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Introduction

AMPL is a little language that grew. Originally designed to express linear
programming problems, it gradually expanded to encompass nonlinear pro-
gramming problems — possibly with complementarity constraints and some
integer variables — and it acquired a command environment for manipulating
such problems. Although AMPL’s presolve phase occasionally determines the
solution to a problem, AMPL was never meant to solve problems itself; rather,
it works with separate solvers that may even run on different machines.

The rest of this chapter provides more detail on AMPL’s design and capabil-
ities. AMPL’s historical background has strongly affected its design, so section
1 gives more detail about AMPL’s history. Section 2 presents a simple example,
a variant of the venerable diet problem, to illustrate some aspects of AMPL’s
design. One of AMPL’s strengths lies in the generality of its indexing and set
expressions; section 3 demonstrates some of this by discussing an example of
airline fleet assignment that uses sets of quadruples and slices.

In the decade between the appearances of the first and second editions of the
AMPL book [12], we extended AMPL in various ways. Three further sections
summarize these extensions, including some that are still underway. Section
4 deals with iterative schemes and other flow-of-control issues; section 5 con-
siders new kinds of models — complementarity, combinatorial, and stochastic;
and section 6 discusses communications with other systems — databases, In-
ternet services, and solvers. Section 7 summarizes differences between the first
and second AMPL book editions, and a brief conclusion appears in section 8.

1 Background and Early History

Several threads converged in the initial design of AMPL. In the early 1980s
little languages were a topic of interest in the Computing Science Research
Center of Bell Laboratories. These are special-purpose languages designed to
simplify and facilitate computing in well focused application areas. Two nice
examples aregrap [3], a troff preprocessor that makes it easy to typeset
various kinds of graphs, andchem [2], a troff preprocessor for typesetting
chemical formulae.

Another aspect of AMPL’s background was the hoopla surrounding Narendra
Karmarkar’s announcement of an efficient polynomial-time linear programming
algorithm [20]. It was clear to us in the Computing Science Research Center
that one needs more than just a powerful algorithm; one also needs a problem-
formulation language that is natural for use by people yet suitable for processing
by a computer, and one needs a convenient way to provide the relevant data and
data structures to solvers. We believed that a mathematically natural language
would help to make the audience for optimization technology much broader
than it would otherwise be.
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Bob Fourer and David Gay had first met when both worked at the National Bu-
reau of Economic Research’s Computer Research Center in Cambridge, Mas-
sachusetts, where Fourer worked on documentation forsesame, an LP solver
that William Orchard-Hayes was developing for NBER. Fourer subsequently
attended graduate school at Stanford, then joined the faculty at Northwestern
University. Among other things, he wrote about the advantages of modeling
languages over matrix generators [8]. Meanwhile Gay had moved to Bell Labs.
When Gay and Fourer happened to meet at a conference, Fourer mentioned he
would be coming up for sabbatical. In that way it developed that he was invited
to visit Bell Labs for the 1985-86 academic year, with the expectation that the
three of us (Fourer, Gay, Kernighan) would work on a modeling language for
linear programming.

Our initial work led to a report [10] about the first version of AMPL. Models
acceptable to that version would still work today, but commands would not:
the first implementation did not recognize any commands, not even “solve”.
It simply read a model and subsequent data and wrote out a translated problem
in a simple text format (that we no longer use). Much of the current data-
specification syntax was provided by a separate preprocessor. The initial AMPL
report eventually became our 1990 AMPL paper [11] inManagement Science.

Many improvements ensued, as the following sections will show.

2 The McDonald’s Diet Problem

As an introduction, imagine a student who must decide what foods to buy at
a certain popular fast-food establishment so as to minimize cost while meeting
some nutritional requirements. For concreteness, suppose the 9 foods and 7
nutrients shown in Table 1.1 are relevant. Suppose further that the food costs,
nutrients, and nutrient requirements are as given in Table 1.2 (derived from the
establishment’s literature).

Table 1.1. McDonald’s Diet Problem foods and nutrients.

Foods:

QP Quarter Pounder
FR Fries, small
MD McLean Deluxe
SM Sausage McMuffin
BM Big Mac
1M 1% Lowfat Milk
FF Filet-O-Fish
OJ Orange Juice
MC McGrilled Chicken

Nutrients:

Prot Protein
Iron Iron
VitA Vitamin A
Cals Calories
VitC Vitamin C
Carb Carbohydrates
Calc Calcium
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Table 1.2. McDonald’s Diet Problem data.

