containing a termination message and the solution it has found.

Most linear programming solvers are prepared to read MPS files, which are described, e.g., in chapter
9 of [16]; see also the linear programming FAQ at

htt ps://neos-gui de.org/content/I p-faq

AMPL can be provoked to write an MPS file, stub. nps, rather than stub. nl , but MPS files are slower to
read and write, entail loss of accuracy (because of rounding to fit numbers into 12-column fields), and can
only describe linear and mixed-integer problems (with some differences in interpretations among solvers
for the latter). AMPL’s stub. nl files, on the other hand, contain a complete and unambiguous problem
description of both linear and nonlinear problems, and they introduce no new rounding errors.

In the following, we assume you are familiar with C and that your solver is callable from C or C++.
If your solver iswritten in some other language, it is probably callable from C, though the details are likely
to be system-dependent. If your solver is written in Fortran 77, you can make the details system-
independent by running your Fortran source through the Fortran-to-C converter f2c [5]; see
http://anmpl.comnetlib/f2c or http://ww.netlib.org/f2c for more information,
including source.

The AMPL/solver interface directory,
http://anpl.com netlib/anpl/solvers

which is simply called sol ver s, in most of this document, contains some useful header files and source
for alibrary, anpl sol ver . a, of routines for reading stub. nl and writing stub. sol files. Much of the
rest of this report is about using routines in anpl sol ver. a. The entire sol ver s directory (without
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subdirectories) is available as the gzipped tar file
http://ampl.comnetlib/anpl/solvers.tgz

A variant called sol ver s2, available as
http://anpl.com netlib/ampl/solvers2.tgz
is useful with multiple threads, as explained at the end of this report. For large problems, nonlinear evalua-
tions are often faster with sol ver s2 than with sol ver s, and the representations of nonlinearities take
less memory, even with asingle thread.

Material for many of the examples discussed here isin the sol ver s/ exanpl es directory, hence-
forth simply called *‘exanpl es’’, available viasuch URLs as

http://anmpl.com netlib/anpl/sol vers/exanpl es
http://ww. netlib. org/anpl/sol vers/exanpl es

or asthe gzipped tar fileht t p: / / anpl . com net | i b/ anpl / sol ver s/ exanpl es. tgz. You will
find it helpful to look at the filesin exanpl es while reading this report.

A ""READVMVE” filein the sol ver s directory discusses compiling anpl sol ver . a, which on MS
Windows systemsis called anpl sol v. I i b. The instructions below for compiling examples assume you
have already built anpl sol ver. a oranpl sol v. | i b, asappropriate.

2. Linear Problems

Row-wisetreatment

For simplicity, we first consider linear programming (LP) problems. Solvers can view an LP as the
problem of finding x O IR" to

minimize or maximize c'x
subjectto b < Ax<d P
and € <x<u

where A IR™", b, dJIR™, and c, ¢, u 0 IR". The initial examples of reading linear problems just
print out the data (A, b, ¢, d, €, u) and perhaps the primal and dual initial guesses.

The first example, exanpl es/ i nl. ¢, just prints the data. The exanpl es directory contains
makefile variants makefil e. u for Unix and Linux and makefil e.vc for MS Windows. These
makefile variants have rules for compiling and linking various examples. On a Unix or Linux system, ini-
tially give the command

cp makefile.u makefile
and under M'S Windows, in a Commands window give the command
copy makefile.vc makefile

If necessary, you can then make changes to ‘‘nmakefile’. For example, makefile.u and
makef il e. vc assume that sol vers is the parent directory. If sol vers is somewhere else, you
should change the line

S=..

suitably, replacing **. . ’* with arelative or absolute path to your sol ver s or sol ver s2 directory. After
this preparation, under Unix or Linux, invoke

make 1inl

to compile and load the** i n1’’ program. Under MS Windows, the corresponding command would be
nmake |inl. exe

Filel'i n1. c startswith

#i ncl ude "asl . h"
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i.e, asl . h fromyour sol ver s directory, as specified by the”’S = ... lineinthemakefil e. The
phrase ‘‘ad’’ or “*ASL’’ that appears in many names stands for AMPL/Solver interface Library). In turn,
asl . h includes various standard header filess mat h. h, stdio.h, string.h, stdlib.h,
setj np. h, and er r no. h. Among other things, asl . h definestype ASL for a structure that holds vari-
ous problem-specific data, and asl . h providesalong list of #def i nesto facilitate accessing itemsin an
ASL when apointer as| declared

ASL *asl ;

isin scope. Among the components of an ASL are various pointers and such integers as the numbers of
variables (n_var ), constraints (n_con), and objectives (n_obj ). Most higher-level interface routines
have their prototypes in asl . h, and a few more appear in get st ub. h, which is discussed later. Also
defined in asl . h are the types Long (usually the name of a 32-bit integer type, which isusualy | ong or
int), fint (‘Fortran integer’’, normally a synonym for Long), real (normaly a synonym for
doubl e), and f t nl en (also normally a synonym for Long, and used to convey string lengths to Fortran
77 routines that follow the f 2c calling conventions).

The mai n routinein | i n1. ¢ expects to see one command-line argument: the stub of file stub. nl
written by AMPL, as explained above. After checking that it has a command-line argument, the mai n rou-
tine allocates an ASL via

asl = ASL_al |l oc(ASL_read_f);

the argument to ASL_al | oc determines how nonlinearities are handled and is discussed further below in
the section headed ** Reading nonlinear problems’’. The mai n routine appears to pass the stub to interface
routinej ac0di m with prototype

FI LE *jacOdi m char *stub, fint stub_|en);
inreality, a#def i ne inasl . h turnsthe cal

j ac0di m( st ub, stubl en)
into

jac0di m ASL(asl, stub, stublen)

There are analogous #def i nesinasl . h for most other high-level routines in anpl sol ver . a, but for
simplicity, we henceforth just show the apparent prototypes (without leading asl arguments). This
scheme makes code easier to read and preserves the usefulness of solver drivers written before the _ ASL
suffix was introduced.

For use with Fortran programs, j ac0di massumes st ub isst ubl en characters long and does not
assume st ub is null-terminated. After trimming any trailing blanks from st ub (by alocating space for
ASL fieldfi | enamne,i.e,asl->i.fil ename_, and copying st ub there as the stub), j ac0di mreads
the first part of stub. nl and records some numbersin * asl , as summarized in Table 1. If stub. nl does
not exist, j ac0di mby default prints an error message and stops execution (but setting r et ur n_nof il e
to anonzero value changes this behavior: see Table 2 below).

To read the rest of stub. nl , 1i nl. c callsf_read. Asdiscussed more fully below and shown in
Table 6, several routines are available for reading stub. nl, one for each possible argument to
ASL_al | oc; f _r ead just reads linear problems, complaining and aborting execution if it sees any non-
linearities. To acquire temporary memory — freed before f _r ead returns — f _r ead calls Mal | oc,
which appearsin most of our examples; Mal | oc callsmal | oc and aborts execution if mal | oc returns 0.
To acquire memory that remains allocated when f _r ead returns, f _r ead calls MLal | oc, which uses
Mal | oc and records the allocation, so al memory allocated by MLal | oc can be freed automatically when
ASL_free(&asl) iscaled. The reason for breaking the reading of stub. nl into two steps will be seen
in more detail below: sometimes it is convenient to modify the behavior of the stub. nl reader — here
f _r ead — by alocating problem-dependent arrays before calling it.

AMPL may transmit several objectives. The linear part of each is contained in alist of ogr ad struc-
tures (declared in asl . h; note that asl . h declares
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Meaning

number of variables (total)
number of binary variables used linearly
number of other integer variables used linearly
number of constraints (total)
number of objectives (total)
number of nonlinear objectives: they come
before linear objectives
number of ranged constraints:
Hi: —0o < b; <dj <0}l
number of nonlinear general constraints,
including nonlinear network constraints
number of nonlinear network constraints:
they come after general nonlinear constraints
and before any linear constraints
number of variables appearing nonlinearly
in both constraints and objectives

number of integer variables appearing nonlinearly

in both constraints and objectives

number of variables appearing nonlinearly in constraints
number of integer variables appearing nonlinearly

just in constraints

number of variables appearing nonlinearly in objectives
number of integer variables appearing nonlinearly

just in objectives
number of linear network constraints
number of nonzerosin the Jacobian matrix
number of nonzerosin objective gradients
length of longest constraint or

objective name (0 if no stub. r owfile)
length of longest variable name

(Oif nostub. col file)
Conval and Jacva operate on constraintsi for

Ch _conj ac[ 1] n_conjac[ 0] <i <n_conjac[ 1],

g initidly n_conj ac[ 0] = Oand

0 n_conjac[ 1] = n_con (al constraints)
B Table1: ASL componentsset byj acOdi m

0 OAMPL versions = 19930630; otherwise nl vb = -1.

I A

t ypedef struct ograd ograd;

and has similar t ypedef sfor al the other structures it declares). ASL field Ogr ad[ i] points to the head
of alinked-list of ogr ad structures for objectivei + 1, so the sequence

c = (real
nmenset (¢,

if (n_obj)

*)Mal | oc(n_var*si zeof (real));

Ol

n_var*si zeof (real));

for(og = Qgrad[0]; og; 0g = 0g->nhext)

c[ og- >varno] = og->coef;

allocates a scratch vector ¢, initializes it to zero, and (if there is at least one objective) stores the coeffi-
cients of thefirst objectiveinc. (Thevar no valuesin the ogr ad structure specify 0 for the first variable,

1 for the second, etc.)
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Among the arraysallocated inl i n1. c’scal onf _r ead arean array of alternating lower and upper
variable bounds called LUv and an array of alternating lower and upper constraint bounds called LUr hs.
For the present exercise, these arrays could have been declared to be arrays of

struct LU bounds { real |ower, upper; };

however, for the convenience discussed below of being able to request separate lower and upper bound
arrays, both LUv and LUr hs havetyper eal *. Thusthe code

printf("\nVariable\tl ower bound\tupper bound\tcost\n");
for(i = 0; i < n_var; i++)
printf("98ld\t%8g\t% 8g\t%g\n", i+1,
LUv[2*i], LW[2*i+1], c[i]);

prints the lower and upper bounds on each variable, along with its cost coefficient in the first objective.

For | i nl. c, thelinear part of each constraint is conveyed in the same way as the linear part of the
objective, but by alist of cgr ad structures. These structures have one morefield,

int goff;

than ogr ad structures, to allow a *‘columnwise’’ representation of the Jacobian matrix in nonlinear prob-
lems; the computation of Jacobian elements proceeds *‘row-wise’’. The final f or loopsof | i nl. c pre-
sent the A of (LP) row by row. The outer loop compares the constraint lower and upper bounds against
negl nfinity andl nfinity (declared in asl . h and available after ASL_al | oc has been called) to
seeif they are —co Or + 0.

Columnwise treatment

Most LP solvers expect a‘‘columnwise’’ representation of the constraint matrix A of (LP). By allo-
cating some arrays (and setting pointers to them in the ASL structure), you can make the stub. nl reader
give you such a representation, with subscripts optionally adjusted for the convenience of Fortran. The
next examplesillustrate this. Their sourcefilesarel i n2. ¢ and | i n3. ¢ inexanpl es, and you can say

make lin2 1in3

to compile and link them.
Thebeginning of | i n2. ¢ differsfromthat of | i n1. c inthat| i n2. ¢ executes

A vals = (real *)Malloc(nzc*sizeof(real));

before invoking f _r ead. When a stub. nl reader finds A _val s non-null, it alocates integer arrays
A colstarts and A rownos and stores the linear part of the constraints columnwise as follows:
A col starts is an array of column offsets, and linear coefficient A val s[i] appears in row
A rownos| i] ; thei values for column j satisfy A col starts[j] <i<A colstarts[j+]1] (inC
notation). The column offsets and the row numbers start with the value Fortran (i.e,
asl - >i . Fortran_), whichis 0 by default — the convenient value for use with C. For Fortran solvers,
it is often convenient to set Fortran to 1 before invoking a stub. nl reader. This is illustrated in
I i n3. c, which also illustrates getting separate arrays of lower and upper bounds on the variables and con-
straints: if LUv and Uvx are not null, the stub. nl readers store the lower bound on the variables in LUv
and the upper bounds in Uvx; similarly, if LUr hs and Ur hsx are not null, the stub. nl readers store the
constraint lower bounds in LUr hs and the constraint upper bounds in Ur hsx. Table 2 summarizes these
and other ASL components that you can optionally set.

