Advances in Model-Based Optimization with AMPL

Filipe Brandão

filipe@ampl.com

AMPL Optimization Inc. www.ampl.com - +1 773-336-AMPL

INFORMS 2023, Phoenix, Arizona – October 15-18, 2023, CC-North 231B, Session TC54 - Optimization Modeling Software II, Tuesday, October 17, 12:45 - 1:00 pm

Formulating Models More Like You Think About Them

Describe an optimization problem

- $\circ~$ In a form you find natural or convenient
- Using readily recognized expressions

Send it to a solver

- \circ In a form the solver will accept
- $\circ~$ Relying on the modeling software to translate

Get back a result

 $\circ~$ In the form you originally used

Typical User Complaint

_ _ _

Thank you so much for replying. Let me show my "if-then" constraint in a more clear way as follows: set veh := {1..16 by 1}; param veh ind {veh}; param theory time {veh}; param UP := 400000; var in lane veh {veh} integer >=1, <=2;</pre> var in in time {veh} >=0, <=UP;</pre> Note that "in_lane_veh {veh}" are integer variables which equal 1 or 2, and "in in time {veh}" are continuous variables. subject to IfConstr {i in 1..card(veh)-1, j in i+1..card(veh): veh ind[i] = veh ind[j] and theory time[i] <= theory time[j]}:</pre>

```
in_lane_veh[i] = in_lane_veh[j] ==> in_in_time[j] >= in_in_time[i] + l_veh/V;
```

When I run my program, there appears the following statement: CPLEX 20.1.0.0: logical constraint _slogcon[1] is not an indicator constraint.

Typical Reply

To reformulate this model in a way that your MIP solver would accept, you could define some more binary variables,

var in_lane_same {veh,veh} binary;

with the idea that in_lane_same[i,j] should be 1 if and only if in_lane_veh[i] =
in_lane_veh[j].
Then the desired relation could be written as two constraints:

```
in_lane_veh[i] = in_lane_veh[j] ==> in_lane_same[i,j] = 1
in_lane_same[i,j] = 1 ==> in_in_time[j] >= in_in_time[i] + l_veh/V;
```

The second one is an indicator constraint, but you would just need to replace the first one by equivalent linear constraints.

```
Given that in_lan_veh can only be either 1 or 2, those constraints could be
```

```
in_lane_same[i,j] >= 3 - in_lane_veh[i] - in_lane_veh[j]
in_lane_same[i,j] >= in_lane_veh[i] + in_lane_veh[j] - 3
```

New Solver Interface Library (MP)

Design

- C++ library for building efficient, configurable solver drivers
- Support for features of current C interface library
- Extensive toolset for problem recognition and transformation

Motivation . . .

- AMPL has logical and "not linear" expressions for writing models the way you think of them
- $\circ~$ Old interfaces have very limited support for these
- New interfaces, built with MP, allow these expressions to be used and combined freely

Example: Multi-Product Network Flow

Motivation

 Ship products efficiently to meet demands

Context

- a transportation network
 - Nodes Orepresenting cities
 - arcs representing roads
- \circ supplies $_$ \rightarrow at nodes
- \circ demands \rightarrow at nodes
- \circ capacities on arcs
- $\circ~$ shipping costs on arcs

Example: Multi-Product Network Flow

Decide

 \circ how much of each product to ship on each arc

So that

- $\circ~$ shipping costs are kept low
- shipments on each arc respect capacity of the arc
- supplies, demands, and shipments are in balance at each node

AMPL Model for Multi-Product Network Flow

```
set PRODUCTS;
set NODES;
param net_inflow {PRODUCTS,NODES};
set ARCS within {NODES, NODES};
param capacity \{ARCS\} \ge 0;
param var_cost {PRODUCTS,ARCS} >= 0;
var Flow {PRODUCTS,ARCS} >= 0;
minimize TotalCost:
   sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j];
subject to Capacity {(i,j) in ARCS}:
   sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];</pre>
subject to Conservation {p in PRODUCTS, j in NODES}:
   sum {(i,j) in ARCS} Flow[p,i,j] + net_inflow[p,j] =
sum {(j,i) in ARCS} Flow[p,j,i];
```