QP MD BM FF MC FR SM 1M OJ

Cost 1.84 2.19 1.84 1.44 2.29 0.77 1.29 0.60 0.72 Need:

Protein 28 24 25 14 31 3 15 9 1 55
Vitamin A 15 15 6 2 8 0 4 10 2 100
Vitamin C 6 10 2 0 15 15 0 4 120 100
Calcium 30 20 25 15 15 0 20 30 2 100
Iron 20 20 20 10 8 2 15 0 2 100
Calories 510 370 500 370 400 220 345 110 80 2000
Carbo 34 35 42 28 42 26 27 12 20 350

Table 1.3. Concrete McDonald’s Diet Problem.

Minimize
1.84xQP + 2.19xMD + 1.84xBM + 1.44xFF

+ 2.29xMC + 0.77xFR + 1.29xSM + 0.60x1M + 0.72xOJ

Subject to
28xQP + 24xMD + 25xBM + 14xFF

+ 31xMC + 3xFR + 15xSM + 9x1M + xOJ ≥ 55

15xQP + 15xMD + 6xBM + 2xFF

+ 8xMC + 4xSM + 10x1M + 2xOJ ≥ 100

6xQP + 10xMD + 2xBM

+ 15xMC + 15xFR + 4x1M + 120xOJ ≥ 100

30xQP + 20xMD + 25xBM + 15xFF

+ 15xMC + 20xSM + 30x1M + 2xOJ ≥ 100

20xQP + 20xMD + 20xBM + 10xFF

+ 8xMC + 2xFR + 15xSM + 2xOJ ≥ 100

510xQP + 370xMD + 500xBM + 370xFF

+ 400xMC + 220xFR + 345xSM + 110x1M + 80xOJ ≥ 2000

34xQP + 35xMD + 42xBM + 38xFF

+ 42xMC + 26xFR + 27xSM + 12x1M + 20xOJ ≥ 350

Since the expressions for total food cost and resulting nutrients are linear,
this problem has the form of a general linear programming problem,

Minimize cT x

Subject to Ax = b
x ≥ 0

but such a formulation is too general for convenient manipulation. The problem
also has the concrete form shown in Table 1.3, but this form is too specific —
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Table 1.4. Abstract model for the McDonald’s Diet Problem.

Given
F , a set of foods,
N , a set of nutrients,

aij ≥ 0, the units of nutrienti in one serving of foodj,
for eachi ∈ N andj ∈ F ,

bi ≥ 0, the units of nutrienti required in the diet, for eachi ∈ N ,

cj ≥ 0, the cost per serving of foodj, for eachj ∈ F ,

Definexj ≥ 0 to be the number of servings of foodj to be purchased,
for eachj ∈ F .

Minimize
∑
j∈F

cjxj ,

Subject to
∑
j∈F

aijxj ≥ bi for eachi ∈ N .

Table 1.5. Diet Model in AMPL (mcdiet.mod).

set NUTR; # nutrients
set FOOD; # foods

param amt {NUTR,FOOD} >= 0; # amount of nutrient in each food
param nutrLow {NUTR} >= 0; # lower bound on nutrients in diet
param cost {FOOD} >= 0; # cost of foods

var Buy {FOOD} >= 0 integer; # amounts of foods to be purchased

minimize TotalCost: sum {j in FOOD} cost[j] * Buy[j];

subject to Need {i in NUTR}:
sum {j in FOOD} amt[i,j] * Buy[j] >= nutrLow[i];

too hard to set up and maintain.
Between these extremes lies the general mathematical model for the diet

problem shown in Table 1.4. AMPL was designed to permit easy transcription
of mathematical models in such a form. An AMPL model for the diet problem
is shown in Table 1.5. This model represents a whole class of diet problems;
to obtain the particular instance corresponding to Tables 1.2 and 1.3, we must
supply the relevant data. There are various ways to do this, but the simplest
for small examples is to provide a file of AMPL data statements, such as the
one in Table 1.6. With filesmcdiet.mod andmcdiet1.dat containing the text
shown in Tables 1.5 and 1.6, we obtain a continuous-variable solution to the
problem if we use AMPL’s default solver, MINOS, which ignores integrality
restrictions on variables. This is shown in Table 1.7.
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Table 1.6. AMPL data statements for McDonald’s Diet Problem (mcdiet1.dat).

