Teaching, Learning & Applying Optimization
AMPL’s Intuitive Modeling Meets the Python Ecosystem

Filipe Brandão, Robert Fourer
{fdabrandao,4er}@ampl.com
AMPL Optimization Inc.
www.ampl.com — +1 773-336-AMPL

INFORMS Sponsored Webinar
13 December 2023
Teaching, Learning, and Applying Optimization: AMPL’s Intuitive Modeling Meets the Python Ecosystem

Optimization is part of any educational program in Operations Research or Analytics, but the curriculum must steadily evolve to remain relevant. Following an introductory example, this presentation takes you on a tour through new developments in the AMPL modeling language and system that have been changing the ways that large-scale optimization is taught and learned:

- **A more natural approach to describing optimization problems.** Students can write common logical conditions, “not-quite-linear” functions, and nonlinear functions the way they think about them, without having to learn complicated and error-prone reformulations.

- **A Python-first alternative to learning AMPL and model-building.** New teaching materials leverage the power of Jupyter notebooks and Google Colab to incorporate modern computing concepts and the vast Python ecosystem into the study of optimization.

- **Faster, easier importing of data and exporting of results.** The AMPL Python interface (amplpy) efficiently connects model sets and parameters to Python’s native data structures and Pandas dataframes. An all-new spreadsheet interface reads and writes .xlsx and .csv files, with added support for two-dimensional spreadsheet tables.

- **Streamlined application development.** Python scripts are quickly turned into illustrative applications using amplpy, Pandas, and the Streamlit app framework.

These features are freely available for teaching, in convenient bundles of AMPL and popular solvers. The AMPL for Courses program provides full-featured, unlimited use by students and staff for the duration of your academic term. Courses can also take advantage of our Community Edition, size-limited demos, and short-term full-featured trials.
AMPL + Python for Teaching & Learning

Part 1: AMPL’s intuitive modeling

- Background & motivation
 - Principles of algebraic model-based optimization
 - Writing optimization models like you think about them
- Writing optimization models more like you think about them
 - MP: an extended interface to solvers
 - Introduction: Multi-product flow with logical conditions
 - Examples from users’ questions and complaints
 - Survey: Logical and “not linear” expressions now supported

- Using AMPL
 - Modeling environments: commands, scripts, APIs, amplpy
 - Data interfaces: Spreadsheets, databases, Python
AMPL + Python for Teaching & Learning

Part 1: AMPL’s intuitive modeling

Part 2: AMPL meets the Python ecosystem

- A Python-first approach
 - Interfacing with Python using amplpy
 - AMPL in Jupyter notebooks
 - AMPL model colaboratory on Google Colab

- Enhancements to the AMPL Python interface
 - Installing AMPL and solvers as Python packages
 - Importing and exporting data naturally from/to Python data structures such as Pandas dataframes
 - Turning Python scripts into prescriptive analytics applications in minutes with Pandas, amplpy, and Streamlit

info@ampl.com
ampl.com — ampl.com/start-free-now/ — colab.ampl.com
Optimization in OR & Analytics

Given a recurring need to make many interrelated decisions
- Purchases, production and shipment amounts, assignments, . . .

Consistently make highly desirable choices

By applying ideas from mathematical optimization
- Ways of describing problems (models)
- Ways of solving problems (algorithms)
Model-Based Optimization

Steps

- **model**: Formulate a general description of a class of optimization problems
- **data**: Get values that define a scenario to be solved; combine them with the model to generate a problem instance
- **solver**: Apply algorithmic software to compute highly desirable decisions for the problem instance
- **results**: Analyze or deploy the solution

Independence

- **model** is independent of **data**
- **model** & **data** are independent of **solver**
Algebraic Model-Based Optimization

Mathematical model formulation

- **sets & parameters**: Description of the data required
- **decision variables**: Solution values to be determined
- **objective**: Function of the variables that one would like to minimize or maximize
- **constraints**: Conditions that the variables must satisfy to meet the requirements of the problem

Model-based optimization software

- **user’s side**: Work with models and data to develop & implement optimization applications
- **solver’s side**: Work with efficient data structures to apply mathematical optimization algorithms
AMPL: Write Optimization Models Like You Think About Them

Idea
- Design a computer modeling language that’s a lot like mathematical model notation
- Build a system for working with models, data and solvers

Example
- Multi-Product Network Flow
Example:
Multi-Product Network Flow

Motivation
- Ship products efficiently to meet demands

Context
- a transportation network
 - nodes \(\bigcirc\) representing cities
 - arcs \(\rightarrow\) representing roads
- supplies \(\longleftarrow\) at nodes
- demands \(\longleftarrow\) at nodes
- capacities on arcs
- shipping costs on arcs
Example: Multi-Product Network Flow