Example with conditions: Multi-Product Network Flow

Decide also

• whether to use each arc

So that

- variable costs plus fixed costs for shipping are kept low
- shipments are not too small
- not too many arcs are used

Positive Shipments Incur Fixed Costs

Linearization

```
param fix_cost {ARCS} >= 0;
var Use {ARCS} binary;
minimize TotalCost:
    sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] +
    sum {(i,j) in ARCS} fix_cost[i,j] * Use[i,j];
```

How you think about it

```
param fix_cost {ARCS} >= 0;
minimize TotalCost:
    sum {p in PRODUCTS, (i,j) in ARCS} var_cost[p,i,j] * Flow[p,i,j] +
    sum {(i,j) in ARCS}
    if exists {p in PRODUCTS} Flow[p,i,j] > 0 then fix_cost[i,j];
```

Shipments Can't Be Too Small

Linearization

```
subject to Min_Shipment {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] >= min_ship * Use[i,j];
subject to Capacity {(i,j) in ARCS}:
    sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j] * Use[i,j];</pre>
```

How you think about it

subject to Shipment_Limits {(i,j) in ARCS}:
 sum {p in PRODUCTS} Flow[p,i,j] = 0 or
 min_ship <= sum {p in PRODUCTS} Flow[p,i,j] <= capacity[i,j];</pre>

Can't Use Too Many Arcs

Linearization

```
subject to Max_Used:
    sum {(i,j) in ARCS} Use[i,j] <= max_arcs;</pre>
```

How you think about it

```
subject to Limit_Used:
   atmost max_arcs {(i,j) in ARCS}
      (sum {p in PRODUCTS} Flow[p,i,j] > 0);
```

Linearization is Usually Not That Easy!

```
subject to IfConstr {i in 1..card(veh)-1, j in i+1..card(veh):
            veh_ind[i] = veh_ind[j] and theory_time[i] <= theory_time[j]}:
    in_lane_veh[i] = in_lane_veh[j]
        ==> in_in_time[j] >= in_in_time[i] + l_veh/V;
```

```
minimize total_fuelcost:
    sum{(i,j) in A} sum{k in V} X[i,j,k] *
        ((if H[i,k] <= 300 then dMor[i,j] else
        if H[i,k] <= 660 then dAft[i,j] else
        if H[i,k] <= 901 then dEve[i,j]) * 5 +
        (if H[i,k] <= 300 then tMor[i,j] else
        if H[i,k] <= 660 then tAft[i,j] else
        if H[i,k] <= 901 then tEve[i,j]) * 0.0504);</pre>
```

```
subject to NoPersonIsolated
    {l in TYPES['loc'], r in TYPES['rank'], j in 1..numberGrps}:
    sum {i in LOCRANK[l,r]} Assign[i,j] = 0 or
    sum {i in LOCRANK[l,r]} Assign[i,j] + sum {a in ADJACENT[r]} sum {i in LOCRANK[l,a]} Assign[i,j] >= 2;
```

Example: N-Queens

How can n queens be placed on an $n \times n$ chessboard so that no two of them attack each other?