data;
param: FOOD: cost :=

"Quarter Pounder" 1.84 "Fries, small" .77
"McLean Deluxe" 2.19 "Sausage McMuffin" 1.29
"Big Mac" 1.84 "1% Lowfat Milk" .60
"Filet-o-Fish" 1.44 "Orange Juice" .72
"McGrilled Chicken" 2.29 ;

param: NUTR: nutrLow :=
Prot 55 VitA 100 VitC 100
Calc 100 Iron 100 Cals 2000 Carb 350 ;

param amt (tr): Cals Carb Prot VitA VitC Calc Iron :=
"Quarter Pounder" 510 34 28 15 6 30 20
"McLean Deluxe" 370 35 24 15 10 20 20
"Big Mac" 500 42 25 6 2 25 20
"Filet-o-Fish" 370 38 14 2 0 15 10
"McGrilled Chicken" 400 42 31 8 15 15 8
"Fries, small" 220 26 3 0 15 0 2
"Sausage McMuffin" 345 27 15 4 0 20 15
"1% Lowfat Milk" 110 12 9 10 4 30 0
"Orange Juice" 80 20 1 2 120 2 2;

Table 1.7. Continuous-variable solution of McDonald’s Diet Problem.

ampl: model mcdiet.mod;
ampl: data mcdiet1.dat;
ampl: solve;

MINOS 5.5: ignoring integrality of 9 variables
MINOS 5.5: optimal solution found.
7 iterations, objective 14.8557377
ampl: option omit_zero_rows 1;

ampl: display Buy;
Buy [*] :=

’1% Lowfat Milk’ 3.42213
’Fries, small’ 6.14754

’Quarter Pounder’ 4.38525
;
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Table 1.8. Integer solution of McDonald’s Diet Problem.

ampl: option solver cplex; solve;

CPLEX 8.0.0: optimal integer solution; objective 15.05
27 MIP simplex iterations
15 branch-and-bound nodes

ampl: display Buy;
Buy [*] :=

’1% Lowfat Milk’ 4
Filet-o-Fish 1

’Fries, small’ 5
’Quarter Pounder’ 4

;

Table 1.9. McDonald’s Diet for 63 foods, 12 nutrients.

ampl: reset data;
ampl: data mcdiet2.dat;
ampl: solve;

CPLEX 8.0.0: optimal integer solution; objective 0
0 MIP simplex iterations
0 branch-and-bound nodes

ampl: display Buy;
Buy [*] :=

’Barbeque Sauce’ 50
Croutons 55

’Hot Mustard Sauce’ 50
;

In reality, one cannot order fractional servings, so it is better to use a solver
that respects integrality. This is shown in Table 1.8.

Solving with a larger data set is easy. Table 1.9 illustrates this and reveals a
weakness in the model: one can satisfy all the nutritional requirements in the
bigger data set by using free condiments. A more palatable solution requires
additional constraints linking condiment amounts to purchases of related foods.

3 The Airline Fleet Assignment Problem

The McDonald’s Diet Problem provides an introduction to many fundamental
aspects of AMPL, but it illustrates only a few of the set indexing features that
are essential in a good modeling language. AMPL’s facilities for constructing
and manipulating sets and for iterating over sets make it a powerful language
that can readily express complex models. Whereas the diet example involves
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only simple one-dimensional sets (FOOD andNUTR), our example in this section
— the Airline Fleet Assignment Problem — also relies on higher-dimensional
sets and onslices through these sets, as well as indexed collection of sets.
Multi-dimensional sets can be viewed as having members that are pairs, triples,
or higher-order “tuples” of elements, in which case slices are subsets in which
certain components of the tuples have prescribed values. A model for the Fleet
Assignment Problem appears in Tables 1.10 and 1.11.

The model begins with declarations of three simple sets:FLEETSof airplanes,
CITIES served by the airplanes, and discreteTIMES at which the airplanes take
off or land. TheTIMES set is circular, meaning that its members are ordered,
with the first member considered to follow the last when computing the “next”
member. SetFLEGS describes the schedule to be flown; it consists of 5-tuples
(f,c1,t1,c2,t2) with f in FLEETS, c1, c2 in CITIES, andt1, t2 in TIMES,
such that fleetf can provide an airplane that departs cityc1at timet1and arrives
in city c2 at timet2. Parametersleg_cost andfleet_size are indexed over
these sets.