Decide

- how much of each product to ship on each arc

So that

- shipping costs are kept low
- shipments on each arc respect capacity of the arc
- supplies, demands, and shipments are in balance at each node
Multi-Product Flow

Formulation (data)

Given

- \(P \) set of products
- \(N \) set of network nodes
- \(A \subseteq N \times N \) set of arcs connecting nodes

and

- \(u_{ij} \) capacity of arc from \(i \) to \(j \), for each \((i, j) \in A\)
- \(s_{pj} \) net supply of product \(p \) at node \(j \), for each \(p \in P, j \in N \)
 - \(> 0 \) implies supply, \(< 0 \) implies demand
- \(c_{p_{ij}} \) cost per unit to ship product \(p \) on arc \((i, j)\),
 - for each \(p \in P, (i, j) \in A\)
Multi-Product Flow

Formulation (variables, objective, constraints)

Determine

\[X_{pij} \] amount of commodity \(p \) to be shipped on arc \((i, j)\), for each \(p \in P, (i, j) \in A \)

to minimize

\[\sum_{p \in P} \sum_{(i, j) \in A} c_{pij} X_{pij} \]

total cost of shipments

Subject to

\[\sum_{p \in P} X_{pij} \leq u_{ij}, \text{ for all } (i, j) \in A \]

total shipments must not exceed capacity

\[\sum_{(i, j) \in A} X_{pij} + s_{pj} = \sum_{(j, i) \in A} X_{pji}, \text{ for all } p \in P, j \in N \]

shipments in plus net supply must equal shipments out
Multi-Product Flow

Model in AMPL

Symbolic data, variables, objective

```
set PRODUCTS;
set NODES;
param net_supply {PRODUCTS,NODES};

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

param var_cost {PRODUCTS,ARCS} >= 0;
var Flow {PRODUCTS,ARCS} >= 0;

minimize TotalCost:
    sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j];

subject to Capacity {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
    sum {(i,j) in ARCS} Flow[p,i,j] + net_supply[p,j] =
    sum {(j,i) in ARCS} Flow[p,j,i];
```

\[
\sum_{(i,j) \in A} X_{pij} + s_{pj} = \sum_{(j,i) \in A} X_{pji}, \text{ for all } p \in P, j \in N
\]
Writing Optimization Models

More Like You Think About Them

Motivation

- AMPL has logical and “not linear” expressions, but previous solver interfaces had very limited support for these
- Simple example: Multi-product flow with logical conditions
- Real examples and user complaints

Realization in AMPL

- An all-new AMPL-solver interface library supports more natural & direct ways of expressing models
- Allows many more expression types to be used freely in models
- Automatically converts to the forms required by each solver
 * using native solver extensions where available
 * automatically linearizing where necessary
Example with conditions:

Multi-Product Network Flow

Decide also

- whether to use each arc

So that

- variable costs plus fixed costs for shipping are kept low
- shipments are not too small
- not too many arcs are used
Formulating

Positive Shipments Incur Fixed Costs

How you think about it

```plaintext
param fix_cost {ARCS} >= 0;
minimize TotalCost:
  sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] +
  sum {(i,j) in ARCS}
    if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```

How it would be linearized

```plaintext
param fix_cost {ARCS} >= 0;
var Use {ARCS} binary;
minimize TotalCost:
  sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] +
  sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];
```
Formulating

Shipments Can’t Be Too Small

How you think about it

\[
\begin{align*}
\text{subject to } & \text{Shipment Limits } \{ (i,j) \text{ in ARCS} \}: \\
& \text{sum } \{ p \text{ in PRODUCTS} \} \ Flow[p,i,j] = 0 \text{ or} \\
& \text{min}_\text{ship} \leq \text{sum } \{ p \text{ in PRODUCTS} \} \ Flow[p,i,j] \leq \text{capacity}[i,j];
\end{align*}
\]

How it would be linearized

\[
\begin{align*}
\text{subject to } & \text{Min Shipment } \{ (i,j) \text{ in ARCS} \}: \\
& \text{sum } \{ p \text{ in PRODUCTS} \} \ Flow[p,i,j] \geq \text{min}_\text{ship} \ast \text{Use}[i,j];
\end{align*}
\]

\[
\begin{align*}
\text{subject to } & \text{Capacity } \{ (i,j) \text{ in ARCS} \}: \\
& \text{sum } \{ p \text{ in PRODUCTS} \} \ Flow[p,i,j] \leq \text{capacity}[i,j] \ast \text{Use}[i,j];
\end{align*}
\]
Formulating

Can’t Use Too Many Arcs

How you think about it

subject to Limit_Used:
 atmost max_arcs {(i,j) in ARCS}
 (sum {p in PRODUCTS} Flow[p,i,j] > 0);

How it would be linearized

subject to Max_Used:
 sum {(i,j) in ARCS} Use[i,j] <= max_arcs;
Formulating
Linearization is Seldom That Simple!

subject to IfConstr {i in 1..card(veh)-1, j in i+1..card(veh)}:
 veh_ind[i] = veh_ind[j] and theory_time[i] <= theory_time[j]:
 in_lane_veh[i] = in_lane_veh[j]
 ==> in_in_time[j] >= in_in_time[i] + l_veh/V;

minimize total_fuelcost:
 sum{(i,j) in A} sum{k in V} X[i,j,k] * ((if H[i,k] <= 300 then dMor[i,j] else
 if H[i,k] <= 660 then dAft[i,j] else
 if H[i,k] <= 901 then dEve[i,j]) * 5 +
 (if H[i,k] <= 300 then tMor[i,j] else
 if H[i,k] <= 660 then tAft[i,j] else
 if H[i,k] <= 901 then tEve[i,j]) * 0.0504);

subject to NoPersonIsolated
 {l in TYPES['loc'], r in TYPES['rank'], j in 1..numGrps}:
 sum {i in LOCRANK[l,r]} Assign[i,j] = 0 or
 sum {i in LOCRANK[l,r]} Assign[i,j] +
 sum {a in ADJACENT[r]} sum {i in LOCRANK[l,a]} Assign[i,j] >= 2;
Motivation

Typical MIP User Complaint

Thank you so much for replying.
Let me show my "if-then" constraint in a more clear way as follows:

```plaintext
set veh := {1..16 by 1};

param veh_ind {veh};
param theory_time {veh};
param UP := 400000;

var in_lane_veh {veh} integer >=1, <=2;
var in_in_time {veh} >=0, <=UP;

Note that "in_lane_veh {veh}" are integer variables which equal 1 or 2,
and "in_in_time {veh}" are continuous variables.

subject to IfConstr {i in 1..card(veh)-1, j in i+1..card(veh):
  veh_ind[i] = veh_ind[j] and theory_time[i] <= theory_time[j]}:

When I run my program, there appears the following statement:

CPLEX 20.1.0.0: logical constraint _slogcon[1] is not an indicator constraint.
```
Motivation

Typical Response

To reformulate this model in a way that your MIP solver would accept, you could define some more binary variables,

```ampl
var in_lane_same {veh,veh} binary;
```

with the idea that `in_lane_same[i,j]` should be 1 if and only if `in_lane_veh[i] = in_lane_veh[j]`. Then the desired relation could be written as two constraints:

- `in_lane_veh[i] = in_lane_veh[j] ==> in_lane_same[i,j] = 1`
- `in_lane_same[i,j] = 1 ==> in_in_time[j] >= in_in_time[i] + l_veh/V;`

The second one is an indicator constraint, but you would just need to replace the first one by equivalent linear constraints.

Given that `in_lane_veh` can only be either 1 or 2, those constraints could be

```ampl
in_lane_same[i,j] >= 3 - in_lane_veh[i] - in_lane_veh[j]
in_lane_same[i,j] >= in_lane_veh[i] + in_lane_veh[j] - 3
```
Motivation

Typical Nonlinear User Complaint

So I tried out gurobi with the two commands I mentioned in my previous email, and I receive the message

Gurobi 9.0.2: Gurobi can't handle nonquadratic nonlinear constraints.

I went over the constraints, and it seems to me the only constraint that is nonquadratic nonlinear is

subject to A2 {t in 2..card(POS), i in PATIENTS}:
 sum {a in DONORS, b in PATIENTS, c in PATIENTS: ceil(a/2) = c}
 x[b,t] * x[c,t-1] * y[a,b] = 2 * x[i,t];

where x and y are binary variables.

Is this now sufficient for gurobi to solve if I only linearize one of the term on the LHS of this constraint (e.g. x[b, t]), while keeping the other two terms the same?
Typical Response

You are right, \textit{A2 has a cubic term $x[b,t] \times x[c,t-1] \times y[a,b]$ that you will have to transform before you can get Gurobi to accept it.}

You can transform to quadratic by picking two of the three variables and replacing their product by a new variable. For example, if you define a new binary variable $z[b,c,t]$ to replace $x[b,t] \times x[c,t-1]$, you can write

```plaintext
var z {t in 2..card(POS), b in PATIENTS, c in PATIENTS} binary;
subject to zDefn {t in 2..card(POS), b in PATIENTS, c in PATIENTS}:
  z[b,c,t] = x[b,t] \times x[c,t-1];
```

Then write your constraint A2 as $z[b,c,t] \times y[a,b] = 2 \times x[i,t]$. There are two other possibilities, corresponding to the two other ways you can pick two of the three variables.

You can also linearize the cubic term directly. In that case, you would define a new binary variable $z[a,b,c,t]$ to replace $x[b,t] \times x[c,t-1] \times y[a,b]$, and you would add the following four constraints:

```plaintext
z[a,b,c,t] \geq x[b,t] + x[c,t-1] + y[a,b] - 2
z[a,b,c,t] \leq x[b,t]
z[a,b,c,t] \leq x[c,t-1]
z[a,b,c,t] \leq y[a,b]
```
Motivation

Typical gurobipy User Complaint

```
Hi
I'm trying to solve a production problem. When the x change, it will cost a different additional cost. I need to compare the \( |x[i] - x[i-1]| \) with 0, how can I solve this.

production_change_cost = gp.quicksum(3 * gp.max_(0,(x[i] - x[i-1] for i in periods)) \n+ 0.8 * gp.max_(0,(x[i-1] - x[i] for i in periods)))
```
Motivation

Typical gurobipy Response

General constraints are meant to be used to define single constraints. It is not possible to use these constructs in other expressions, i.e., it is not possible to use gp.max_ in a more complex constraint other than $y = gp.max_$. Moreover, as described in the documentation of the `addGenConstrMax` method, `gp.max_` only accepts single variables as inputs. Thus, it is not possible to pass expressions $x[i] - x[i-1]$. To achieve what you want, you have to introduce additional auxiliary variables $aux[i] = x[i] - x[i-1]$ and additional equality constraints $z1 = gp.max_ \text{ and } z2 = gp.max_$.

```python
aux1 = mod.addVars(periods, lb=-GRB.INFINITY, name="auxvar1")
aux2 = mod.addVars(periods, lb=-GRB.INFINITY, name="auxvar2")
# are you sure that i-1 does not lead to a wrong key access?
m.addConstrs((aux1[i] = x[i]-x[i-1] for i in periods), name = "auxconstr1")
m.addConstrs((aux2[i] = x[i-1]-x[i] for i in periods), name = "auxconstr2")
z1 = m.addVar(lb = -GRB.INFINITY, name = "z1")
z2 = m.addVar(lb = -GRB.INFINITY, name = "z2")
m.addConstr(z1 = gp.max(0,aux1),name = "maxconstr1")
m.addConstr(z2 = gp.max(0,aux2),name = "maxconstr2")
[...]
production_change_cost = gp.quicksum(3 * z1 + 0.8 * z2)
```

\[
3 \times \max(0, \{i \text{ in periods}\} x[i] - x[i-1]) + \\
0.8 \times \max(0, \{i \text{ in periods}\} x[i-1] - x[i])
\]
Formulating

Supported Extensions and Solvers

Operators and functions

- Conditional: if-then-else; ==>, <=, <=>
- Logical: or, and, not; exists, forall
- Piecewise linear: abs; min, max; <<breakpoints; slopes>>
- Counting: count; atmost, atleast, exactly; numberof
- Comparison: >, <, !=; alldiff
- Complementarity: complements
- Nonlinear: *, /, ^; exp, log; sin, cos, tan; sinh, cosh, tanh
- Set membership: in

Expressions and constraints

- High-order polynomials
- Second-order and exponential cones
Formulating

Extensions

Conditional operators

- if constraint then var-exp1 [else var-exp2]
- constraint1 ==> constraint2 [else constraint3]
- constraint1 <= constraint2
- constraint1 <=> constraint2

```plaintext
minimize TotalCost:
    sum {j in JOBS, k in MACHINES}
        if MachineForJob[j] = k then cost[j,k];

subject to Multi_Min_Ship {i in ORIG, j in DEST}:
    sum {p in PROD} Trans[i,j,p] >= 1 ==> 
        minload <= sum {p in PROD} Trans[i,j,p] <= limit[i,j];
```
Formulating Extensions

Logical operators

- \(constraint1 \text{ or } constraint2 \)
- \(constraint1 \text{ and } constraint2 \)
- \(\text{not } constraint2 \)
- \(\text{exists } \{indexing\} \text{ constraint-expr} \)
- \(\text{forall } \{indexing\} \text{ constraint-expr} \)

```
subject to NoMachineConflicts
    \{m1 in 1..nMach, m2 in m1+1..nMach, j in 1..nJobs\}:
    Start[m1,j] + duration[m1,j] \leq Start[m2,j] \text{ or}
    Start[m2,j] + duration[m2,j] \leq Start[m1,j];
```

```
subj to HostNever \{j in BOATS\}:
    isH[j] = 1 \implies \text{forall } \{t in TIMES\} H[j,t] = j;
```
Formulating

Extensions

Piecewise-linear functions and operators

- `<< breakpoint-list ; slope-list >> variable`
- `<< breakpoint-list ; slope-list >> (variable , zero-point)`
- `abs(var-expr)`
 - `min(var-expr-list)`
 - `max(var-expr-list)`

```plaintext
maximize WeightSum:
    sum {t in TRAJ} max {n in NODE} weight[t,n] * Use[n];
```