Constraint **alldiff** enforces a set of integer variables to take distinct values. Using alldiff, we can model N-Queens as follows:

```
param n integer > 0; # N-queens
var Row {1..n} integer >= 1 <= n;
s.t. row_attacks: alldiff ({j in 1..n} Row[j]);
s.t. diag_attacks: alldiff ({j in 1..n} Row[j]+j);
s.t. rdiag_attacks: alldiff ({j in 1..n} Row[j]-j);</pre>
```


1

É	Chrome File Edit View History Bookmarks Profiles Tab Window Help \min 🗩 76% 🗩 🥐 S 🛱 🔶 43.0°C 8% 🕚	🞧 🛜 💿 Q 🚍 Tue 29 Aug 11:53										
•	• • • conqueens.jpynb - Colaboratory × +											
÷	🗧 🔶 👔 colab.research.google.com/github/amplcolab/blob/master/authors/glebbelov/miscellaneous/nqueens.ipynb#scrollTo=jYDiBDD_7Kba Q 🖞 🖬 📀											
C	Onqueens.ipynb File Edit View Insert Runtime Tools Help <u>Cannot save changes</u>	🖙 Share 🏟 👗										
≣	+ Code + Text A Copy to Drive	✓ RAM ► ∧										
Q	- N-Queens											
{ <i>x</i> }	🕥 github 🥨 Open in Colab 🗽 Open in Kaggle 💽 Run on Gradient 🕲 Open Studio Lab hits 3/454											
	Description: How can N queens be placed on an NxN chessboard so that no two of them attack each other?											
	Tags: amplpy, constraint-programming, highlights											
	Notebook author: Gleb Belov <g<u>leb@ampl.com></g<u>											
	<pre>% [1] # Install dependencies !pip install -q amplpy</pre>											
<>	# Google Colab & Kaggle integration from amplpy import AMPL, tools ampl = tools.ampl_notebook(modules=["highs"], # modules to install license_uuid="default") # license to use											
□	Using default Community Edition License for Colab. Get yours at: <u>https://ampl.com/ce</u> Licensed to AMPL Community Edition License for the AMPL Model Colaboratory (<u>https://colab.ampl.c</u>	<u>com</u>).										

🗯 Chrome File Edit View History Bookmarks Profiles Tab Window Help	🕥 🎧 😨 Q 岩 Tue 29 Aug 11:54									
• • • on nqueens.ipynb - Colaboratory X +										
C e colab.research.google.com/github/ampl/amplcolab/blob/master/authors/glebbelov/miscellaneous/nqueens.jpynb#scrollTo=jYDiBDD_7Kba	Q 🖞 🖈 🗖 🕭 :									
CO file Edit View Insert Runtime Tools Help Cannot save changes	CÐ Share 🏚 👗									
:= + Code + Text & Copy to Drive	✓ RAM ▼ ∧									
 Modeling N-Queens with alldiff N-Queens: How can N queens be placed on an NxN chessboard so that no two of them attack each other? Constraint alldiff enforces a set of integer variables to take distinct values. Using alldiff, we can model N-Queen 	ens as follows:									
<pre>[3] %%ampl_eval reset; param n integer > 0; # N-queens var Row {1n} integer >= 1 <= n; s.t. row_attacks: alldiff {{j in 1n} Row[j]}; s.t. diag_attacks: alldiff {{j in 1n} Row[j]+j}; s.t. rdiag_attacks: alldiff {{j in 1n} Row[j]-j};</pre>										
 Solving with HiGHS and displaying the solution 										
<pre>> n = 18 ampl.param["n"] = n ampl.option["solver"] = "highs" ampl.option["highs_options"] = "outlev=0" ampl.solve() solution = ampl.get_data("Row").to_dict()</pre>										
✓ 2s completed at 11:53 AM	• ×									