The model’s first four sets are fundamental: their values must be provided
before AMPL can generate a problem instance. The next three sets to be de-
clared —LEGS, SERV_CITIES, andOP_TIMES — are all derived from the
fundamental sets.LEGS is the set of all quadruples(c1,t1,c2,t2) such that
(f,c1,t1,c2,t2) appears in setFLEGS for at least onef. SERV_CITIES is
an indexed collection of sets, that is, a collection of similar sets that are dis-
tinguished from one another by subscripts (in square brackets): for eachf in
FLEETS,SERV_CITIES[f] is the set of cities served by fleetf. OP_TIMES is an-
other indexed collection of sets: for eachf inFLEETSandc inSERV_CITIES[f],
OP_TIMES[f,c] is the ordered set of times at which an airplane from fleetf
may take off or land at cityc. The phrasecircular by TIMES defines each
set OP_TIMES[f,c] to be ordered in the same way as the fundamental set
TIMES. Both setof expressions in the declaration forOP_TIMES iterate over
slices of setFLEGS, the first slice being the set of all triples(t1,c2,t2) such
that for a given pair(f,c), (f,c,t1,c2,t2) is in FLEGS, and the second
similarly being the set of all triples(c1,t1,t2) such that for a given(f,c),
(f,c1,t1,c,t2) is in FLEGS.

AMPL allows one to specify a model in either of two ways:

“row-wise” — declaring each objective or constraint all at once, through
an algebraic expression; or

“column-wise” — using each variable’s declaration to indicate its con-
tributions to various constraints and objectives.

AMPL’s node and arc declarations are the most often used column-wise nota-
tion: anode declaration sets up a network balance-of-flow constraint to which
variables declared witharc can contribute. Since airline fleet assignment has
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Table 1.10. Airline Fleet Assignment Model, part 1 — column-wise specification of network
flow costs and balance constraints.

set FLEETS;
set CITIES;
set TIMES circular;

set FLEGS within
{f in FLEETS, c1 in CITIES, t1 in TIMES,

c2 in CITIES, t2 in TIMES: c1 <> c2 and t1 <> t2};

# (f,c1,t1,c2,t2) represents the availability of fleet f
# to cover the leg that leaves c1 at t1 and
# whose arrival time plus turnaround time at c2 is t2

param leg_cost {FLEGS} >= 0;
param fleet_size {FLEETS} >= 0;

# leg costs and sizes for each fleet

set LEGS = setof {(f,c1,t1,c2,t2) in FLEGS} (c1,t1,c2,t2);
# the set of all legs that can be covered by some flight

set SERV_CITIES {f in FLEETS} =
union {(f,c1,t1,c2,t2) in FLEGS} {c1,c2};

set OP_TIMES {f in FLEETS, c in SERV_CITIES[f]} circular by TIMES =
setof {(f,c,t1,c2,t2) in FLEGS} t1 union
setof {(f,c1,t1,c,t2) in FLEGS} t2;

# for each fleet and city served by that fleet,
# the set of active arrival & departure times at that city

minimize Total_Cost;

node Balance {f in FLEETS, c in SERV_CITIES[f], OP_TIMES[f,c]};

# for each fleet and city served by that fleet,
# a node for each possible time

arc Fly {(f,c1,t1,c2,t2) in FLEGS} >= 0 <= 1
from Balance[f,c1,t1] to Balance[f,c2,t2]
obj Total_Cost leg_cost[f,c1,t1,c2,t2];

# arcs for fleet/flight assignments

arc Sit {f in FLEETS, c in SERV_CITIES[f], t in OP_TIMES[f,c]} >= 0
from Balance[f,c,t] to Balance[f,c,next(t)];

# arcs for planes on the ground
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Table 1.11. Airline Fleet Assignment Model, part 2 — row-wise specification of flight coverage
and fleet size limitations.

subject to Service {(c1,t1,c2,t2) in LEGS}:
sum {(f,c1,t1,c2,t2) in FLEGS} Fly[f,c1,t1,c2,t2] = 1;

# each leg must be served by some fleet

subject to Capacity {f in FLEETS}:
sum {(f,c1,t1,c2,t2) in FLEGS:

ord(t2,TIMES) < ord(t1,TIMES)} Fly[f,c1,t1,c2,t2]
+ sum {c in SERV_CITIES[f]} Sit[f,c,last(OP_TIMES[f,c])]

<= fleet_size[f];

# number of planes used is the number in the air
# at day’s end (arriving "earlier" than they leave)
# plus the number on the ground in each city at day’s end

the form of a network flow problem plus “side” constraints, it is convenient to
use a mixture of row-wise and column-wise specifications. Table 1.10 shows the
objective,Total_Cost, and theBalance constraints expressed column-wise;
this part of the model sets up a separate network flow problem for each fleet.
Table 1.11 shows the side constraints expressed row-wise. TheCapacity con-
straints restrict the number of airplanes in each fleet network, and theService
constraints insure that exactly one fleet is assigned to each flight in the schedule.
Slice notations again appear, this time in summations in these constraints.