```plaintext
minimize Total_Cost:
    sum {i in ORIG, j in DEST}
        <<{p in 1..npiece[i,j]-1} limit[i,j,p];
        {p in 1..npiece[i,j]} rate[i,j,p]>> Trans[i,j];
```
Formulating

Extensions

Piecewise-linear functions and operators

- \(<< \text{breakpoint-list}; \text{slope-list} >> \text{variable}
 \(<< \text{breakpoint-list}; \text{slope-list} >> (\text{variable}, \text{zero-point})

- \text{abs(\text{var-expr})}
 \text{min(\text{var-expr-list}) = \text{min\{indexing\} \text{var-expr}}
 \text{max(\text{var-expr-list}) = \text{max\{indexing\} \text{var-expr}}

```
x = mod.addVars(periods)
production_change_cost = \
    .quicksum(3.0 * .max(0, (x[i] - x[i-1] for i in periods)) \n        + 0.8 * .max(0, (x[i-1] - x[i] for i in periods)))
```

```
var x {0..T} >= 0;
var production_change_cost =
    3.0 * max(0, {i in 1..T} x[i] - x[i-1]) +
    0.8 * max(0, {i in 1..T} x[i-1] - x[i]);
```
Formulating

Extensions

Counting operators

- `count {indexing} (constraint-expr)`
- atmost $k \{indexing\} (constraint-expr)$
 - atleast $k \{indexing\} (constraint-expr)$
 - exactly $k \{indexing\} (constraint-expr)$
- `numberof k in (var-expr-list)`

subject to Limit_Used:
```plaintext
count {(i,j) in ARCS}
  (sum {p in PRODUCTS} Flow[p,i,j] > 0) <= max_arcs;
```

subj to CapacityOfMachine {k in MACHINES}:
```plaintext
numberof k in ({j in JOBS} MachineForJob[j]) <= cap[k];
```
Formulating

Extensions

Comparison operators

- \(\text{var-expr1} \neq \text{var-expr2} \)
 \(\text{var-expr1} > \text{var-expr2} \)
 \(\text{var-expr1} < \text{var-expr2} \)

- \text{alldiff(var-expr-list)}

 \text{alldiff \{indexing\} var-expr}

```
subj to Different_Colors \{(c1,c2) in Neighbors\}:
  Color[c1] \neq Color[c2];
```

```
subject to OnePersonPerPosition:
  \text{alldiff \{i in 1..nPeople\} Pos[i];}
```
Formulating Extensions

Complementarity operators

- \(\text{single-inequality}_1 \text{ complements } \text{single-inequality}_2\)
- \(\text{double-inequality} \text{ complements } \text{var-expr}\)
 \(\text{var-expr} \text{ complements } \text{double-inequality}\)

```ampl
subject to Pri_Compl {i in PROD}:
    max(500.0, Price[i]) >= 0 complements
    sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
    level_min[j] <= Level[j] <= level_max[j] complements
    cost[j] - sum {i in PROD} Price[i] * io[i,j];
```
Formulating

Extensions

Nonlinear expressions and operators

- $\text{var-expr1} \times \text{var-expr2}$
- $\text{var-expr1} / \text{var-expr2}$
- $\text{var-expr} \sim k$
- $\text{exp} (\text{var-expr})$ $\text{log} (\text{var-expr})$
- $\text{sin} (\text{var-expr})$ $\text{cos} (\text{var-expr})$ $\text{tan} (\text{var-expr})$

subj to Eq \{i in J\} :
\[
x[i+\text{neq}] / (b[i+\text{neq}] \times \text{sum \{j in J\} x[j+\text{neq}] / b[j+\text{neq}]}) = c[i] \times x[i] / (40 \times b[i] \times \text{sum \{j in J\} x[j] / b[j]});
\]

minimize Chichinadze:
\[
x[1]^2 - 12 \times x[1] + 11 + 10 \times \cos (\pi \times x[1] / 2) + 8 \times \sin (\pi \times 5 \times x[1]) - \exp (- (x[2] - .5)^2 / 2) / \sqrt{5};
\]
Formulating

Extensions

Discrete variable domains

- var varname {indexing} in set-expr;

```plaintext
var Buy {f in FOODS} in {0,10,30,45,55};
```

```plaintext
var Ship {(i,j) in ARCS}
    in {0} union interval[min_ship,capacity[i,j]];
```