🗰 Chrome File Edit View History Bookmarks Profiles Tab Window Help 📴 🗊 76% 🗩 🥐 🕄 🗖 📥 43.9°C 7% 🕣	🕥 🎧 🗢 Q 🗟 Tue 29 Aug 11:54
• • • co nqueens.ipynb - Colaboratory × +	
> C 🔒 colab.research.google.com/github/ampl/amplcolab/blob/master/authors/glebbelov/miscellaneous/nqueens.ipynb#scrollTo=jYDiBDD_7Kba	९ Å 🖈 🗖 🕭 :
CO nqueens.ipynb File Edit View Insert Runtime Tools Help <u>Cannot save changes</u>	🖙 Share 🔹 👗
= + Code + Text & Copy to Drive	✓ RAM ▼ ^
 Solving with HiGHS and displaying the solution 	
<pre>X} 2s n = 18 ampl.param["n"] = n ampl.option["solver"] = "highs" ampl.option["highs_options"] = "outlev=0" ampl.solve() solution = ampl.get_data("Row").to_dict() queens = set((r-1, c-1) for c, r in solution.items()) print("Solution") for r in range(n): print(''.join([' Q ' if (r, c) in queens else ' + ' for c in range(n)]))</pre>	
HiGHS 1.5.3: tech:outlev = 0 HiGHS 1.5.3: optimal solution 2333 simplex iterations 1 branching nodes Objective = find a feasible point. Solution + + + + + + + + + + + + + + + + + + +	

_ _ _

1

🗯 Ch	rome	File Edi	t Vie	ew H	listory	Bool	kmark	s Pi	ofiles	Tab	Win	dow	Help				29]) 7	6% 🔳	D	e 1	ያ ሮ	Ъ-	- 42.9	PC 59	6 C	ົ ດ	ŝ	٩	Q	00	Tue 2	9 Aug	11:54
• • • • • • • • • • • • • • • • • • •																																		
\leftrightarrow \rightarrow	c	🗎 colab.	researe	ch.god	gle.co	m/gith	ub/an	npl/an	nplcola	b/blot	o/mas	ter/aut	hors/	glebb	elov/n	niscell	laneou	us/nqi	Jeens.i	ipynt	o#scro	ollTo=j	YDiBI	DD_7K	ba						₫	☆		
CO CO nqueens.ipynb File Edit View Insert Runtime Tools Help Cannot save changes																																		
≔	+ Code + Text 🍪 Copy to Drive										✓ RAM ► ∧																							
Q ^{2s}	0	print for r p	("So in rint	luti ranç (''	on") ge(n) join	: (['	Q '	if	(r,	c) i	in q	ueen	s e	lse	' +	' f	or c	: in	ran	ige (n)]))						1	• •	e	\$	ŗ	Î	:
{ <i>x</i> }	8	HiGHS HiGHS 2333 1 bra Objec Solut	1.5 1.5 simp nchi tive ion	.3: .3: lex ng n = f	te opti iter odes ind	ch:o mal atio a fe	utle solu ns asil	ev = utic ble	0 n poin	t.																								
		+ + + + + + + + + + + + + + + + + + + +	+ + +	+ + + 0	+ + + + + +	+ + Q +	+ + +	+ + +	+ + + + + +	+ + +	+ + +	Q + +	+ · + ·	+ + 2 + + +	+ + +																			
		+ + +	+++	¥ +	+ + +	+++++++++++++++++++++++++++++++++++++++	+ Q	+ +	+ Q + +	++	+ +	+ +	+ · + ·	+ + + +	++																			
		+ + +	+ Q	++	+ + + +	++	+++	+ Q +	+ + + +	+++	+++	+ +	+ ·	+ + + +	++																			
		Q + + + + +	+ + +	+ + +	+ + + + + +	+ + +	+ + +	+ + +	+ + + + + +	+ + +	+ + +	+ + +	+ · + · Q ·	+ + + + + +	+ Q +																			
$\langle \rangle$		+ + + + + + + + + + + + + + + + + + + +	+ + +	+ + +	+ Q + + + ±	+ + +	+ + +	+ + +	+ + +	+ Q +	+ + +	+ + +	+ · + ·	+ + + + + -	+++++++++++++++++++++++++++++++++++++++																			
		+ + +	+ +	+ +	Q + + +	+ +	+ +	+ +	× + + + + +	+++	+ Q	+ + +	+ ·	+ + + +	+ +																			
>_		+ Q	+	+	+ +	+	+	+	+ +	+	+	+	+ ·	+ +	+																			