4 Iterative Schemes

Many applications require solving sequences of problems. AMPL has var-
ious facilities that are useful in such applications. The following subsections
discuss flow of control expressions and commands, named subproblems, and
debugging facilities.

4.1 Flow of Control

AMPL offers two sorts of conditional computations: if-then-else expres-
sions and flow-of-control commands. The former are occasionally useful in
declarations, such as the following from a model in our first paper on AMPL
[11]:

param minv ’minimum inventory’ {p in prd, t in time}
= dem[p,t+1] * (if pro[p,t+1] then pir else rir);
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Herepro[p,t+1] is a logical parameter, that is, a parameter that takes only
the value 0 (for false) or 1 (for true).

More generally, it is often convenient to solve sequences of problems or to
compute certain sets and parameters using sequences of commands. For this
purpose, AMPL provides several flow-of-control commands,

if lexpr then command[ else command] ;
for [ loopname] { indexing } command
repeat [ loopname] [ when lexpr ] { command} [ when lexpr ] ;
break [ loopname] ;
continue [ loopname] ;

where square brackets enclose optional parts,lexpr represents a logical expres-
sion, andwhenis eitherwhile or until. Eachcommandis either a simple
command or a sequence of commands within braces.

Table 1.12 is a simple sensitivity analysis script that uses afor loop to solve
a sequence of diet problems, each with a larger limit on the amount of sodium
allowed, until the constraint on sodium consumed is no longer binding. Table
1.13 shows output from running this script.

Table 1.12. Simple script for sensitivity analysis.

model diet.mod;
data diet2a.dat;

set NALOG default {}; # starts out empty
param NAobj {NALOG};
param NAdual {NALOG};

for {theta in 52000 .. 70000 by 1000} {
let n_max["NA"] := theta;
solve;
let NALOG := NALOG union {theta};
let NAobj[theta] := Total_Cost;
let NAdual[theta] := Diet["NA"].dual;
if Diet["NA"].dual > -1e-6 then break;

}

4.2 Named Subproblems

AMPL has commandsdrop to temporarily ignore specified constraints and
objectives andrestore to honor them again; and analogouslyfix to freeze
specified variables at their current values andunfix to let them vary again.
These commands are sometimes useful in solving sequences of related prob-
lems. But where it is desirable to switch between solving substantially different
problems, usually it is clearer to give names to the problems to be solved. This
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Table 1.13. Output from the sensitivity analysis script.

ampl: option solver_msg 0;
ampl: commands diet.run;
ampl: display NAobj, NAdual;
: NAobj NAdual :=
52000 113.428 -0.0021977
53000 111.23 -0.0021977
54000 109.42 -0.00178981
55000 107.63 -0.00178981
56000 105.84 -0.00178981
57000 104.05 -0.00178981
58000 102.26 -0.00178981
59000 101.082 -0.000155229
60000 101.013 -5.27818e-19
;

is done via an AMPLproblem declaration that lists the variables to be varied,
the constraints to be enforced, and the objectives to be considered; these lists
may involve iteration over sets.

As an example, we show how a cutting-stock problem would be solved in
AMPL via Gilmore-Gomory column generation. Table 1.14 presents a model
for optimizing over a given list of patterns, and Table 1.15 exhibits a model for
generating a new pattern given dual prices on the desired widths. Associated
problem declarations and commands to construct initial data appear in Table

Table 1.14. Model for cutting optimization with given patterns.

param roll_width > 0; # width of raw rolls
set WIDTHS ordered; # set of widths to be cut
param orders {WIDTHS} > 0; # number of each width to be cut

param nPAT integer >= 0; # number of patterns
set PATTERNS = 1..nPAT; # set of patterns
param nbr {WIDTHS,PATTERNS} integer >= 0;

var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern

minimize Number: # minimize total raw rolls cut
sum {j in PATTERNS} Cut[j];

subject to Fill {i in WIDTHS}:
sum {j in PATTERNS} nbr[i,j] * Cut[j] >= orders[i];
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Table 1.15. Model for new pattern generation.

param price {WIDTHS} default 0.0;
var Use {WIDTHS} integer >= 0;

minimize Reduced_Cost:
1 - sum {i in WIDTHS} price[i] * Use[i];

subject to Width_Limit:
sum {i in WIDTHS} i * Use[i] <= roll_width;

Table 1.16. Script for cutting-stock problem declarations and initialization.

option solver cplex; # need an integer solver
option display_transpose -10; # for nicer formatting
problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

let nPAT := card(WIDTHS);
let {w in WIDTHS} nbr[w,ord(w)] := floor(roll_width/w);
let {w in WIDTHS, i in WIDTHS: i <> w} nbr[w,ord(i)] := 0;

Table 1.17. Script switching problems for cutting-stock optimization.

repeat {
solve Cutting_Opt;
let {i in WIDTHS} price[i] := Fill[i].dual;

solve Pattern_Gen;
if Reduced_Cost < -0.00001 then {

let nPAT := nPAT + 1;
let {i in WIDTHS} nbr[i,nPAT] := Use[i];

}
else break;

};
display nbr, Cut;
option Cutting_Opt.relax_integrality 0;
solve Cutting_Opt;
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1.16, and Table 1.17 shows a script that uses the named problems to carry out
the column-generating scheme.