Optional ASL components

Table 2 lists some ASL (i.e,, asl - >i . ..._) components that you can optionally set and summarizes
their effects.
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Component Type Meaning O
Eret urn_nofile int If nonzero, j acO0di mreturns O rather than halting execution B
O if stub. nl does not exist. O
E{Nant derivs i nt If you want to compute nonlinear functions but will never B
0 compute derivatives, reduce overhead by setting 0
O want _derivs = 0 (beforecalingthedesired. nl reader). 0O
0 Alternatively, if you want nonlinear evaluations to succeed 0
g at points where first or second derivatives cannot be computed, B
0 setwant _derivs = 2 (beforecalingthe. nl reader). 0
[(Fortran i nt Adjustmentto A col starts and A _r ownos. O
EFUV real * Array of lower (and, if UVx isnull, upper) bounds on variables. B
Uvx real * Array of upper bounds on variables. 0
0. Ur hs real * Array of lower (and, if Ur hsx isnull, upper) constraint bounds. U

r hsx real * Array of upper bounds on constraints. B

0 real * Primal initial guess: only retained if X0 is not null. 0
chavexO char* If not null, havexO[ i] !'=0means X0[ i] was specified O
O (evenif it is zero). O
%i 0 feal * Dual initial guess: only retained if pi O isnot null. .

avepi 0 char* If not null, havepi O[ i] '=0meanspi O[ i] was specified 0
O (evenif itiszero). O
E{Nant _xpi 0 i nt want _xpi 0 & 1 == 1tellsstub. nl readersto alocate X0 B
0 if aprimal initial guessisavailable; 0
O want _xpi 0 & 2 == 2tellsstub. nl readersto alocate pi 0
O if adual initial guessisavailable; O
O want _xpi 0 & 4 == 4 tellsstub. nl readersto allocate O
g havexO0 or havepi 0 when reading X0 or pi O. g
OA val s real * If not null, store linear Jacobian coefficientsin A _val s, O
0 A rownos, and A col st art s rather thanin lists of 0
g cgr ad structures. B
DA_r ownos i nt* Row numberswhen A _val s isnot null; 0
0 allocated by stub. nl readersif necessary. 0
(A colstarts i nt* Column startswhen A _val s isnot null; ad
0 allocated by stub. nl readersif necessary. 0
Epr r_jnp Jnp_buf*  If not null and an error occurs during nonlinear expression B
O evaluation, | ongj np here (without printing an error message). [
Cerr_jnpl Jp_buf*  If not null and an error occurs during nonlinear expression O
E evaluation, | ongj np here after printing an error message. B
obj _no fint Objective number forwr i t esol () andqpcheck(): 0
O 0 = first objective, =1 = no objective, i.e., just find afeasible O
0 point. 0
O O
H Table2: Optionally settable ASL components. H

Example: linrc, a*‘solver’” for row-wise printing

It is easy to extend the above examples to show the variable and constraint names used in an AMPL
model. When writing stub. nl , AMPL optionally stores these names in files stub. col and stub. r ow, as
described in 8A18.4 (page 487-488) of the AMPL book [7]. Asan illustration, examplefilel i nrc. c isa
variant of | i n1. ¢ that shows these namesif they are available — and tells how to get them if they are not.
Among other embellishments, | i nrc. ¢ uses the value of environment variable di spl ay_wi dt h to
decide when to break lines. (By the way, $di spl ay_wi dt h denotes this value, and other environment-
variable values are denoted analogously.) Say
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make linrc
tocreateal i nrc programbasedonl i nrc. ¢, and say
linrc -7
to see asummary of its usage. It can be used stand-alone, or asthe ‘*solver’” in an AMPL session:
anpl: option solver linrc, linrc_auxfiles rc; solve;
will send alisting of the linear part of the current problem to the screen, and
anpl : sol ve >foo;

will send it to filef oo. Thus!l i nrc can act much like AMPL’s expand and sol expand commands.
See the AMPL book [7] (second edition) for more details on these commands.

Affine objectives: linear plus a constant

Adding a constant to alinear objective makes the problem no harder to solve. (The constant may be
stated explicitly in the original model formulation, or may arise when AMPL’s presolve phase deduces the
values of some variables and removes them from the problem that the solver sees.) For agorithmic pur-
poses, the solver can ignore the constant, but it should take the constant into account when reporting objec-
tive values. Some solvers, such as MINOS, make explicit provision for adding a constant to an otherwise
linear objective. For other solvers, such as OSL and older versions of CPLEXD, we must resort to intro-
ducing a new variable that is either fixed by its bounds (CPLEX) or by a new constraint (OSL). Function
obj const , with apparent signature

real objconst(int objno)

returns the constant term for objective obj no (with 0 < obj no < n_obj ) when that objectiveislinear.
It returns O if objective obj no is nonlinear. See the printing of the ‘‘Objective adjustment’’ in
exanpl es/ | i nrc. c for an example of invoking obj const .

Example: shell script as solver for thedual LP

Sometimes it is convenient for the solver AMPL invokes to be a shell script that runs severa pro-
grams, e.g., to transform stub. nl to the form the underlying solver expects and to create the stub. sol that
AMPL expects. As an illustration, exanpl es contains a shell script called dni nos that arranges for
nm nos to solve the dual of an LP. Why is this interesting? Well, sometimes the dual of an LP is much
easier to solve than the origina (‘‘prima’’) LP. Because of this, the CPLEX driver
(http://ampl.com/netlib/sol vers/cplex/cplex.c) has provision for solving the dual LP. (Thisisnot to be con-
fused with using the dual simplex algorithm, which might be applied to either the primal or the dual prob-
lem. The old OSL driver also had this provision.) Because m nos is meant primarily for solving nonlin-
ear problems (whose duals are more elaborate than the dual of an LP), m nos currently lacks provision for
solving dual LPs directly. At the cost of some extra overhead (over converting an LP to its dual within
m nos) and loss of flexibility (of deciding whether to solve the primal or the dual LP after looking at the
problem), the dmi nos shell script provides an easy way to see how mi nos would behave on the dua of an
LP. And one can use dmmi nos to feed dual LPs to other LP solvers that understand stub. nl files: it's just
amatter of setting the shell variable $dsol ver (which is discussed below).

The dm nos shell script relies on a program called dual conv whose source, dual conv. ¢, also
appearsin exanpl es. Dual conv readsthe stub. nl for an LP and writes a stub. nl (or stub. nps) for
the dual of the LP. Dual conv also writes a stub. duw file that it can use in a subsequent invocation to
trandate the stub. sol file from solving the dual LP into the primal stub. sol that AMPL expects. Thus
dual conv isredly two programs packaged, for convenience, asone. (Type

make dual conv
to create dual conv and then

dual conv ' -?’
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for more detail on its invocation than we discuss below.)
Hereisasimplified version of the dm nos shell script (for Unix systems):

#!/ bin/sh

dual conv $1

m nos $1 - AMPL
dual conv -u $1
rm $1. duw

This simplified script and the fancier version shown below use Bourne shell syntax. In this syntax, $1 is
the script’ s first argument, which should be the stub. Thus

dual conv $1

passes the stub to dual conv, which overwrites stub. nl with a description of the dual LP (or complains,
as discussed below). If all goeswell,

m nos $1 - AMPL
will cause m nos to write stub. sol , and

dual conv -u $1
will overwrite stub. sol with the form that AMPL expects. Finally,

rm $1. duw
cleans up: in the usual case where AMPL chooses the stub, AMPL removes the intermediate files about
which it knows (e.g., stub. nl and stub. sol ), but AMPL does not know about stub. duw.

The simplified dm nos script above does not clean up properly if it is interrupted, e.g., if you turn

off your terminal whileit isrunning. Hereisthe more robust exanpl es/ dmi nos:

#1/ bi n/ sh
# Script that uses dualconv to feed a dual LP problemto $dsol ver
dsol ver =${ dsol ver - m nos}
trap "rm-f $1.duw' 1 2 3 4 13
dual conv $1
case $? in 0)
$dsol ver $1 - AMPL
case $? in 0) dualconv -u $1;; esac

;. esac
rc=$?

rm-f $1.duw
exit $rc

It starts by determining the name of the underlying solver to invoke:
dsol ver =${ dsol ver - m nos}

is an idiom of the Bourne shell that checks whether $dsol ver isnull; if so, it sets $dsol ver toni nos.
Theline

trap "rm-f $1.duw' 1 2 3 4 13
arranges for automatic cleanup in the event of various signals. The next line
dual conv $1

works as before. If all goes well, dual conv gives a zero exit code; but if dual conv cannot overwrite
stub. nl with a description of the dual LP (e.g., because stub. nl does not represent an LP), dual conv
complains and givesreturn code 1. The next line

case $? in 0)
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-10-

checks the return code; only if it isOis $dsol ver invoked. If the latter is happy (i.e., gives zero return
code), theline

case $? in 0) dualconv -u $1;; esac

adjusts stub. sol appropriately. In any event,

rc=$?
saves the current return code (i.e., $? isthe return code from the most recently executed program), since the
following clean-up line

rm-f $1.duw
will change $?. Finally,

exit $rc
uses the saved return code as dmi nos’s return code. This is important, as AMPL only tries to read

stub. sol if the solver gives a0 return code.

To write stub. sol files, dual conv calswrit e_sol, which appears in most of the subsequent
examples and is documented below in the section on ** Writing the stub. sol file'’.

3. Integer and Nonlinear Problems

Ordering of integer variablesand constraints

When writing stub. nl , AMPL orders the variables as shown in Tables 3 and 4 and the constraints as
shown in Table 5. These tables also give expressions for how many entities are in each category. Table 4
applies to AMPL versions = 19930630; nl vb = —1 signifies earlier versions. For all versions, the first
nl vc variables appear nonlinearly in at least one constraint. If nl vo > nl vc, the first nl vc variables
may or may not appear nonlinearly in an objective, but the next nl vo —nl vc variables do appear nonlin-
early in at least one objective. Otherwise al of the first nl vo variables appear nonlinearly in an objective.
““Linear arcs'’ are linear variables declared with an ar ¢ declaration in the AMPL model, and ** nonlinear
network’’ constraints are nonlinear constraints introduced with anode declaration.

[Category Count O
O O
thonlinear max(nl vc, nl vo); see Table 4. O
Oinear arcs nw O
Cother linear n_var - (max{nl vc,nl vo} +ni v +nbv + nw) U

inearly used binary nbv g

inearly used other integer  ni v 0
H Table3: Ordering of Variables. H
Smoothness ~ Appearance Count g
0 0
[xontinuous inan objectiveand inaconstraint  nl vb - nl vbi 0
Uinteger in an objectiveand inaconstraint  nl vbi g
Ceontinuous ~ just in constraints nlve — (nlvb + nlvci) U

nteger just in constraints nl vci B
[eontinuous  just in objectives max (0, nlvo — nlvc) 0
Ojnteger just in objectives nl voi O
H Table4: Ordering of Nonlinear Variables. E
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[ICategory Count O
O O
tnonlinear general nl c —nlnc O
Chonlinear network  nl nc g
Uinear network | nc u
Sinear genera n_con-(nlc +1Inc) E

H  Table5: Ordering of Constraints.

Reading nonlinear problems

It is convenient to build data structures for computing derivatives while reading a stub. nl file, and
anpl sol ver . a provides several ways of doing this, to suit the needs of various solvers. Table 6 summa-
rizes the available stub. nl readers and the kinds of nonlinear information they make available. They are
to be used with ASL_al | oc invocations of the form

asl = ASL_al | oc( AS.type) ;

Table 6's ASLtype column indicates the argument to supply for ASLtype. (Thisargument affects the size of
the allocated ASL structure. Though we could easily arrange for a single routine to call the reader of the
appropriate ASLtype, on some systems this would cause many otherwise unused routines from
anpl sol ver . a to belinked with the solver. Explicitly calling the relevant reader avoids this problem.)