```plaintext
var Work {j in SCHEDS}
    in {0} union integer[least,max {i in SHIFT_LIST[j]} req[i]];
```
General use with MIP solvers

Read objectives & constraints from AMPL
- Store initially as linear coefficients + expression graphs
- Analyze trees to determine if linearizable

Generate linearizations
- Walk trees to build linearizations (flatten)
- Define auxiliary variables (usually zero-one)
- Generate equivalent constraints

Solve
- Send to solver through its API
- Convert optimal solution back to the original AMPL variables
- Write solution to AMPL
Special Alternatives in Gurobi

Apply our linearization (count)
- Use Gurobi’s linear API

Have Gurobi linearize (or, abs)
- Simplify and “flatten” the expression tree
- Use Gurobi’s “general constraint” API
 * addGenConstrOr (resbinvar, [binvars])
 tells Gurobi: resbinvar = 1 iff at least one item in [binvars] = 1
 * addGenConstrAbs (resvar, argvar)
 tells Gurobi: resvar = |argvar|

Send univariate nonlinearities to Gurobi (log)
- Replace by piecewise-linear approximations or
 solve using generalized branching search (new in version 11!)
- Use Gurobi’s “function constraint” API
 * addGenConstrLog (xvar, yvar)
 tells Gurobi: yvar = [piecewise-linear approximation of] log(xvar)
Formulating

Implementation Issues

Is an expression repeated?
- Detect common subexpressions

```plaintext
subject to Shipment_Limits {(i,j) in ARCS}:
sum {p in PRODUCTS} Flow[p,i,j] = 0 or
min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];
```

Is there an easy reformulation?
- Yes for min-max, no for max-max

```plaintext
minimize Worst_Rank:
    max {i in PEOPLE} sum {j in PROJECTS} rank[i,j] * Assign[i,j];
```

```plaintext
maximize Max_Value:
    sum {t in T} max {n in N} weight[t,n] * Value[n];
```
Formulating
Implementation Issues (cont’d)

Does an exact linearization exist?

- Yes if constraint set is “closed”
- No if constraint set is “open”

```plaintext
var Flow {ARCS} >= 0;
var Use {ARCS} binary;

subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 => Flow[i,j] = 0;

subj to Use_Definition {(i,j) in ARCS}:
    Flow[i,j] = 0 => Use[i,j] = 0 else Use[i,j] = 1;
```
Formulating

Implementation Issues (cont’d)

Does an exact linearization exist?

- Yes if constraint set is “closed”
- No if constraint set is “open”

```plaintext
var Flow {ARCS} >= 0;
var Use {ARCS} binary;

subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] >= 0;
```

```plaintext
subj to Use_Definition {(i,j) in ARCS}:
    Use[i,j] = 0 ==> Flow[i,j] = 0 else Flow[i,j] > 0;
```
Formulating

Solver Efficiency Issues

Bounds on subexpressions

- Define auxiliary variables that can be bounded

\[
\text{var } x \{1..2\} \leq 2, \geq -2;
\]

\[
\text{minimize Goldstein-Price:}
(1 + (x[1] + x[2] + 1)^2
 \times (30 + (2x[1] - 3x[2])^2)
\]

\[
\text{var } t1 \geq 0, \leq 25; \text{ subj to t1def: } t1 = (x[1] + x[2] + 1)^2;
\]

\[
\text{var } t2 \geq 0, \leq 100; \text{ subj to t2def: } t2 = (2x[1] - 3x[2])^2;
\]

\[
\text{minimize Goldstein-Price:}
(1 + t1
 \times (30 + t2)
\]
Formulating

Solver Efficiency Issues (cont’d)

Simplification of logic

* Replace an iterated `exists` with a `sum`

```plaintext
minimize TotalCost: ...
    sum {(i,j) in ARCS} 
      if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```

```plaintext
minimize TotalCost: ...
    sum {(i,j) in ARCS} 
      if sum {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```
Formulating

Solver Efficiency Issues (cont’d)

Creation of common subexpressions

❖ Substitute a stronger bound from a constraint

```plaintext
subject to Shipment_Limits {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] = 0 or
    min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if sum {p in PRODUCTS} Flow[p,i,j] > 0
            then fix_cost[i,j];
```

```plaintext
minimize TotalCost: ...
    sum {(i,j) in ARCS}
        if sum {p in PRODUCTS} Flow[p,i,j] >= min_ship
            then fix_cost[i,j];
```

... consider automating all these improvements
Formulating

Solver Tolerance Issues

Solver tolerances are applied after automatic conversion

- Anomalous results are possible in rare circumstances