4.3 Debugging

AMPL has a single-step mode that provides for stopping and examining data
(perhaps by adisplay command) in the middle of a script. Relevant commands
includestep n to execute the nextn commands (or just the next command ifn
is omitted),next n to execute the nextn commands with compound commands
(such as loops and if-then-else commands) counting as a single command,skip
n to skip the nextncommands, andcont to continue until the current compound
command is finished. Table 1.18 illustrates some of these commands.

Among the output commands useful for debugging isexpand, which shows
portions of the problem instance that AMPL has generated: either the linear
parts of specified constraints and objectives, or the linear contributions of spec-
ified variables to the constraints and objectives. Table 1.19 demonstrates this
command.

Table 1.18. Using single-step mode with the cutting-stock script.

ampl: model cut.mod; data cut.dat;
ampl: option single_step 1;
ampl: commands cut.run;
cut.run:1(0) option ...
<2>ampl: step 6;
cut.run:12(337) repeat ...
<2>ampl: display nbr;
nbr [*,*]
: 1 2 3 4 5 :=
20 5 0 0 0 0
45 0 2 0 0 0
50 0 0 2 0 0
55 0 0 0 2 0
75 0 0 0 0 1
;
<2>ampl: step
cut.run:13(349) solve ...
<2>ampl: cont

5 Other Types of Models

AMPL has long dealt with linear, piecewise-linear, and nonlinear models.
Linear models are the most frequently used, but nonlinear models are not un-
common and are easily expressed by means of nonlinear algebraic expressions.
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Table 1.19. Expanding the cutting-stock constraints.

ampl: display nbr;
nbr [*,*]
: 1 2 3 4 5 6 7 8 :=
20 5 0 0 0 0 1 1 3
45 0 2 0 0 0 2 0 0
50 0 0 2 0 0 0 0 1
55 0 0 0 2 0 0 0 0
75 0 0 0 0 1 0 1 0
;
ampl: expand Fill;
subject to Fill[20]:

5*Cut[1] + Cut[6] + Cut[7] + 3*Cut[8] >= 48;

subject to Fill[45]:
2*Cut[2] + 2*Cut[6] >= 35;

subject to Fill[50]:
2*Cut[3] + Cut[8] >= 24;

subject to Fill[55]:
2*Cut[4] >= 10;

subject to Fill[75]:
Cut[5] + Cut[7] >= 8;

Piecewise-linear terms are sometimes of interest, and AMPL offers special
syntax for them. More recently, with Michael Ferris, we extended AMPL
to handle complementarity constraints [7]. Lately we have been working to
extend AMPL to handle some more general combinatorial [9] and stochastic
programming problems. This section discusses some of these extensions.

5.1 Piecewise-Linear Terms

Piecewise-linear terms arise naturally in economic contexts, such as with
graduated income taxes. They also may be useful as approximations for non-
linear terms; piecewise-linear approximations may permit using a linear rather
than a nonlinear solver. AMPL offers the syntax

<< bkpoint-list; slope-list>> variable

to indicate that a piecewise-linear term “multiplies” a variable. The term is
zero when the variable is zero and has slopes given in theslope-listwhen the
variable has a value between corresponding breakpoints in thebkpoint-list.
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Piecewise-linear terms can be converted to equivalent linear expressions. In
simple cases, such as a convex piecewise-linear term in an objective that is to
be minimized or on the left-hand side of a≤ constraint, it suffices to replace
the term with suitable linear inequality constraints. Otherwise, linearization
also involves the use of auxiliary constraints and binary variables, or equivalent
Special Ordered Sets of Type 2 [1] that are recognized by many integer pro-
gramming solvers. AMPL automatically provides the auxiliary constraints and
variables if necessary, along with information that enables solvers that handle
SOS2 sets to ignore these extra constraints and variables.