Creader ASLtype nonlinear information g
O O
f _read ASL read f no derivatives: linear objectives and constraints only O
(fg read ASL_read_fg first derivatives d
Lfgh read— ASL_read fgh first derivatives and Hessian-vector products O

fg_read ASL_read_pfg first derivatives and partially separable structure g
Pfgh_read ASL_read_pfgh firstand second derivatives and partially separable structure
O Table6: stub. nl readers. O
O . . O
O ONot availablein sol ver s2. 0

All these readers have apparent signature
int reader(FILE *nl, int flags);

they closethenl fileand return O if al goeswell. The bitsin thef | ags argument are described by com-
ments in the enum ASL_reader flag bits declaration in asl . h; some of them pertain only to
reading partially separable problems, which are discussed later, but others, such as
ASL_return_read_err and ASL_r owwi se_j ac, arerelevant to al thereaders. The former governs
the readers’ behavior if they detect an error. If this bit is 0, the readers print an error message and abort
execution; otherwise they return one of the nonzero valuesinenum ASL_reader _error _codes. See
asl . h for details. Setting the ASL_r owwi se_j ac bit causes computed Jacobian matrices to be stored
rowwise rather than columnwise.

Evaluating nonlinear functions

Specific evaluation routines are associated with each stub. nl reader. For simplicity, the readers
supply pointers to the specific routines in the ASL structure, and asl . h provides macros to simplify call-
ing the specific routines. The macros provide the following apparent signatures and functionality; many of
them appear in the examples that follow. Reader pf g_r ead ismainly for debugging and does not provide
any evaluation routines; it is used in solver “‘v8’’, discussed below. Reader f gh_r ead is mainly for
debugging of Hessian-vector products, but does provide all of the routines described below except for the
full Hessian computations (which would have to be done with n_var Hessian-vector products). Reader
pf gh_r ead generally provides more efficient Hessian computations and provides the full complement of
evaluation routines. If you invoke an ‘‘unavailable’’ routine, an error message is printed and execution is
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aborted.

Many of the evaluation routines have final argument ner r or of typefi nt *. This argument con-
trols what happens if the routine detects an error. If nerr or isnull or points to a negative value, an error
message is printed and, unlesserr _j npl (i.e, asl - >i . err _j npl_) is nonzero, execution is aborted.
(Youcan seterr _j npl much the same way that obj 1val _ASL and obj 1grd_ASL infileobj val . ¢
set er r _j np to gain control after the error message is printed.) If ner r or points to a nonnegative value,
*nerror issetto 0if no error occurs and to a positive value otherwise.

real objval (int nobj, real *X fint *nerror)
returns the value of objectivenobj (with0 < nobj < n_obj ) at the point X.

void objgrd(int nobj, real *X, real *G fint *nerror)
computes the gradient of objective nobj and storesitin G[ i] , 0<i < n_var.

void conval (real *X, real *R fint *nerror)

evaluates the bodies of constraints at point X and stores them in R Recall that AMPL puts constraints into
the canonical form

left-hand side < body < right-hand side,

with left- and right-hand sides contained in the LUr hs and perhaps Ur hsx arrays, as explained above in
the section on ** Row-wise treatment’’. Conval operateson constraintsi with

n_conjac[ 0] <i < n_conjac][ 1]

(i.e., all congtraints, unless you adjust the n_conj ac values) and stores the body of constraint i in
Rl i-n_conj ac[ 0] ], i.e,, it storesthefirst constraint body it evaluatesin R[ 0] .

void jacval (real *X, real *J, fint *nerror)

computes the Jacobian matrix of the constraints evaluated by conval and storesit in J, at the gof f off-
setsin the cgr ad structures discussed above. In other words, there is one gof f value for each nonzero in
the Jacobian matrix, and the gof f values determine where in J the nonzeros get stored. The stub. nl
readers compute gof f values so a Fortran program will see Jacobian matrices stored columnwise, but you
can adjust the gof f fieldsto make other arrangements.

real conival (int ncon, real *X, fint *nerror)
evaluates and returns the body of constraint ncon (withO < ncon < n_con).
void congrd(int ncon, real *X, real *G fint *nerror)

computes the gradient of constraint ncon and stores it in G By default, congrd sets
G i],0<i < n_var, butif you set asl - >i . congrd_node = 1, it will just store the partials that
are not identically O consecutively in G, and if you set asl - >i . congr d_node = 2, it will store them at
thegof f offsetsof the cgr ad structuresfor this constraint.

The following routines that compute Hessian-vector products or Hessians do not have an ** X'’ argu-
ment and instead use partial derivatives computed in previous objective and constraint evaluations. It isthe
solver’s responsibility to ensure that nonlinear constraints and objectives were most recently evaluated at
the desired vector of primal variables.

void hvcomp(real *HV, real *P, int nobj, real *ON real *Y)

storesin HV (afull vector of length n_var ) the Hessian of the Lagrangian times vector P. In other words,
hvconmp computes

HV = W-P,
where Wisthe Lagrangian Hessian,
[h_obj -1 ) n_con-1 O
wW=0%0 3 OWilfi+o ¥ VYiileno (]
0 i=o0 i=0 O
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inwhich f; and c; denote objective function i and constraint i, respectively, and o is an extra scaling factor
(most commonly +1 or —1) that is +1 unless specified otherwise by a previous call on | agscal e (see
below). If 0 < nobj < n_obj, hvconp behaves as though OWNwere a vector of all zeros, except for
OW nobj ], which is taken to be 1 if OWis null; otherwise, if OWis null, hvconp behaves as though it
were avector of all zeros; and if Y isnull, hvconp behaves as though Y were a vector of zeros. Wiseval-
uated at the point where the objective(s) and constraints were most recently computed (by callson obj val
or obj grd, and on conval , coni val , j acval , or congr d, in any convenient order). Normally one
computes gradients before dealing with W, and if necessary, the gradient computing routines first recom-
pute the objective(s) and constraints at the point specified in their argument lists. The Hessian computa-
tions use partial derivatives stored during the objective and constraint evaluations.

To make make it more efficient to call hvconp(HVY, P, nobj, OW Y) several times at the
same primal point with different P vectors but the same ( nobj, OW YY), some intermediate results may
be saved from the first hvconp call at the current point. In the unusual case of calling hvconp( HV, P,
nobj, OW Y) atthe same primal point but with a different value of the triple (nobj, OW YY), itis
necessary to first call hvpi nit (i hd_Iimt, nobj, OW Y) withthe new valuesof nobj , OV and
Y. Thisfunction has apparent signature

void hvpinit(int ihd_lim int nobj, real *ON real *Y);

Thefirst argument, i hd_I i m limitsk in the size kxk of Hessians that are precomputed at new primal vari-
ablevalues;i hd_I| i mi t is#definedinad.htobeasl - >p.i hd_Iimt_, whichby defaultis12.

voi d duthes(real *H, int nobj, real *ON real *Y)

evaluates and stores in H the dense upper triangle of the Hessian of the Lagrangian function W. Here and
below, arguments nobj , OWand Y have the same meaning asin hvconp, so dut hes stores the upper tri-
angle by columnsin H, in the sequence

Woo Wo1 Wig Woo Wipo W,
of lengthn_var * (n_var +1) / 2 (with 0-based subscripts for W).
void full hes(real *H fint LH int nobj, real *ON real *Y)
computes the W of () and storesit in Has a Fortran 77 matrix declared

i nteger LH
doubl e precision H(LH, *)

In C notation, f ul | hes sets
H[l + JLH] = Wi,j

forO<i <n_var and 0 <j < n_var. Both dut hes and f ul | hes compute the same numbers;
ful | hes first computes the Hessian’s upper triangle, then copies it to the lower triangle, so the result is
symmetric.

fint sphsetup(int nobj, int ow, int y, int uptri)

returns the number of nonzeros in the sparse Hessian W of the Lagrangian (0 (if upt ri = 0) or its upper
triangle (if upt ri = 1) or its lower triangle (if upt ri = 2), and storesin fields sput i nf o- >hr ownos
and sput i nf o- >hcol st art s adescription of the sparsity of W, as discussed below with sphes. For
sphes’s computation, which determines the components of W that could be nonzero, arguments ow and y
indicate whether ONand Y, respectively, will be zero or nonzero in subsequent calls on sphes. In analogy
with hvconp, dut hes, ful | hes and sphes, if 0 < nobj < n_obj, then nobj takes precedence
over ow.

voi d sphes(real *H, int nobj, real *ON real *Y)

computes the W given by (0O and stores it or its sparse upper triangle in H; sphset up must have been
called previously with arguments nobj , owand y of the same sparsity (zero/nonzero structure), i.e., with
the same nobj , with ownonzero if ever OMwill be nonzero, and with y nonzero if ever Y will be nonzero.
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Argument upt ri to sphset up determines whether sphes computes W' s upper triangle (uptri =1) or
al of W (uptri = 0); in the latter case, the computation proceeds by first computing the upper triangle,
then copying it to the lower triangle, so the result is guaranteed to be symmetric. Fields
sput i nf o- >hr ownos and sput i nf o- >hcol st art s are pointers to arrays that describe the sparsity
of Win the usual columnwise way:

H[J] = Wi,rownows[j]

for 0<i < n_var and hcol starts][i] <j < hcol starts[i+1]. Before returning, sphset up
adds the ASL value For t r an to the valuesin the hr ownos and hcol st art s arrays. The row numbers
in hr ownos for each column are in ascending order.

i nt xknown(real *X)
i nt xknowne(real *X, fint *nerror)

indicate that this X will be provided to the function and gradient computing routines in subsequent calls
until either another xknown. . . invocation makes a new X known, or xunknown() isexecuted. The lat-
ter function, with apparent signature

voi d xunknown(void);

reinstates the default behavior of checking the X arguments against the previous value to see whether com-
mon expressions (or, for gradients, the corresponding functions) need to be recomputed. Appropriately
caling xknown. . . and xunknown. . . can reduce the overhead in some computations. The ner r or
argument to xknowne() and xknowne_ew() is set to O if all goes well and to 1, 2, or 3 if a shared
defined variable cannot be evaluated at this X. Vaues nerror = 2 or 3 are only possible when
want _deri vs was set to 2 (or another nonzero even value) before the stub. nl reader was called. The
xknown() functions return O if the nonlinear components of X have not changed and 1 if they have
changed since the last call on aroutinein anpl sol ver . a that hasan’’x** argument.

void conscale(int i, real s, fint *nerror)

scales function body i by s, initial dual value pi O[ i ] by 1/s, and the lower and upper bounds on con-
gtraint i by s, interchanging these bounds if s < 0. This only affects the pi 0, LUr hs and Ur hsx arrays
and the results computed by conval , j acval , coni val , congrd, dut hes, ful | hes, sphes, and
hvconmp. Thew i t e_sol routine described below takes callson conscal e into account.

void | agscal e(real sigma, fint *nerror)
specifiesthe extra scaling factor o : = si grma in the formula (O for the Lagrangian Hessian.
void varscale(int i, real s, fint *nerror)

scalesvariablei , itsinitial value XO[ i ] and its lower and upper bounds by 1/s, and it interchanges these
bounds if s < 0. Thus var scal e effectively scales the partial derivative of variablei by s. This only
affects the nonlinear evaluation routines and the arrays X0, LUv and Uvx. The write_sol routine
described below accountsfor callson var scal e.

Cdlls on conscal e, var scal e, and | agscal e should be made after the stub. nl reader has
been called.

Example: nonlinear minimization subject to simple bounds

Our first nonlinear example ignores any constraints other than bounds on the variables and assumes
there is one objective to be minimized. This example involves the PORT solver drmgb, which amounts to
subroutine SUMSL of [8] with added logic for bounds on the variables (as described in [9]). Fortran source
for PORT routines mentioned in this report, such asdmgb, isavailablein

http://anpl.com netlib/anpl/sol vers/exanpl es/fport. zip
and corresponding C source (viaf2c) isavailablein

http://anpl.com netlib/anpl/sol vers/ exanpl es/ cport. zip
Thedriver for thisexampleisexanpl es/ mgl. c.