```AMPL
var x {1..2} >=0, <=100;

maximize Total:
   then x[1] + x[2] else 0;

subj to con: x[1] = x[2];

ampl: solve;
Gurobi 10.0.2: optimal solution; objective 9.9999998

ampl: display x;
1  4.9999999
2  4.9999999

ampl: display Total;
Total = 0
```
Formulating

Solver Tolerance Issues (cont’d)

Warning added

❖ (but needs work)

var x {1..2} >=0, <=100;

maximize Total:
 then x[1] + x[2] else 0;

subj to con: x[1] = x[2];

ampl: solve;
Gurobi 10.0.2: optimal solution; objective 9.9999998

---------- WARNINGS ----------
WARNING: "Solution Check (Idealistic)"
 [sol:chk:feastol=1e-06, :feastolrel=1e-06, :inttol=1e-05,
 :round='', :prec='']
Objective value violations:
 - 1 objective value(s) violated,
 up to 1E+01 (abs)
Idealistic check is an indicator only, see documentation.
AMPL Modeling Environments

Native

- Interactive command line
- Model, data, and script ("run") files
AMPL Modeling Environments

Native

IDEs

- AMPL IDE, Vscode
AMPL Modeling Environments

Native

IDEs

APIs

- C++, C#, Java, MATLAB, *Python*, R

amplpy

- Jupyter notebooks
- AMPL model colaboratory . . .
AMPL Data Interfaces

Native

- Plain text format for AMPL sets & parameters

Spreadsheets

- Excel (.xlsx) format
- Comma-separated value (.csv) format

Databases

- Relational databases via ODBC interface

Python

- Lists, sets, tuples, dictionaries
- Pandas DataFrames . . .
Direct Spreadsheet Interface

"1D" spreadsheet ranges

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>FROM</th>
<th>TO</th>
<th>capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bands</td>
<td>Detroit</td>
<td>Boston</td>
<td>100</td>
</tr>
<tr>
<td>Coils</td>
<td>Detroit</td>
<td>New York</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Detroit</td>
<td>Seattle</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Denver</td>
<td>Boston</td>
<td>120</td>
</tr>
<tr>
<td>Nodes</td>
<td>Denver</td>
<td>New York</td>
<td>120</td>
</tr>
<tr>
<td>Detroit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denver</td>
<td>Seattle</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>ITEMS</td>
<td>NODES</td>
<td>inflow</td>
</tr>
<tr>
<td>Seattle</td>
<td>Bands</td>
<td>Detroit</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Bands</td>
<td>Denver</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Bands</td>
<td>Boston</td>
<td>-50</td>
</tr>
<tr>
<td></td>
<td>Bands</td>
<td>New York</td>
<td>-50</td>
</tr>
<tr>
<td></td>
<td>Bands</td>
<td>Seattle</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>Coils</td>
<td>Detroit</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Coils</td>
<td>Denver</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Coils</td>
<td>Boston</td>
<td>-40</td>
</tr>
<tr>
<td></td>
<td>Coils</td>
<td>New York</td>
<td>-30</td>
</tr>
<tr>
<td></td>
<td>Coils</td>
<td>Seattle</td>
<td>-30</td>
</tr>
</tbody>
</table>

Ready

Average: 110 Count: 21 Sum: 660
Spreadsheet interface

Data Handling

Script (input)

```ampl
model x-netflow3.mod;

table Products IN "amplxl" "netflow2.xlsx" "Items":
    PRODUCTS <- [ITEMS];

table Nodes IN "amplxl" "netflow2.xlsx":
    NODES <- [NODES];

table Capacity IN "amplxl" "netflow2.xlsx":
    ARCS <- [FROM,TO], capacity;

table Inflow IN "amplxl" "netflow2.xlsx":
    [ITEMS,NODES], inflow;

table Cost IN "amplxl" "netflow2.xlsx":
    [ITEMS,FROM,TO], cost;

load amplxl.dll;

read table Products; read table Nodes;
read table Capacity; read table Inflow; read table Cost;
```
Spreadsheet interface

Data Handling

Script (input)

```ampl
model x-netflow3.mod;

table Products IN "amplxl" "netflow2.xlsx" "Items":
  PRODUCTS <- [ITEMS];

table Nodes IN "amplxl" "netflow2.xlsx":
  NODES <- [NODES];

table Capacity IN "amplxl" "netflow2.xlsx" "2D":
  ARCS <- [FROM,TO], capacity;

table Inflow IN "amplxl" "netflow2.xlsx" "2D":
  [ITEMS,NODES], inflow;

table Cost IN "amplxl" "netflow2.xlsx" "2D":
  [ITEMS,FROM,TO], cost;

load amplxl.dll;

read table Products; read table Nodes;
read table Capacity; read table Inflow; read table Cost;
```
Direct Spreadsheet Interface

“2D” spreadsheet ranges

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>capacity</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bands</td>
<td>FROM</td>
<td>Boston</td>
</tr>
<tr>
<td></td>
<td>Detroit</td>
<td>100</td>
</tr>
<tr>
<td>Coils</td>
<td>Detroit</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Denver</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cost</th>
<th>ITEMS</th>
<th>FROM</th>
<th>TO</th>
<th>Bands</th>
<th>Coils</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FROM</td>
<td>Boston</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detroit</td>
<td>New York</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detroit</td>
<td>Seattle</td>
<td>60</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denver</td>
<td>Boston</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denver</td>
<td>New York</td>
<td>40</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NODES</th>
<th>inflow</th>
<th>ITEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detroit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denver</td>
<td>NODES</td>
<td>Bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boston</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New York</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seattle</td>
</tr>
</tbody>
</table>
Data Handling

Script (output)