In general, AMPL permits entities in the lists of breakpoints and slopes to
be iterated. For instance, Kallrath has posed a problem [19] with a nonlinear
objective that could be expressed by the AMPL fragment shown in Table 1.20.
He proposes approximating the nonlinear objective by a piecewise-linear one,
to permit using an integer programming solver. Table 1.21 shows how AMPL
would express the piecewise-linear objective, with a numberNbkpts[r] of
breakpoints that depends on the reactorr. (Auxiliary linear constraints insure
that Vol[r] is zero whenever binary variableActive[r] is zero, and that
Vol[r] lies between the first and last breakpoints otherwise.)

Table 1.20. Nonlinear objective in Kallrath’s problem.

set Reactors;
param costFix {Reactors};
param costInv {Reactors};

var Active {Reactors} binary;
var Vol {Reactors} >= 0;

minimize TotalCosts:
sum {r in Reactors}

(sqrt(costInv[r]*Vol[r]) + costFix[r]) * Active[r];

5.2 Complementarity Problems

A complementarity constraint specifies that a given pair of inequalities must
be satisfied, at least one of them with equality. Among the applications that
can be stated as collections of complementarity constraints — so-called com-
plementarity problems — are equilibrium problems in economics and engi-
neering, mechanical contact problems, and optimality conditions for nonlinear
programs, bi-level linear programs, and bimatrix games.

As an example, consider the first-order necessary conditions for a smooth
nonlinear programming problem involving inequality constraints: either an in-
equality is slack and its Lagrange multiplier is zero, or the inequality is tight
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Table 1.21. Piecewise-linear objective in Kallrath’s problem.

set Reactors;
param costFix {Reactors};
param costInv {Reactors};

var Active {Reactors} binary;
var Vol {Reactors} >= 0;

param Nbkpts {Reactors} integer > 0;
param Bpoint {r in Reactors, 1 .. Nbkpts[r]};

minimize TotalCosts:
sum {r in Reactors} (

<< {q in 1 .. Nbkpts[r]-1} Bpoint[r,q] ;
sqrt(costInv[r]*Bpoint[r,1]) / Bpoint[r,1],
{q in 1 .. Nbkpts[r]-1}

(sqrt(costInv[r]*Bpoint[r,q+1]) - sqrt(costInv[r]*Bpoint[r,q]))
/ (Bpoint[r,q+1] - Bpoint[r,q]) >> Vol[r]

+ costFix[r] * Active[r] );

subj to UseLo {r in Reactors}: Active[r] * Bpoint[r,1] <= Vol[r];
subj to UseHi {r in Reactors}: Vol[r] <= Active[r] * Bpoint[r,Nbkpts[r]];

and its multiplier must have the correct sign. All conventional (smooth) math-
ematical programming problems are thus complementarity problems, but the
converse is not true: some complementarity problems cannot be expressed as
constrained optimization problems.

Table 1.22 shows an AMPL model (from [12]) for a production cost mini-
mization problem stated as an equilibrium model. The keywordcomplements
separates each pair of inequalities that are complementary in the sense that at
least one must hold with equality.

Every complementarity condition involves exactly two inequalities. In the
example of Table 1.22, there is one inequality on either side of the complements
operator, and at least one of these inequalities must hold with equality. In
a mixed-complementaritycondition, thecomplements keyword separates an
expression from a pair of inequalities, as in

expr1<= expr2<= expr3 complements expr4.

This condition is interpreted according to the following rules:

expr1 = expr2 ⇐⇒ expr4 ≥ 0
expr1 < expr2 < expr3 ⇐⇒ expr4 = 0

expr2 = expr3 ⇐⇒ expr4 ≤ 0

As an example where mixed complementarity conditions arise, Table 1.23 is a
variant of Table 1.22 corresponding to a minimization problem with lower and
upper bounds on the production-level variables.
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Table 1.22. Production cost minimization as an equilibrium model.

set PROD; # products
set ACT; # activities

param cost {ACT} > 0; # cost per unit of each activity
param demand {PROD} >= 0; # units of demand for each product
param io {PROD,ACT} >= 0; # units of each product per unit of activity

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements

sum {i in PROD} Price[i] * io[i,j] <= cost[j];

Table 1.23. Bounded-variable cost minimization as an equilibrium model.

set PROD; # products
set ACT; # activities

param cost {ACT} > 0; # cost per unit of each activity
param demand {PROD} >= 0; # units of demand for each product
param io {PROD,ACT} >= 0; # units of each product per unit of activity

param level_min {ACT} > 0; # min allowed level for each activity
param level_max {ACT} > 0; # max allowed level for each activity

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
level_min[j] <= Level[j] <= level_max[j] complements

cost[j] - sum {i in PROD} Price[i] * io[i,j];

Complementarity conditions are mainly of interest when they are part of
problems that cannot be stated easily or at all as conventional optimization
problems. For example, it may make sense to view the demand for each product
as a decreasing function of the product’s price, as in Table 1.24.