Most of mg1l. c isspecific to dnmgb. For example, drmgb expects subroutine parameters cal cf
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and cal cg for evaluating the objective function and its gradient. Interface routinesobj val and obj grd
actually evaluate the objective and its gradient; the cal cf and cal cg defined in mg1. ¢ simply adjust
the calling sequences appropriately. The calling sequencesfor obj val and obj gr d were shown above.

Since dmgb is prepared to deal with evaluation errors (which it learns about when argument * NF to
cal cf andcal cgissetto0), cal cf andcal cg passapointer to O for nerr or.

The main routine in mg1l. c is caled MAI N_ _ rather than mai n because it is meant to be used
with an f2c-compatible Fortran library. (A C mai n appears in this Fortran library and arranges to catch
certain signals and flush buffers. The mai n makes its arguments ar gc and ar gv available in the external
cellsxar gc and xar gv.)

Recall that when AMPL invokes a solver, it passes two arguments: the stub and an argument that
starts with - AMPL. Thus mmgl. ¢ gets the stub from the first command-line argument. Before passing it
to jacOdim mgl.c calls ASL_al | oc(ASL_read_fg) to make an ASL structure available.
ASL_al | oc storesitsreturn valuein the global cell cur _ASL. Sincermgl. ¢ startswith

#i ncl ude "asl . h"
#define asl cur_ASL

the value returned by ASL_al | oc is visible throughout rmgl. ¢ as ‘‘asl '’. This saves the hassle of
making as| visibletocal cf and cal cg by some other means.

The invocation of dmgb directly accesses two ASL pointers: X0 and LUv (i.e., asl - >i . X0_ and
asl ->i . LUv_). X0 contains the initial guess (if any) specified in the AMPL model, and LUv is an array
of lower and upper bounds on the variables. Before calling f g_r ead to read therest of stub. nl , rmg1l. c
asksf g_read to save X0 (if an initial guessis provided in the AMPL model or data, and otherwise to ini-
tialize X0 to zeros) by executing

X0 = (real *)Malloc(n_var*sizeof(real));

After invoking dmmgb, mg1. ¢ writes atermination message into the scratch array buf and passes
it, along with the computed solution, to interface routine wri t e_sol , discussed later, which writes the
termination message and solution to file stub. sol inthe form that AMPL expectsto read them.

The use of Cext er n in the declaration

typedef void (*U_fp)(void);

Cextern int dmgb_(fint *n, real *d, real *x, real *b,
Ufp calcf, Ufp calcg,
fint *iv, fint *liv, fint *lv, real *v,
fint *uiparm real *urparm U fp ufparn;

at the start of nmgl. ¢ permits compiling this example with either a C or a C++ compiler; Cext er n is
#defi nedinasl . h.

Example: nonlinear least squar es subject to simple bounds

The previous example dealt only with a nonlinear objective and bounds on the variables. The next
example deals only with nonlinear equality constraints and bounds on the variables. It minimizes an
implicit objective: the sum of squares of the errorsin the constraints. The underlying solver, dn2gb, again
comes from the PORT subroutine library; it is a variant of the unconstrained nonlinear |least-squares solver
NL2SCOL [3,4] that enforces simple bound constraints on the variables. Source for dn2gb appears in the
filescport. zi pandf port.zi p mentioned above.

Source for thisexampleisexanpl es/ nl 21. ¢c. Muchlikemmgl. c, it startswith

#i ncl ude "asl . h"
#define asl cur_ ASL

followed by declarations for the definitions of two interface routines: cal cr computes the residual vector
(vector of errorsin the equations), and cal ¢j computes the corresponding Jacobian matrix (of first partial
derivatives). Again these are just wrappers that invoke anpl sol ver. a routines described above,
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conval andj acval . Parameter NF to cal cr and cal cj works the same way as in the cal cf and
cal cg of mg1l. c. Recall again that AMPL puts constraints into the canonical form

left-hand side < body < right-hand side.

Subroutine cal cr callsconval to have avector of n_con body values stored in array R. The MAI N_
routine in nl 21. ¢ makes sure the left- and right-hand sides are equal, and passes the vector LUr hs of
left- and right-hand side pairs as parameter UR to dn2gb, which passes them unchanged as parameter UR to
cal cr. (Of course, cal cr could also access LUr hs directly.) Thusthe loop

for(Re = R+ *N, R< Re; UR += 2)
*Rt+ -= *UR

incal cr convertsthe constraint body values into the vector of residuals.

MAI N_ _ invokes the interface routine dense_j () totell j acval that it wants a dense Jacobian
matrix, i.e., a full matrix with explicit zeros for partial derivatives that are aways zero. If necessary,
dense_j adjusts the gof f components of the cgr ad structures and tells j acval to zero its J array
before computing derivatives.

Partially separable structure
Many optimization problems involve a partially separable objective function, one that has the form

q
f0 = 3 fi(Uixn,
i=1
in which U; isan m; xn matrix with a small number m; of rows[13, 14]. Partially separable structure is of
interest because it permits better Hessian approximations or more efficient Hessian computations. Many
partially separable problems exhibit a more detailed structure, which the authors of LANCELOT [2] call
‘*group partially separable structure’’:

q I
f(x) = 28i(Xfi;(Uijx),
i=1  j=1
where 6, :IR - IR isaunary operator. Using techniques described in [12], the stub. nl readerspf g_r ead
and pfgh_read discern this latter structure automatically, and the Hessian computations that
pf gh_r ead makes available exploit it. Some solvers, such as LANCELOT and VEO8 [19], want to see
partially separable structure. Driving such solversinvolves afair amount of solver-specific coding. Direc-
tory exanpl es has drivers for two variants of VEO8: ve08 ignores whereas v8 exploits partially separa
ble structure, using reader pf g_r ead. Directory sol ver s/ | ancel ot contains sourcefor | ancel ot
asolver based on LANCELOT that uses reader pf gh_r ead.

Fortran variants

Fortran variants f rmgl.f and fnl 21.f of mgl. ¢ and nl 21. ¢ appear in exanpl es; the
makef i | e has rules to make programs f mg1l and f nl 21 from them. Both invoke interface routines
jacdi m andjaci nc_. The former alocates an ASL structure (with ASL_al | oc(ASL_r ead_fqg))
and reads a stub. nl file with f g_r ead, and the latter provides arrays of lower and upper constraint
bounds, the initial guess, the Jacobian incidence matrix (which neither example uses), and (in the last vari-
ablepassedtoj aci nc_) thevaluel nfi ni t y that represents co. These routines have Fortran signatures

subroutine jacdi mstub, M N, NO Nz, MXRON MXCOL)
character*(*) stub
integer M N, NO Nz, MXRON MXCCL

subroutine jacinc(M N, Nz, JP, JI, X L, U Lrhs, Uhs, Inf)
integer M N, Nz, JP(N+1)

i nteger*2 Jli

doubl e precision X(N), L(N, WN), Lrhs(M, Uhs(M, Inf
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Jacdi m_ sets its arguments as shown in Table 7. The values MXROWand MXCOL are unlikely to be of
much interest; MXKROWis O unless AMPL wrote stub. r ow (a file of constraint and objective names), in
which case MXROWis the length of the longest name in stub. r ow. Similarly, MXCOL is O unless AMPL
wrote stub. col , in which case MXROWis the length of the longest variable name in stub. col . Variant
jacincl_() ofjacinc_() hasargument JI of typefi nt * rather thanshort i nt*,i.e., of Fortran
typei nt eger rather thani nt eger * 2.

1 MXROW = maxr ownanel en

* MXCOL = maxcol nanel en
O
A Table 7. Assignmentsmadebyj acdi m . 5

length of longest constraint name [
length of longest variable name 0O
O

oM = n_con = number of constraints O
EIN = n_var = number of variables O
g* NO = n_obj = number of objectives E
0 NZ = ncz = number of Jacobian nonzeros 0

The Fortran examples call Fortran variants of some of the nonlinear evaluation routines. Table 8
summarizes some Fortran variants; source and a test program for some others (e.g., for evaluating Hessian
information) appear in

http://anpl.com netlib/anpl/sol vers/exanpl es/fortm sc.zip
In Table 8, Fortran notation appears under ‘* Fortran variant’”; the corresponding C routines have an under-
score appended to their names and are declared in asl . h. The Fortran routines shown in Table 8 operate
on the ASL structure at which cur _ASL points. Thus, without help from a C routine to adjust cur _ ASL,
they only deal with one problem at atime. After solving a problem and executing

call delprb

aFortran code could call j acdi mandj aci nc again to start processing another problem.

Nonlinear test problems
Some nonlinear AMPL models appear in directory
http://anmpl.com netlib/anpl/nodel s/ nl nodel s

Theentirenet | i b/ anpl / nodel s directory, which has linear models, the nl nodel s subdirectory, and
directory conpl for complementary problems, is available as the gzipped tar file

http://ampl.com netlib/anpl/nodels.tgz

4. Advanced Interface Topics

Objective Sense

Whether objectiven (0 n<n_obj ) isto be minimized or maximized is specified by the obj t ype
array: objtype[n] =0ifitistobeminimizedand obj t ype[ n] =1ifitisto be maximized.

Accessing names
Functions
char *con_nane(int n);
char *obj _nane(int n);
char *var_nane(int n);
return the name of constraint n (0 < n < n_con), objectiven (0 <n<n_obj), and variablen (0< n <
n_var), respectively. If the relevant auxfi | es option was suitably set when the st ub. nl file was

written, the names will be from the AMPL model. Otherwise they will be generic names, such as
_scon[1].
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CRoutine Fortran variant O
Epongrd congrd(N, I, X, G NERROR B
[(toni val cnival (N, I, X, NERROR) a
tonval conval (M N, X, R NERROR) O
ense_j densej () B
vconp hvconp(HV, P, NOBJ, ON Y) 0
[j acval jacval (M N, Nz, X, J, NERROR 0
Cbbj grd obj grd(N, X, NOBJ, G NERROR) O
Lobj val obj val (N, X, NOBJ, NERROR) O
itesol wrtsol (MSG NLINES, X, ) B
xknown xknown( X) 0
xunkno xunkno() O
(del prb_ del prb() O
O O
0 P 0
[TA rgument Type Description 0
(N i nt eger number of variables (n_var) O
i nt eger number of constraints (n_con) B

i nt eger number of Jacobian nonzeros (nzc) 0

NERROR i nt eger if 20, set NERROR to O if al goeswell 0
O and to a positive value if the evaluation fails O
0 i nt eger which constraint O
33055 i nt eger which objective g
LI NES i nt eger linesin M5G 0
OvVBG character*(*) solution message, dimension(NLI NES) O
X doubl e precision incoming vector of variables O
Ne doubl e precision resultgradient vector O
Erl doubl e precision result Jacobian matrix B
oW doubl e precision objectiveweights 0
oy doubl e precision dua variables O
P doubl e precision vectortobemultiplied by Hessian O
EHV doubl e precision result of Hessian times P B
O . O
N Table8: Fortran variants. 0

Writing the stub. sol file

Interfaceroutinewr i t e_sol returns the computed solution and a termination message to AMPL by
writing a stub. sol file. (When the solver is not invoked by AMPL, the . sol file is only written if
““~ AMPL’" was given as the second command-line argument or the want sol keyword has an odd value.)
This routine has apparent prototype

void wite _sol (char *nsg, real *x, real *y, Option_Info *0i);

The first argument is for the (null-terminated) termination message. It should not contain any empty
embedded lines (though, e.g.," \ n",i.e, aline consisting of a single blank, is fine) and may end with an
arbitrary number of newline characters (including none, asin nmgl. c). The second and third arguments,
X and y, are pointers to arrays of primal and dual variable values to be passed back to AMPL. Either or
both may be null (asisy in mgl. ¢), which causes no corresponding values to be passed. Normally itis
helpful to return the best approximate solution found, but for some errors (such as trouble detected before
the solution algorithm can be started) it may be appropriate for both x and y to be null. The fourth argu-
ment points to an optional Opt i on_| nf o structure, which is discussed below in the section on ** Convey-
ing solver options’. Before caling wite_sol (), a solver should assign a suitable vaue to
sol ve_result_num(i.e,asl ->i .sol ve_result_num); seepp. 283-284 of [7].
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Locating evaluation errors

If the routines in anpl sol ver . a detect an error during evaluation of a nonlinear expression, they
look to seeif stub. r ow (or, if evaluation of a‘‘defined variable’” was in progress, stub. f i x) isavailable.
If S0, they use it to report the name of the constraint, objective, or defined variable that they were trying to
evaluate. Otherwise they simply report the number of the constraint, objective, or variable in question (first
one =1). Thisiswhy AMPL provides the default value RF for $m nos_auxfi | es. See the discussion
of auxiliary filesin 8A18.4 of the AMPL book [7]; as documented in netlib’s ‘“*‘changes from anpl ',
i.e,

http://anpl.com netlib/anpl/changes

capital lettersin $sol ver _auxf i | es have the same effect as their lower-case equivalents on nonlinear
problems, including problems with integer variables, and have no effect on purely linear problems.