18

Example: Recharging strategy for an electric vehicle (<u>https://mo-book.ampl.com/</u>)

 Recharging strategy for and x + Recharging strategy for and s = x + x = x = x + 1 + 1; Recharging strategy for an electric vehicle. Veh	Chrome File Edit View History	Bookmarks Profiles Tab Window Help 📅 🗩 88% 🗩 🌔 🚽 39.6°C 4% 🕚) 📢) 🛜 🕑 Q 🚽 Tue 17 Oct 07:50										
 C → C → C → C → C → C → C → C → C → C →	Recharging strategy for an ele x +												
MO-BOOK:Hands-On Optimization with AMPL in Python Image: Contents Problem Statement 1. Mathematical Optimization if distance traveled var x(LOCATIONS) >= 0, <= 10000; Problem Statement 3. Mixed Integer Linear if arrival and departure charge at each charging station var c_acft(LOCATIONS) >= 0, <= 1000; Charging Station Information Bill production with perturbed data # arrival and departure times from each charging station var c_acft(LOCATIONS) >= 0, <= 100; Charging Station Information Workforce shift scheduling # arrival and departure times from each charging station var t_acft(LOCATIONS) >= 0, <= 100; Suggested Exercises Production with gettraded data # arrival and departure rest from each charging station var t_acft(LOCATIONS) >= 0, <= 100; Suggested Exercises Production model using disjunctions # arrival and departure rest from each charging station var r_acft(LOCATIONS) >= 0, <= r_max; Suggested Exercises Machine Scheduling # arrival in SEGMENTS): t_arr[1] == t_dep[i-1] + dist[i]/v; s.t. rest_time {i in SEGMENTS}: t_arr[1] == t_dep[i-1] + dist[i]/v; s.t. rest_time {i in SEGMENTS}: t_arr[1] == t_dep[i-1] + dist[i]/v; s.t. rest_time {i in SEGMENTS}: t_arr[1] == t_dep[i-1] - R + dist[1]; s.t. discharge {i in SEGMENTS}: t_arr[1] == t_dep[i-1] - R + dist[1]; s.t. discharge {i in SEGMENTS}: t_arr[1] == t_dep[i-1] - R + dist[1]; s.t. discharge {i in SEGMENTS}: t_arr[1] = t_arr[1] and t_dep[i] = t_arr[1] and t_dep[i] = t_arr[1] and t_dep[i] = t_arr[1] BM production revisited s.t. re	$\leftrightarrow \rightarrow \mathbf{C}$ \triangleq mo-book.ampl.com/noteb	ooks/03/recharging-electric-vehicle.html	Q Ů ☆ 🗖 🅭 :										
4. Network Optimization ✓ (t_dep[i] == t_lost + t_arr[i] + (c_dep[i] - c_arr[i])/C[i] and c_dep[i] >= c_arr[i] and r_dep[i] == 0)); • v: latest ▼ ✓	MO-BOOK: Hands-On Optimization with AMPL in Python 1. Mathematical Optimization 2. Linear Optimization 3. Mixed Integer Linear Optimization BIM production with perturbed data Workforce shift scheduling Production model using disjunctions Machine Scheduling Recharging strategy for an electric vehicle BIM production revisited Extra material: Cryptarithms puzzle Extra material: Strip packing Extra material: Job shop scheduling Extra material: Maintenance planning 4. Network Optimization V: latest	<pre>Param dist(SEGMENTS); param t_lost; # distance traveled var x{LOCATIONS} >= 0, <= 10000; # arrival and departure charge at each charging station var c_arr{LOCATIONS} >= c_min, <= c_max; var c_dep(LOCATIONS) >= c_min, <= c_max; # arrival and departure times from each charging station var t_arr{LOCATIONS} >= 0, <= 100; # arrival and departure rest from each charging station var r_arr{LOCATIONS} >= 0, <= 100; # arrival and departure rest from each charging station var r_arr{LOCATIONS} >= 0, <= r_max; var r_dep(LOCATIONS) >= 0, <= r_max; var r_dep(LOCATIONS) >= 0, <= r_max; is, t. drive_time {i in SEGMENTS}: r_arr[i] == t_dep[i-1] + dist[i]/v; s.t. drive_distance {i in SEGMENTS}: r_arr[i] == r_dep[i-1] + dist[i]/v; s.t. drive_distance {i in SEGMENTS}: r_arr[i] == r_dep[i-1] + dist[i]; s.t. drive_distance {i in SEGMENTS}: r_arr[i] == c_dep[i-1] + dist[i]; s.t. recharge {i in STATIONS}: # list of constraints that apply if there is no stop at station i ((c_dep[i] == c_arr[i] and t_dep[i] == t_arr[i] and r_dep[i] == r_arr[i]) or # list of constraints that apply if there is a stop at station i (t_dep[i] == t_lost + t_arr[i] + (c_dep[i] - c_arr[i])/C[i] and</pre>	E Contents Problem Statement Modeling Charging Station Information Route Information Car Information AMPL Model Suggested Exercises										