```AMPL
option solver gurobi;
solve;

table Results OUT "amplxl" "netflow1.xlsx" "2D":
    [ITEMS,FROM,TO], Flow;

table Summary OUT "amplxl" "netflow1.xlsx":
    {(i,j) in ARCS} -> [FROM,TO],
    sum {p in PRODUCTS} Flow[p,i,j] ~ TotFlow,
    sum {p in PRODUCTS} Flow[p,i,j] / capacity[i,j] ~ "%Used";

write table Results;
write table Summary;
```
Data Results

“2D” spreadsheet range

<table>
<thead>
<tr>
<th>shipments</th>
<th>ITEMS</th>
<th>FROM</th>
<th>TO</th>
<th>From</th>
<th>To</th>
<th>TotFlow</th>
<th>%Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detroit</td>
<td>Boston</td>
<td>Bands</td>
<td>50</td>
<td>30</td>
<td>Detroit</td>
<td>Boston</td>
<td>80</td>
</tr>
<tr>
<td>Detroit</td>
<td>New York</td>
<td>0</td>
<td>30</td>
<td>Detroit</td>
<td>New York</td>
<td>30</td>
<td>37.5%</td>
</tr>
<tr>
<td>Detroit</td>
<td>Seattle</td>
<td>0</td>
<td>0</td>
<td>Detroit</td>
<td>Seattle</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Denver</td>
<td>Boston</td>
<td>0</td>
<td>10</td>
<td>Denver</td>
<td>Boston</td>
<td>10</td>
<td>8.3%</td>
</tr>
<tr>
<td>Denver</td>
<td>New York</td>
<td>50</td>
<td>0</td>
<td>Denver</td>
<td>New York</td>
<td>50</td>
<td>41.7%</td>
</tr>
<tr>
<td>Denver</td>
<td>Seattle</td>
<td>10</td>
<td>30</td>
<td>Denver</td>
<td>Seattle</td>
<td>40</td>
<td>33.3%</td>
</tr>
</tbody>
</table>
AMPL Python API *(in Google Colab)*

https://colab.research.google.com/drive/1RteMlfHd2N9hdV4q7luEf5X9ElgxeYR0?usp=sharing
Colaboratory

AMPL Model in Notebook Cell

```AMPL
%%ampl_eval
set PRODUCTS;
set NODES;

set ARCS within {NODES,NODES};
param capacity {ARCS} >= 0;

subject to Shipment_Limits {i,j in ARCS}:
  sum {p in PRODUCTS} Flow[p,i,j] = 0 or
  min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];

subject to Conservation {p in PRODUCTS, j in NODES}:
  sum {(i,j) in ARCS} Flow[p,i,j] + inflow[p,j] =
  sum {(j,i) in ARCS} Flow[p,j,i];

subject to Limit_Used:
  atmost max_arcs {(i,j) in ARCS} (sum {p in PRODUCTS} Flow[p,i,j] > 0);
```
Colaboratory

Python Data for the Model

Data for an instance of the model

In a large-scale application, this would be read or derived from data sources external to the notebook.

```python
import pandas as pd

PRODUCTS = ["Bands", "Coils"]

capacity = pd.DataFrame(
    [
        [100, 80, 120],
        [120, 120, 120],
    ],
    columns=["Boston", "New York", "Seattle"],
    index=["Detroit", "Denver"],
).stack().to_frame(name="capacity")

inflow = pd.DataFrame(
```
Colaboratory

Passing the Data to AMPL

```python
# product and node sets
ampl.set("PRODUCTS") = PRODUCTS
ampl.set("NODES") = NODES

# arc set and capacity
ampl.set_data(capacity, "ARCS")

# inflow
ampl.param["inflow"] = inflow

# min_ship, max_arcs
ampl.param["min_ship"] = min_ship
ampl.param["max_arcs"] = max_arcs

# var_cost, fix_cost
ampl.param["var_cost"] = var_cost
ampl.eval("data; param fix_cost default 75;")
```
Colaboratory

Invoking the Solver

```python
# solve
ampl.option["solver"] = "gurobi"
ampl.solve()

# retrieve solution
ampl.option["display_1col"] = "0"
ampl.eval("display Flow;")
ampl.var["Flow"].to_pandas()
```

Gurobi 10.0.3: optimal solution; objective 5900
10 simplex iterations
1 branching nodes

Flow [Rands,*,*] (tr):
 Denver Detroit :=
 Boston 0 50
 'New York' 50 0
 Seattle 10 0

[Cols,*,*] (tr):
 Denver Detroit :=
 Boston 0 40
 'New York' 10 20
 Seattle 30 0