Imported functions

An AMPL model may involve imported functions. If invocations of such functions involve variables,
the solver must be able to evaluate the functions. Y ou can tell your solver about the relevant functions by
supplying a suitable funcadd function, rather than loading a dummy funcadd compiled from
sol ver s/ funcaddO. c. Includefilef uncadd. h givesf uncadd’s prototype:

voi d funcadd( Ampl Exports *ae);
Among the fields in the Ampl Expor t s structure are some function pointers, such as

voi d (*Addfunc)(char *nane, real (*f)(Arglist*), int type,
i nt nargs, void *funcinfo, AnplExports *ae);

asoinfuncadd. h are#def i nesthat simplify using the function pointers, assuming
Ampl Exports *ae
isvisible. Inparticular, f uncadd. h givesaddf unc the apparent prototype

voi d addfunc(char *nane, real (*f)(Arglist*), int type,
i nt nargs, void *funcinfo);

To make imported functions known, f uncadd should call addf unc once for each one. The first argu-
ment, narre, is the function’s name in the AMPL model. The second argument points to the function itself.
Thet ype argument tells whether the function is prepared to accept symbolic arguments (character strings):
0 means ‘‘no’’, 1 means ‘‘yes’. Argument nar gs tells how many arguments the function expects; if
nar gs = 0, the function expects exactly that many arguments; otherwise it expects at least —(nar gs + 1).
(Thus nar gs = —1 means 0 or more arguments, nar gs =—2 means 1 or more, etc. The argument count-
ing and type checking occur when the stub. nl file is subsequently read.) Finally, argument f unci nf o is
for the function to use as it sees fit; it will subsequently be passed to the function in field f unci nf o of
structar gl i st.

When an imported function is invoked, it aways has a single argument, al , which points to an
ar gl i st structure. Thisstructure is designed so the same imported function can be linked with AMPL (in
case AMPL needs to evaluate the function); the final ar gl i st components are relevant only to AMPL.
Thefunction receivesal - >n arguments, al - >nr of which are numeric; forO<i < al - >n,

if al->at[i] =0, argumentiis al->rafal->at[i]]
if al->at[i] <O, agumentiis al ->sa[ —(al->at[i] +1)].

If al - >deri vs isnonzero, the function must store itsfirst partial derivative with respect to al - >r a[ i]
in al ->derivs[i], and if al ->hes is nonzero (which is possible only with fgh read or
pf gh_read), it must also store the upper triangle of its Hessian matrix inal - >hes, i.e, for
O<i<gj<al->nr
it must store its second partial withrespectto al ->ra[i] and al ->ra[j] in
al ->hes[i + %j(j+1)] . Sometimes partials with respect to some arguments are not
needed, in which case al - >di g is nonzero, and al - >di g[i] is nonzero if partias with respect to
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al - >ra[ i] will not beused. Itisawayssafeto provide all partials.
If the function does any printing, it should initially say

Ampl Exports *ae = al - >AE;
to make specia variants of pri nt f available.

See sol ver s/ funcadd. ¢ for an example f uncadd. The g, nmh and nl 2 examples men-
tioned below illustrate linking with thisf uncadd.

When an imported function is called by AMPL, ae- >asl is null and calls on get env( nane),
which is #defined to be ( *ae- >Get env) (nane), return values affected by AMPL’s opti on com-
mands. When an imported function is called by a solver, ae- >as| isthe solvers' s ASL pointer.

If an imported function cannot perform as expected, it should set al - >Er r msg to a string explain-
ing the trouble. If the function returns a function value but cannot compute first derivatives,
acl - >Er r msg should start with a single single quote (); if the function returns a function value and first
derivatives but cannot compute second derivatives, al - >Er r nsg should start with a double-quote charac-
ter ("). If need be, memory n bytes long to hold this string can be alocated by calling
ae- >Tempren( al ->TM , n), which returns a voi d* value. The ae- >Tenpmen() function can
also be called to obtain memory for any other use during the current invocation of an imported function.
Such memory is automatically freed after the function returns — and after use is made of al - >Er r nsg.

Complementarity Constraints

Constraints involving complementarity conditions are declared with the conpl enent s keyword in
an AMPL model, which causes the stub. nl readers to allocate and populate a cvar array that indicates
which constraints are involved in complementarity conditions. Suppose cvar[i] =j. If j =0, then con-
gtraint i is an ordinary algebraic constraint, but if j > 0, then the constraint complements variable j—1. In
this latter case, if the constraint has one finite bound, then the variable will also have one finite bound, and
either the constraint or the variable must be at its bound. If the constraint has distinct finite lower and upper
bounds, then the variable has no explicit bounds, but must be nonnegative if the constraint is at its lower
bound, nonpositive if the constraint is at its upper bound, and zero if the constraint is strictly slack.

Some solvers are not prepared to handle general complementarity conditions, but do handle condi-
tions of the formv; = 0, v; = 0, min(v;, vj) = 0. Such solvers should set the ASL_cc_si npl i fy bit
in the flags argument to the stub. nl reader, which causes the reader to allocate arrays asl - >i . cci nd1
and asl - >i . cci nd2 and to adjust the problem so there are n_cc complementarity conditions of the
form

variable asl ->ccind1[i] =20
variable asl ->cci nd2[i] =20
and

min(variable asl - >cci nd1[ i] , variable asl - >cci nd2[i]) = 0.

Suffixes

AMPL models can declare suffixes, which are names for auxiliary values associated with variables,
constraints, objectives, and problems. Some of these values may be inputs to the solver, others may be val-
ues computed by the solver and returned to the AMPL session, and some may be both. For example, some
solvers allow one to specify an incoming basis and to return afinal basis; basic variables and constraints are
conventionally indicated by . sst at us suffixes on variables and constraints. AMPL can send initial
. Sst at us valuesto the solver and retrieve updated . sst at us values from the. sol filethat the solver
writes. Some suffixes assume only a small number of integer values or ranges of such values, and some-
times it is convenient to have symbolic descriptions of these (ranges of) values. For example, when AMPL
begins execution, option sst at us_t abl e hasthe value

0 none no status assigned\
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1 bas basi c\

2 sup super basi c\

3 | ow nonbasic <= (normally =) | ower bound\

4 upp nonbasic >= (normally =) upper bound\

5 equ nonbasi ¢ at equal |ower and upper bounds\
6 bt w nonbasi ¢ bet ween bounds\

0

For suffixes that have an associated ‘‘_t abl e’ option value (which one can supply and modify as
desired), AMPL uses the value in the second column of the table as the displayed value of the suffix when
its numeric value is at most the value in the first column (and exceeds the first-column value of the previous
row, if any, of the table); one can print or display the suffix’s numeric value by appending *‘_nuni’ to the
suffix’s name. When changing a suffix’s value in a *‘l et '’ command, one can use either a numeric or
string for the new value. For example:

anpl : display x.sstatus, x.sstatus_num
X.sstatus = none
X.sstatus_num= 0

anpl: let x.sstatus := 3;
anpl : display x.sstatus, x.sstatus_num
X.sstatus = | ow

X.sstatus_num= 3

anpl: let x.sstatus := "upp’;

anpl : display x.sstatus, x.sstatus_num
X.sstatus = upp

X.sstatus_num= 4

Before accessing incoming status values or supplying outgoing status values, a solvers must invoke
suf _decl are(suftab, nsuftab);
inwhich suf t ab isan array of Suf Decl structures:

struct SufDecl {

/* Pass array of SufDecl’s to suf_declare(). */

char *nane;

char *tabl e;

i nt kind,

i nt nextra;

b
and nsuf t ab isthe number of Suf Decl valuesinthe suft ab array. Usually thet abl e valueis null,
but it can be the value desired for the suffix’s _t abl e option when the suffix is returned to the AMPL ses-
sion. Theki nd value should be one of

ASL_Suf ki nd_var = 0,
ASL_Sufkind _con = 1,
ASL_Suf ki nd_obj = 2,
ASL_Suf ki nd_prob = 3,

to indicate a suffix on variables, constraints, objectives, or problems, respectively, possibly or-ed with one
or more of

ASL_Sufkind_real = 4, /* use SufDesc.u.r rather than .i */
ASL_Suf ki nd_i odcl = 8, /* declare as I NOUT suffix */
ASL_Sufkind_output = 16, /* return this suffix to AMPL */
ASL_Sufkind_input = 32, /* input values were received fromAMPL */
ASL_Sufkind_outonly = 64 /* reject as an input value */

The stub. nl reader setsthe ASL_Sufkind_input bit for suffixes retrieved from the incoming stub. nl file.
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Suffixes are stored in integer arrays unless ASL_Suf ki nd_r eal is specified. Suffixes like sst at us
that can appear on more than one kind of entity must have a separate Suf Decl entry for each kind. For
example, the CPLEX driver ht t p: / / anpl . coni net | i b/ anpl / sol ver s/ cpl ex/ cpl ex. c hasa
suf t ab declaration with many Suf Decl values, including

{ "iis", iis_table, ASL_Sufkind_var | ASL_Sufkind_outonly },
{ "iis", 0, ASL_Sufkind_con | ASL_Sufkind_outonly },
{ "lazy", 0, ASL_Sufkind_con },

{ "sstatus", 0, ASL_Sufkind_var, 1 },
{ "sstatus", 0, ASL_Sufkind_con, 1 },

Thus. i i s can be asuffix on both constraints and variables. This suffix is for describing an ‘*‘irreducible
infeasible’” set of mutually inconsistent constraints and variables. Theii s_t abl e permits using sym-
bolic names for the suffix values. Itisonly necessary tosupplyi i s_t abl e once. Itsdeclarationis

static char iis_table[] = "\n\
0 non not in the iis\n\
1 | ow at | ower bound\ n\
2 fix fixed\n\
3 upp at upper bound\ n\
4 nmem menber \ n\
5 prmem possi bl e nenber\ n\
6 pl ow possi bly at | ower bound\ n\
7 pupp possi bly at upper bound\ n\
8 bug\ n";

To accessincoming suffix values, oneinvokessuf _get () with apparent prototype
Suf Desc *suf _get (const char *sufnane, int kind);

For example, to see if there is an incoming . | azy suffix (as declared in the partial suf t ab declaration
shown above), one would use coding of the form

Suf Desc *| azy;

| azy = suf _get("lazy", ASL_Sufkind_con);

If theresulting | azy->u. i valueisnull, thenthe. | azy suffix isnot available. Otherwisel azy- >u. i
is an arrary (of integers) giving the . | azy suffix values on constraints. If ASL_Suf ki nd_r eal had
been specified for this suffix, then | azy- >u. r would be the (possibly null) array of *‘rea’’ valuesfor the
suffix. By or-ing ASL_Suf ki nd_i nput ontotheki nd argument to suf _get , e.g.,

lazy = suf _get("lazy", ASL_Sufkind_con | ASL_Sufkind_input);

one can request that null be returned for | azy if incoming . | azy values are not present in the stub. nl
file.