Example: Recharging strategy for an electric vehicle (<u>https://mo-book.ampl.com/</u>)
minimize min_time: t_arr[n + 1];

```
s.t. drive time {i in SEGMENTS}: t arr[i] == t dep[i-1] + dist[i]/v;
s.t. rest_time {i in SEGMENTS}: r_arr[i] == r_dep[i-1] + dist[i]/v;
s.t. drive distance {i in SEGMENTS}: x[i] == x[i-1] + dist[i];
s.t. discharge {i in SEGMENTS}: c arr[i] == c dep[i-1] - R * dist[i];
s.t. recharge {i in STATIONS}:
   # list of constraints that apply if there is no stop at station i
    ((c dep[i] == c arr[i] and t dep[i] == t arr[i] and r dep[i] == r arr[i])
    or
   # list of constraints that apply if there is a stop at station i
    (t_dep[i] == t_lost + t_arr[i] + (c_dep[i] - c_arr[i])/C[i] and
        c dep[i] >= c arr[i] and r dep[i] == 0))
    and not
    ((c_dep[i] == c_arr[i] and t_dep[i] == t_arr[i] and r_dep[i] == r_arr[i])
    and
    (t_dep[i] == t_lost + t_arr[i] + (c_dep[i] - c_arr[i])/C[i] and
        c dep[i] >= c arr[i] and r dep[i] == 0));
```

Supported Extensions

Operators and functions

- o Conditional: if-then-else; ==>, <==, <==>
- Logical: or, and, not; exists, forall
- o Piecewise linear: abs; min, max; <<breakpoints; slopes>>
- Counting: count; atmost, atleast, exactly; number of
- o Comparison: >, <, !=; alldiff</pre>
- Complementarity: complements
- Nonlinear: *, /, ^; exp, log; sin, cos, tan; sinh, cosh, tanh
- Set membership: in

Expressions and constraints

- High-order polynomials
- \circ Second-order cones
- exponential cones (MOSEK driver!)

Supported Solvers

Solvers

- Gurobi, Xpress, COPT, MOSEK
- Highs, CBC, SCIP, GCG
- CPLEX soon

Modeling guide

o <u>https://mp.ampl.com/model-guide.html</u>

Examples using MP features

- o <u>https://colab.ampl.com</u>
- o <u>https://mo-book.ampl.com</u> (NEW BOOK!)

Small promo: Our main talk is right after this session!

Technology Tutorial, Tuesday, October 17, 2:55 - 3:30 pm

Location: CC-North 120 D

Python and AMPL: Build Prescriptive Analytics applications quickly with Pandas, Colab, Streamlit, and amplpy