To return suffix values to AMPL for a suffix not declared with ASL_Suf ki nd_out put in its
suf t ab entry, oneinvokes apparent prototype

Suf Desc *suf _i put (const char *sufnane, int kind, int *val);
for an integer-valued suffix or
Suf Desc *suf _rput(const char *sufnane, int kind, real *val);

fora‘‘rea’’ valued one. Theval argument should be the arrary that will contain the desired outgoing suf-
fix values. The value returned by suf _i put or suf _r put isthat which suf _get (...) would have
returned.
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Special Ordered Sets

Special ordered sets[1] are useful for expressing situations where one of several alternatives must be
chosen (type 1 SOS sets) and general piecewise-linear functions (type 2). An SOS set of type 1 is a set of
binary variables, exactly one of which can be 1, conveniently expressed as 3 b; = 1, and an SOS set of

i

type 2 is an ordered set of binary variables such that at most two are nonzero, and two nonzero such vari-
ables are adjacent. A convex piecewise-linear function, when appearing in an objective to be minimized or
on the left-hand side of a = constraint, can be expressed by severa linear inequality contraints, but a more
general piecewise-linear function appearing in such places needs to involve an SOS set of type 2. AMPL
uses SOS sets of type 2 to “‘linearize’’ nonconvex piecewise-linear functions, so they can be treated by a
mixed-integer linear programming solver. The resulting stub. nl file will work with any such solver, but
solvers that are prepared to handle SOS sets explicitly may work more efficiently when told about SOS
sets. To facilitate this, AMPL attaches suffixes. sos and . sosr ef torelevant variables. In AMPL decla
rations and scripts, one can also supply suffixes. sosno and . r ef to manually express SOS sets. Each
has a distinct . sosno value, with positive values for SOS type 1 sets and negative values for type 2 sets.
Solverscan cal suf _sos() , with apparent signature

int suf_sos(int flags, int *nsosnz, char **sostype,
int **sospri, int *copri, int **sosbeg,
int **sosind, real **sosref)

to obtain SOS details in the arrays alocated by suf _sos() and to remove relevant constraints supplied
by AMPL for conveying nonconvex piecewise-linear terms. This function returns the number of SOS sets
so treated. The flags argument determines which SOS sets are treated. Itisan‘‘or’’ of

ASL _suf sos_explict _free
ASL_suf sos_i gnore_sosno
ASL_suf sos_i gnore_anpl so

(declared in asl . h). ASL_suf _sos_expl i ct _f r ee means the caller will explicitly free arrays allo-
cated by suf _sos(); otherwise the arrays will be freed automatically when ASL_free(&asl) is
caled. ASL_suf sos_ignore_sosno causes suf _sos() toignore any . sosno and . ref suf-
fixes, and ASL_suf sos_i gnore_anpl so causes suf _sos() to ignore the . sos and . sosr ef
suffixes AMPL uses for nonconvex piecewise-linear terms. After the call

nsos = suf_sos(flags, &nsosnz, &sostype, &sospri, &copri,
&sosheg, &sosind, &sosref);

the arrays alocated by suf _sos() describe nsos SOS sets. A total of nsosnz variables are involved
in these sets. For 0 < i < nsos, setiis of type sostype[i] and has variables sosi nd[ j] with
weight sosref [ j] for sosbeg[i] <] < sosbeg[i + 1].

Solver drivers that use suf_sos() include cpl ex/cpl ex.c, gurobi/gurobi.c, and
xpress/ xpress.cinhttp://anpl.conm netlib/anpl/sol vers.

Checking for quadratic programs. example of a DAG walk
Some solvers make specia provision for handling quadratic programming problems, which have the
form
minimize or maximize %x'Qx + c¢'x
subjectto b < Ax<d (QP)
and ¢ <x<u
in which Q O IR™". Various solvers handle general positive-definite Q matrices, and the old KORBX

solver handled positive-definite diagonal Q matrices (‘‘convex separable quadratic programs’). These
solvers generally assume the explicit %2 shown above in the (QP) objective.

AMPL considers quadratic forms, such as the objective in (QP), to be nonlinear expressions. To
determine whether a given objective function is a quadratic form, it is necessary to walk the directed acyclic
graph (DAG) that represents the (possibly) nonlinear part of the objective. For just determining whether an
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objective or aconstraint is quadratic, function degr ee with apparent signature
int degree_ASL(int co, void **pv);

does a simple graph walk on objective co if 0 < co < n_obj or on constraint —(co+1) if
0< -(co+1) < n_con andreturns

—1 =bad co value
0 = constant
1=linear
2 =quadratic
3 =genera nonlinear.

The pv argument should be null if degree(...) isto be called just once (e.g., to see if the objective is
quadratic). If multiple cals are expected (e.g., for objectives and constraints), it may save time to use the
pattern

void *v = 0;
for(...) { ... degree(asl, co, &); ... }
if (v) free(v);

Function degr ee and the gpcheck variants discussed next are meant to be used with a variant of
fg_read called gp_r ead that has the same prototype as the other stub. nl readers, and which changes
some function pointers to integers for the convenience of the gpcheck functions. After gqp_r ead
returns, you can invoke degr ee or ngpcheck, etc., one or more times, but you may not call obj val ,
conval , etc., until you have called qp_opi f y, with apparent prototype

voi d qp_opi fy(void)

to restore the function pointers. With sol ver s2, one can simply call the desired stub. nl reader rather
than qp_r ead(), and there is no need to cal qp_opi f y(), which does nothing when sol vers2 is
used.

Function ngpcheck (in sol ver s/ ngpcheck. c) illustrates a more detailed graph walk that can
determine quadratic coefficients. Thisfunction has apparent prototype

fint ngpcheck(int co, fint **rowgp, fint **col gp, real **del sqgp);

its first argument indicates the constraint or objective to which it applies: co = 0 means objective co, and
co < 0 means congtraint —(co + 1). If the relevant objective or constraint is a quadratic form with Hessian
Q, ngpcheck returns the number of nonzerosin Q (which is 0 if the function islinear), and sets its pointer
arguments to pointers to arrays that describe Q. Specifically, * del sgp points to an array of the nonzeros
in Q, *rowgp to their row numbers (first row = Fortran), and * col gp to an array of subscripts, incre-
mented by Fortran, of the first entry in *rowgp and *del sqp for each column, with
(*col gp) [ n_var] giving the subscript just after the last column. Ngpcheck sorts the nonzeros in
each column of Q by their row indices and returns a symmetric Q. For non-quadratic functions,
npqcheck returns—1; it returns —2 in the unlikely case that it sees adivision by 0, and —3 if co is out of
range.

For solversthat only deal with one objective, it may be more convenient to call gpcheck rather than
ngpcheck; gpcheck has apparent prototype
fint gpcheck(fint **rowgp, fint **colqp, real **del sqp);

It looks at objective obj _no (i.e, asl - >i . obj _no_, with default value 0) and complains and aborts
execution if it sees something other than a linear or quadratic form. When it sees one of the latter, it gives
the same return value as ngpcheck and sets its arguments the same way.

Argumentsr owgp, col gp, and del sqp to ngpcheck() and gpcheck() can be null; the return
valueis unaffected. When these arguments are not null, the memory pointed to by * r owgp, * col gp, and
*del sqp isautomatically freed when ASL_f r ee( &asl ) iscaled. Variant

fint mgpcheck(int co, fint **rowgp, fint **col gp, real **del sqgp);
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of ngpcheck() assigns values to *r owgp, *col gp, and *del sqp that are allocated individually by
mal | oc() and must befreed by explicit callsonfree().

Some solvers have specific ways of handling quadratic constraints. Such solvers can avoid some
overhead by calling

ssize_t mgpcheckv(int co, QPinfo **QPlp, void **vp);

once per constraint (or objective), with final argument & and with v initialized to null before the first call.
Some auxiliary arrays are constructed and stored in memory pointed to by v and are reused on subsequent
cals on ngpcheckv() . After the fina such call, one invokes mgpcheckv_free( &v) to dispose of
the auxiliary arrays; v is set to null by thiscall. (In callson mgpcheckv() , the vp argument can itself be
null, in which case the the auxiliary arrays are constructed anew on each call and are freed before
ngpcheckv() returns.)

The QPI p argument to ngpcheckv() can be null. When it is not null, it is set to point to a
QPi nf o structure declared in adl.h:

typedef struct QPinfo {

i nt nc; /* nunber of nonenpty colums */

int nz; /* nunber of nonzeros */

i nt *col no; /* col um nunbers of nonenpty col ums */

size_t *colbeg; /* nonzeros for colum colnof[i]: */

i nt *rowno; /* (rowno[j], delsq[j]) for */

real *del sq; /* colbeg[i] <=] < colbeg[i+1], except that */

/* values in colno, colbeg, and rowno are */
/* increnented by Fortran */

} QPinfo;

On most systems that use 64-bit addressing, si ze_t is an unsigned 64-bit integer, which allows address-
ing more than 23! nonzeros, and ssi ze_t isasigned variant of si ze_t . (Thoughsi ze_t isastandard
type, on some systems it may be necessary to provide a suitable #def i ne or t ypedef for ssi ze_t.)
The QPI value returned by ngpcheckv(co, &QPlI, vp), and the arrays whose values QPI contains
are all allocated by asinglemal | oc() call, so when done with QPI , a solver should call f ree( QPl) to
dispose of QPI and the arrays to which it points.

Before returning quadratic details, the qpcheck() variants adjust constraint bounds and the
obj const () function to account for constant terms.

Drivers cpl ex/ cpl ex. ¢, gurobi / gurobi . ¢, and xpress/ xpress. c cal gp_read and
gpcheck, and fileexanpl es/ gt est . c illustratesinvocations of ngpcheck and qp_opi fy.

More elaborate DAG walks are useful in other situations. For example, the nl ¢ program discussed
next does a more detailed DAG walk.

C or Fortran 77 for a problem instance: nlc

Occasionadly it may be convenient to turn a stub. nl file into C or Fortran. This can lead to faster
function and gradient computations — but, because of the added compile and link times, many evaluations
are usually necessary before any net timeis saved. Program nl ¢ converts stub. nl into C or Fortran code
for evaluating objectives, constraints, and their derivatives. Y ou can get source for nl ¢ as

http://anmpl.com netlib/anpl/solvers/nlc.tgz

By default, nl ¢ emits C source for functions f eval _ and ceval _; the former evaluates objectives and
their gradients, the latter constraints and their Jacobian matrices (first derivatives). These functions have
signatures

real feval (fint *nobj, fint *needfg, real *x, real *g);
void ceval _(fint *needfg, real *x, real *c, real *J);

For both, x isthe point at which evaluations take place, and * needf g tells whether the routines compute
function values (if * needf g = 1), gradients (if * needf g = 2), or both (if * needf g = 3). For f eval _,
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*nobj is the objective number (O for the first objective), and g points to storage for the gradient (when
*needf g =2or 3). For ceval _, ¢ pointsto storage for the values of the constraint bodies, and J points
to columnwise storage for the nonzeros in the Jacobian matrix. Auxiliary arrays

extern fint funcom]|[];
extern real boundc_[], xOcom_[];
extern fint auxcom]|1];

describe the problem dimensions, nonzeros in the Jacobian matrix, left- and right-hand sides of the con-
straints, bounds on the variables, the starting guess, and the number of nonlinear constraints (which come
first). Specificaly,
funcom [ 0]
funcom [ 1]
funcom [ 2]

n_var = number of variables;
n_obj = number of objectives,
n_con = number of constraints;

funcom [ 3] nzc = number of Jacobian nonzeros;

funcom [ 4] densej iszeroin the default case that the Jacobian matrix is stored
sparsely, and is 1 if the full Jacobian matrix is stored (if requested by the - d command-line option to nl c).

funcom [i],5<i <4 + n_obj,islif theobjectiveisto be maximizedand O if it is
to be minimized. If densej = funcom[4] isO, then col starts = funcom_+ n_obj +5
and rownos = funcom_+ n_obj + n_var + 6 are arrays describing the nonzeros in the columns
of the Jacobian matrix: the nonzeros for column i (with i = 1 for the first column) are in J[j] for
colstarts[i—-1] —1<j<colstarts[i] — 2, whichlooks more natural in Fortran notation: the
calling sequences are compatible with the f 2c calling conventions for Fortran.

Bounds are conveyed in boundc__ asfollows:
boundc_[ 0] isthe value passed for oo;
boundc_ + 1isanarray of lower and upper bounds on the variables, and
boundc_ + 2*n_var + 1 isan array of lower and upper bounds on the constraint
bodies. Theinitial guess appearsin x0com_. Boundsof +e arerenderedas1. 7e308 and- 1. 7e308.

The - f command-line option causes nl ¢ to emit Fortran 77 equivalents of f eval _ and ceval _;
they correspond to the Fortran signatures

doubl e precision function feval (nobj, needfg, x, Q)
i nt eger nobj, needfg
doubl e precision x(*), g(*)

and

subrouti ne ceval (needfg, x, ¢, J)
i nteger needfg
doubl e precision x(*), c(*), J(*)

and the auxiliary arrays are rendered as the COMMON blocks

common /funcom nvar, nobj, ncon, nzc, densej, colrow
i nteger nvar, nobj, ncon, nzc, densej, colrow(*)
common / boundc/ bounds

doubl e precision bounds(*)

common /x0com/ xO0

doubl e precision x0(*)

common /auxcom nlc

integer nlc ! number of nonlinear constraints

where the * ' s have the values described above. (Strictly speaking, it would be necessary to make problem-
specific adjustments to the dimensions in other Fortran source that referenced these common blocks, but
most systems follow the rule that the array size seen first wins, in which case it suffices to load the object
for f eval and ceval first.) The first nobj values of the col r ow array have value O or 1 to indicate
whether the corresponding objective isto be minimized (0) or maximized (1).

Command-line option —1 causes nl ¢ to emit variants f eval 0_ and ceval 0_ of feval _ and
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ceval _ that omit gradient computations. They have signatures

real feval O _(fint *nobj, real *x);
void ceval O_(real *x, real *c);

With command-line option - 3, nl ¢ produces al four routines (or, if - f is aso present, equivalent For-
tran).

Writing stub. nl filesfor debugging

You can use AMPL’swr i t e command or its - o command-line flag to get a stub. nl (and any other
needed auxiliary files) for usein debugging. Normally AMPL writes a binary-format stub. nl , which corre-
sponds to acommand-line - obstub argument. Such files are faster to read and write, but dightly less con-
venient for debugging, inthat wr i t e_sol notes the format of stub. nl (binary or ASCIl — by looking at
bi nary_nl ) and writes stub. sol in the same format. To get ASCII format files, either issue an AMPL
wr i t e command of the form

write gstub;

or use the - ogstub command-line option. Your solver should see exactly the same problem, and AMPL
should get back exactly the same solution, whether you use binary or ASCII format stub. nl and stub. sol
files (if your computer has reasonabl e floating-point arithmetic).

With AMPL versions = 19970214, binary stub. nl files written on one machine with binary 1EEE-
arithmetic can be read on any other.

Usewith MATLABD or Octave

It is easy to use AMPL with MATLAB or Octave. This requires the help of a mex file that reads
stub. nl files, writes stub. sol files, and provides function, gradient, and Hessian values. Example file
anpl f unc. c is source for an anpl f unc. mex that looks at its left- and right-hand sides to determine
what it should do and works as follows:

[x,bl,bu,v,cl,cu] = anpl func(’stub’)
or

[x, bl,bu,v,cl,cu,cv] = anmplfunc(’ stub’)
readsst ub. nl and sets

X = primal initial guess,
bl =lower bounds on the primal variables,
bu = upper bounds on the primal variables,
v =dual initial guess (often avector of zeros),
cl = lower bounds on constraint bodies,
cu = upper bounds on constraint bodies, and (when present)
cv = variables complementing constraints:
cv[ i] > 0 means constraint i complementsvariablecv|[ i] —1.

[f,c] = anpl func(x,0)

sets
f =valueof first objective at x and
¢ =valuesof constraint bodies at x.
[g,Jac] = anpl func(x, 1)
sets
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g = gradient of first objective at x and
Jac = Jacobian matrix of constraints at x.

W = anpl func(Y)

sets Wto the Hessian of the Lagrangian (equation (*) in the section ‘‘Evauating Nonlinear Functions'”’
above) for the first objective at the point x at which the objective and constraint bodies were most recently
evaluated. Finaly,

[T = ampl func(mnsg, X, v)
cadlswite_sol (msg, X, v, 0) towritethe stub. sol file, with

nmsg = termination message (astring),
X = optimal primal variables, and
v = optimal dual variables.

It is often convenient to use . mfiles to massage problems to a desired form. To illustrate this, the
exanpl es directory offers the following files (which are simplified forms of files used in joint work with
Michael Overton and Margaret Wright):

* i ni t. m which expects variable pnare to have been assigned a stub (a string value), reads stub. nl ,
and puts the problem into the form
minimize f(x)

st.c(x) =0
and d(x) = 0.

For simplicity, the examplei ni t . massumes that theinitial x yieldsd( x) > 0. A more elaborate version
of i ni t. misrequiredin general.

e eval f. mwhichprovides[ f, c,d] = eval f(x).

» eval g. m which provides[ g, A, B] = eval g(x),whereA = ¢’ (x) andB = d’ (x) arethe
Jacobian matrices of ¢ and d.

» eval w. m which computes the Lagrangian Hessian, W = eval Wy, z) , inwhichy and z are vec-
tors of Lagrange multipliers for the constraints
c(x) =0
and
d(x) = 0,
respectively.
e enewt . m which uses eval f. m eval g. mand eval w. min a simple, non-robust nonlinear

interior-point iteration that is meant mainly to illustrate setting up and solving an extended system involv-
ing the constraint Jacobian and L agrangian Hessian matrices.

» savesol . m which writes file stub. sol to permit reading a computed solution into an AMPL ses-
sion.
* hs100. anp, an AMPL mode for test problem 100 of Hock and Schittkowski [15].
* hs100. nl , derived from hs100. anp. To solvethis problem, start MATLAB and type
pname = ' hs100’;
init
enewt
savesol

Anmpl f unc. ¢ provides dense Jacobian matrices and Lagrangian Hessians; spanf unc. c is avari-
ant that provides sparse Jacobian matrices and Lagrangian Hessians. To see an example of using
spanf unc, change al occurrencesof ‘‘anpl f unc’’ to‘‘spanf unc’’ inthe. mfiles.
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5. Utility Routines and I nterface Conventions

—AMPL Flag

Sometimes it is convenient for a solver to behave differently when invoked by AMPL than when
invoked ‘‘stand-alone’’. This is why AMPL passes a string that starts with - AMPL as the second
command-line argument when it invokes a solver. As asimple example, nl 21. ¢ turns dn2gb’s default
printing off when it sees- AMPL, and it only invokeswr i t e_sol when thisflag is present.

Conveying solver options

Most solvers have knobs (tolerances, switches, algorithmic options, etc.) that one might want to turn.
An AMPL convention is that appending _opt i ons to the name of a solver gives the name of an environ-
ment variable (AMPL option) in which the solver looks for knob settings. Thus a solver named
wonder sol would take knob settings from $wonder sol _opt i ons (the value of environment variable
wonder sol _opti ons). For interactive use, it's usually a good idea for a solver to print its name and
perhaps version number when it starts, and to echo nondefault knob settings to confirm that they’ ve been
seen and accepted. It's also conventional for the msg argument towr i t e_sol to start with the solver's
name and perhaps version number. Since AMPL echoes the wri t e_sol s msg argument when it reads
the solution, a minor problem arises: if there are no nondefault knob settings, an interactive user would see
the solver’s name printed twice in a row. To keep this from happening, you can set need_nl (i.e,
asl - >i . need_nl _) to apositive value; this causeswr i t e_sol to insert that many backspace charac-
ters at the beginning of stub. sol . Usually thisisdone asfollows: initially you execute, e.g.,

need_nl = printf("wondersol 3.2: ");

(Note that pri nt f returns the number of characters it transmits — exactly what we need.) Subsequently,
if you echo any options or otherwise print anything, also set need_nl toO.

Conventionally, $solver_opt i ons may contain keywords and name-value pairs, separated by white
space (spaces, tabs, newlines), with case ignored in names and keywords. For name-value pairs, the usual
practice is to allow white space or an = (equality) sign, optionally surrounded by white space, between the
name and the value. For debugging, it is sometimes convenient to pass keywords and name-value pairs on
the solver's command line, rather than setting $solver_opt i ons appropriately. The usua practice is to
look first in $solver_opt i ons, then at the command-line arguments, so the latter take precedence.

Interface routines get st ub, get opt s, and get st ops facilitate the above conventions. They
have apparent prototypes

char *getstub (char ***pargv, Option_Info *oi);
i nt getopts (char **argv, Option_Info *oi);
char *getstops(char ***pargv, Option_Info *oi);

which you can import by saying
i ncl ude "getstub. h"
rather than (or in addition to)

i ncl ude "asl.h"

TypeOpti on_I nf o isalsodeclared in get st ub. h; it isastructure whose initial components are

char *snane; /* invocation nane of solver */

char *bsnane; /* solver name in startup "banner" */

char *opnane; /* nanme of sol ver_options environment var */
keyword *keywds; /* key words */

i nt n_keywds; /* nunber of key words */

i nt want funcadd; /* whether funcadd will be called */

char *version; /[* for -v and Ver_key ASL() */

char **usage; /* sol ver-specific usage nmessage */

Solver _KW func *kwf; [/* solver-specific keyword function */
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Fil eeq_func *feq; /* for n=filename */
keyword *options; /* command-line options (with -) before stub */
int n_options; /* nunber of options */

Ordinarily a solver declares
static Option_Info Gnfo ={ ... };

and supplies only the first few fields (in place of **. . . ’"), relying on the convenience of static initialization
setting the remaining fields to zero.

Function get st ub looks in * par gv for the stub, possibly preceded by command-line options that

start with **-"’; get st ub provides a small default set of command-line options, which may be augmented
or overridden by names in oi - >opt i ons. Among the default command-line options are ’ - ?’ , which
requests a usage summary that reports oi - >snane as the invocation name of the solver; ' - =", which

summarizes possible keyword values, -v, which reports the versions of the solver (supplied by
oi - >version) and of anpl sol ver.a (which is available in cell ASLdat e_ASL, declared in
asl . h); and, if oi - >want _f uncadd is nonzero, - u, which lists the available imported functions;
imported functions are discussed in their own section above. If it finds a stub, get st ub checks whether
the next argument begins with - AMPL and setsanpl f | ag accordingly; if so, it executes

if (oi->bsnane)
need_nl = printf("%: ", oi->bsnane);

At any rate, it sets * par gv to the command-line argument following the stub and optional - AMPL and
returns the stub. It returns O (null) if it does not find a stub.

Function get opt s looks first in $solver_opt i ons, then at the command line for keywords and
optional values;, oi - >opname provides the name of the solver_opti ons environment variable.
CGet opt s is separate from get st ub because sometimes it is convenient to call j ac0di m do some stor-
age alocation, or make other arrangements before processing the keywords. For cases where no such sepa-
ration is useful, function get st ops callsget st ub and get opt s and returns the stub, complaining and
exiting if noneisfound.

Keywords are conveyed in keywor d structures declared in get st ub. h:
typedef struct keyword keyword;

typedef char *Kwfunc(Option_Info *oi, keyword *kw, char *val ue);

struct keyword {

char *nane;

Kwf unc *Kkf;

voi d *info;

char *desc;

i
Array oi - >keywds describes oi - >n_keywds keywords that may appear in $solver_opt i ons; these
keywor d structures must be sorted (with comparisons as though by st r cnp) on their name fields, which
must be in lower case. Similarly, oi - >opt i ons isan array of oi - >n_opt i ons keywor ds for initial
command-line options, which must also be sorted; often oi - >n_opti ons = 0. The desc field of a
keywor d may be null; it provides a short description of the keyword for use with the - = command-line
option. If desc starts with an = sign, the text in desc up to the first space is appended to the keyword in
the output of the - = command-line option. The kf field provides a function that processes the value (if
any) of the keyword. Itsargumentsare oi (the Qpt i on_I nf o pointer passed to get st ub), apointer kw
to the keywor d structure itself, and a pointer val ue to the possible value for the keyword (stripped of
preceding white space). The kf function may use kw >i nf 0 as it sees fit and should return a pointer to
the first character in val ue that it has not consumed. Ordinarily get opt s echoes any keyword assign-
ments it processes (and sets need_nl = 0), but the kf function can suppress this echoing for a particular
assignment by executing
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oi - >option_echo & “ASL_Q _echot hi s;
or for all subsequent assignments by executing

oi ->option_echo & “ASL_O _echo;

Chame description of value O
%:K_v al known character value in known place E
C _val character value in known place O
(DA vall real (double) valuein asl O
_val known real (double) value in known place g

) val real (double) value: offset from uinfo 0
D _val real (double) value in known place O
a A val intvalueinasl O
0 ko_val int value 0 in known place O
K1 _val int value 1 in known place O

. : O

K val known int value in known place 0

0 U val int value: offset from uinfo 0
a _val int value in known place a
U K val known Long valuein known place O
U val Long vaue: offset from uinfo g
_val Long vauein known place 0
SU val short value: offset from uinfo 0
Ver _val report version O
E\/\S_v al set wantsol in Option_Info g
E Table9: keyword functionsin get st ub. h. H

For convenience, anpl sol ver. a provides a variety of keyword-processing functions. Table 9
summarizes these functions; their prototypes appear in get st ub. h, which also provides a macro,
nkeywds, for computing the n_keywds field of an Opt i on_I| nf o structure from akeywor d declara-
tion of the form

static keyword keywds[] ={ ... };

To alow compilation by a K&R C compiler, it is best to cast the i nf o fields to ( Char *) (which is
(char*) with K&R C and ( voi d*) with ANSI/ISO C and C++). Often it is convenient to use macro
KW defined in get st ub. h, for this. An example appearsin filet nmai n. c, in which the keywds dec-
laration is followed by

static Option_Info G nfo =
{ "tn", "TN', "tn_options", keywds, nkeywds, 1 };

Many other examples appear in various subdirectories of netlib’'s anpl / sol ver s directory. Occasion-
ally it is necessary to make custom keyword-processing functions, as in the example files keywds. c,
rvinsg. ¢c andr vnsg. h, which are discussed further below.

Some solvers, such as m nos and npsol , have their own routines for parsing keyword phrases. For
such a solver you can initialize oi - >kwf with a pointer to a function that invokes it; if get opt's seesa
keyword that does not appear in oi - >keywds, it changes any underscore characters to blanks and passes
the resulting phrase to oi - >kwf . Some solvers, such asm nos, also need away to associate Fortran unit
numbers with file names; oi->feq (if not null) points to a function for doing this. See
anpl / sol ver s/ m nos/ nb5. ¢ for an example that uses al 12 of the Opt i on_|I nf o fields shown
above, including oi - >kwf and oi - >f eq.

Many solversalow out | ev to appear in $solver_opt i ons. Generaly, out| ev = 0 means‘'‘no
printed output’’, and larger integers cause the solver to print more information while they work. Another
common keyword is naxi t, whose value bounds the number of iterations allowed. For stand-alone
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invocations (those without - AMPL), solvers commonly recognize want sol =n, where n isthe sum of

1 towritea. sol file

2 toprint the primal variable values,

4 toprint the dual variable values, and

8  to suppress printing the solution message.

A specia keyword function, W5_val , processes want sol assignments, which are interpreted by
wite_sol. Strings\W5_desc_ASL and Wsu_desc_ASL provide descriptions of want sol for con-
strained and unconstrained solvers, respectively, and appear in many of the sample drivers available from
netlib.

Printing and St der r

To facilitate using AMPL and solvers in some contexts, such as some versions of Microsoft Win-
dows, it is best to route al printing through pri ntf and f pri nt f . Because of this, and because some
systems furnish a sprintf that does not give the return value specified by ANSI/ISO C,
anpl sol ver . a provides suitable versionsof pri ntf,fprintf,snprintf,sprintf,vfprintf,
vsnprintf,andvsprintf that function as specified by ANSI/ISO C, except that they do not recognize
theF,L,j,l1,t,orz quaifiers or the % format item; asin AMPL, they provide some extensions: they
turn % 0g and % 0Ginto the shortest decimal string that rounds to the number being converted, and they
allow negative precisions for %f. These provisions apply to systems with IEEE, VAX, or IBM mainframe
arithmetic, and commentsin sol ver s/ makef i | e explain how to use the system’s pri nt f routines on
other systems.

On systems where it is convenient to redirect st der r , it is best to write error messagesto st derr .
Unfortunately, redirecting st der r is inconvenient on some systems (e.g., Microsoft systems with the
usual Microsoft shells). To promote portability among systems, anpl sol ver . a provides accessto

extern FILE *Stderr,

which can be set, as appropriate, to st der r or st dout . Thus we recommend writing error messages to
St der r rather than st der r, asisillustrated in various examples discussed above.

Formatting the optimal value and other numbers

An AMPL convention is that solvers should report (in the nsg argument towri t e_sol ) the fina
objective value to $obj ecti ve_preci si on significant figures. Interface routines g_f mt op and
obj _pr ec fecilitate this. They have apparent prototypes

int g _fntop(char *buf, double v);
i nt obj _prec(void);

For use as the ‘**’" argument in the format % *g, obj _prec returns $obj ecti ve_preci si on.
Occasionaly it may be convenient to use g_f nt op instead. It stores the appropriate decimal approxima-
tion in buf (using the same conversion routine as AMPL’s printing commands), and returns the number of
characters (excluding the terminating null) it has stored in buf . The end of nl 21. ¢ illustrates both the
use of g_f nt op and of the Spri ntf inanpl sol ver. a. Thelatter is there because, contrary to stan-
dard (ANSI/ISO) C, the spri nt f on some systems does not return the count of characters written to its
first argument. Ordinarily, Sprintf is the sprintf described above in the section ‘‘Printing and
stderr’’, but if you are using the system's spri nt f, then Spri ntf issimilar to spri nt f, but only
understands %, %, % d, and % (and complainsif it sees something else).

Two relativesof g_f nt op that arealsoin anpl sol ver. a are

int g fnt( char *buf, double v);
int g fnmp(char *buf, double v, int prec);

g_f mt p rounds its argument to pr ec significant figures unless pr ec is 0, in which case it stores in buf
the shortest decimal string that rounds to v (provided the machine uses IEEE, VAX, or IBM mainframe
arithmetic: see[10]); g_f nt (buf, v) =g_fnt p(buf, v, 0).
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If they find an exponent field necessary, both g_f nt op and its relatives delimit it with the current
value of

extern char g fmt _E;

(whose declaration appearsin asl . h). Thedefault valueof g fnt _Eis’ e’ .

By default, g_f nt op and its relatives only supply a decimal point if it is followed by a digit, but if
you set

extern int g_fm _decpt;

(declared in asl . h) to a nonzero value, they always supply a decimal point when v is finite. If you set
g_fm _decpt to 2, these routines supply an exponent field for finite v. The nl ¢ program discussed
above uses these features when it writes Fortran.

A ‘*Solver’’ for Gradientsand Hessians: gjh

File exanpl es/ gj h. c is source for a‘‘solver’’ that computes objective and constraint gradients
and the Lagrangian Hessian at the current (primal and dual) point and writes them to afile that can be read
inan AMPL session (via*‘include filename'” or **model filename;’’) to make these first and second deriva-
tive values available as AMPL par ans. Thesol ve_nessage gives the filename as well as a command
for removing thefile after reading it.

More examples

Some examples illustrating the above points appear in the sol ver s/ exanpl es directory. One
such example is t nmai n. ¢, a wrapper for Stephen Nash’'s LMON and LMONBC [18, 17], which solve
unconstrained and simply bounded minimization problems by a truncated Newton algorithm. Since
t nmai n. c callsget st ub, theresulting solver, t n, explains its usage when invoked

tn -7

and summarizes the keywords it recognizes when invoked

tn ' -=

For another example, filesrmg. ¢ and nl 2. ¢ are for solvers called mg and nl 2, which are more
elaborate variants of the g1 and nl 21 considered above (source filesrmgl. ¢ and nl 21. ¢). Both use
auxiliary fileskeywds. ¢, rvnsg. ¢ and r vimeg. h to turn the knobs summarized in [11] and pass a more
elaborate nsg to wite_sol. Ther linkage, in exanpl es/ nmakefil e, aso illustrates adding
imported functions, which we will discuss shortly. Unlike mg1, mmg checks to see if the objective is to
be maximized and internally negatesit if so.

Filemrmh. c isavariant of g. ¢ that supplies the analytic Hessian matrix computed by dut hes to
solver mmh, based on PORT routine dmmhb. For maximum likelihood problems, it is sometimes appropri-
ate to use the Hessian at the solution as an estimate of the variance-covariance matrix; nmh offers the
option of computing standard-deviation estimates for the optimal solution from this variance-covariance
matrix estimate. Specify st ddev=1 in $rmh_opt i ons or on the command line to exercise this option,
or specify st ddev_fi | e=filename to have thisinformation written to afile.

Various subdirectories of
http://anpl.com netlib/anpl/solvers/
provide other examples of driversfor linear and nonlinear solvers. See
http://anpl.com netlib/anpl/sol ver s/ README

for more details.
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Evaluation Test Program

File et . c is source for program et (evaluation tester) for testing various kinds of ASL evaluations.
It can use the various readers to read specified stub. nl files, print and change the current primal and dual
variable values, compute objective function and constraint bodies, their derivatives, Lagrangian Hessians
and Hessian-vector products, and use finite differences to check computed derivatives. The et program
reads commands from the standard input or afile or files given on the command line and produces output in
response to them. After invoking et , type a question mark and carriage return to see a detailed usage sum-
mary, or invoke

et -?
or
et --help

for abrief usage summary.

Multiple problems and multiple threads

It is possible to have several problemsin memory at once, each with its own ASL pointer. To free
the memory associated with a particular ASL pointer asl , execute

ASL free(&asl);

this call sets asl = 0. To alocate problem-specific memory that will be freed by ASL_free, call
MLal | oc rather than Mal | oc. Do not pass such memory tor eal | oc or f r ee.

Variant sol ver s2 of thesol ver s directory, with source
http://anpl.com netlib/ampl/solvers2.tgz

is designed for use with multiple threads — and for large nonlinear problems is often more efficient than
the facilities in the sol ver s directory. For using sol vers or sol ver s2 with multiple threads,
anpl sol ver . a should be compiled with ALLOW OPENVP #def i ned if OPENMP is available, or with
MULTI PLE_THREADS #defi ned along with suitable #defi ne ACQUI RE_DTOA LOCK(n) and
FREE _DTQOA LOCK( n) directivesto provide exclusive access to a few short critical regions (with distinct
values of n). A possible approachisfirstto createari t h. h by saying‘‘nake arith. h’’, thentoadd

#def i ne ALLOW OPENVP
or else
#def i ne MULTI PLE_THREADS

and suitable definitions of ACQUI RE_DTQA LOCK(n) and FREE DTOA LOCK(n) to the end of
arith. h,andfinaly to create anpl sol ver. a by saying ‘‘make’’.
With sol ver s2, each thread can use its own EvalWorkspace pointer ew, acquired by invoking
apparent function
Eval Wor kspace *ew = ewal | oc();

The problem-specific functions, such as obj val () and obj grd() discussed above have equivalent
thread-specific formswith _ew appended to the function name and ew as the first argument, e.g.,

real objval _ew( Eval Wr kspace *ew, real *x);

real objval e_ew Eval Wrkspace *ew, real *x, fint *nerror);
i nt xknown_ew( Eval Wor kspace *ew, real *X)

i nt xknowne_ew( Eval Wr kspace *ew, real *X, fint *nerror)

seesol ver s2/ asl . h for more details.
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