Some complementarity solvers require a “square” system, with

# of variables= # of complementarity constraints +
# of equality constraints
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Table 1.24. Economic equilibrium with price-dependent demands.

set PROD; # products
set ACT; # activities

param cost {ACT} > 0; # cost per unit of each activity
param io {PROD,ACT} >= 0; # units of each product per unit of activity

param demzero {PROD} > 0; # intercept and slope of the demand
param demrate {PROD} >= 0; # as a function of price

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j]
>= demzero[i] - demrate[i] * Price[i];

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements

sum {i in PROD} Price[i] * io[i,j] <= cost[j];

For the convenience of such solvers, AMPL translates complementarity condi-
tions into a canonical mixed-complementarity form ofconstraintcomplements
variable. To help catch mistakes, AMPL complains by default if a complemen-
tarity problem is not square.

More generally, mathematical programs with equilibrium constraints, often
called MPECs, have no restriction on the numbers of variables and constraints
and may involve objectives. When working with MPECs, one can specify

option compl_warn 0;

to suppress warnings about nonsquare complementarity systems.

5.3 Combinatorial Optimization

Combinatorial optimization problems arise in many contexts and are of con-
siderable practical interest. Some are readily expressed as integer programs, but
formulations in other terms are often more convenient. Constructs convenient to
general-purpose combinatorial optimization can be added to conventional alge-
braic modeling languages in a way that lets one exploit conventional facilities,
such as iteration over sets, while permitting links to new kinds of solvers.

Solvers incorporating the approach known as constraint programming [22],
[21] are of particular interest in this context. They can operate directly on a
variety of constructs that can be introduced into algebraic modeling languages,
and they employ a tree-search approach (much like branch-and-bound for inte-
ger programming) that is optimal at least in principle. The tree search may fail
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in practice to find an optimum in a reasonable amount of time, but it can often
be made practical through a judicious choice of search strategies. (Providing
convenient ways to specify the search strategy is thus an important challenge.)

As an example, we contrast an AMPL integer programming formulation
with a prospective constraint programming formulation for a problem of job
sequencing with setups, simplified from [17]. We are given a set of jobs to be
done, with a processing time and due time for each job. Jobs must be completed
by their due times, and preferably as close to their due times as possible; hence
there is also an early completion penalty for each job. A single machine carries
out all jobs, one at a time, and readying the machine for a particular job involves
a specified setup cost and time. The problem is to sequence the jobs so as to
minimize the total setup costs plus earliness penalties.

In either an integer programming or a constraint programming formulation
of this problem, it makes sense to define a variableComplTime[j] for the
completion time of jobj. Since the constraints will prevent any job from
finishing late, the total earliness penalty can be written as

sum {j in Jobs} duePen[j] * (dueTime[j] - ComplTime[j])

A typical integer programming formulation would introduce, for each pair of
jobsi andj, a binary (zero-one) variableSeq[i,j] that is to equal one if and
only if job i immediately precedes jobj. The setup cost would then be

sum {i in Jobs, j in Jobs} setupCost[i,j] * Seq[i,j]

A more natural expression for the setup cost would introduce an arrayJobForSlot
of job-valued variables, withJobForSlot[k] to equal thekth job handled by
the machine. This kind of formulation, with fewer variables each having a
larger domain, is particularly amenable to constraint programming techniques.
It permits the setup cost to be written

sum {k in Slots} setupCost[JobForSlot[k],JobForSlot[k+1]]

with a specialJobForSlot[0] initialized to represent the initial state of the
machine. This expression’s use of variables as “subscripts” to thesetupCost
parameter is another natural formulation feature that would not be accepted
by an integer programming solver but that is handled directly by solvers for
constraint programming.

In the model’s constraints, an integer programming formulation would re-
quire that completion times respect the due times, and that completion times be
consistent with the setup and processing times:
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For each jobi,
ComplTime[i] <= dueTime[i]

For each job pair (i,j),
ComplTime[i] + setupTime[i,j] + procTime[j] <=
ComplTime[j] + BIG * (1 - Seq[i,j])

The use of the parameterBIG is a standard integer programming “trick” for
insuring that only the sequencing constraints on adjacent jobs are significant.
What we really want to say here is that a job’s completion time is bounded both
by its due time and by the completion time of the next job less the appropriate
processing and setup times. Since the completion time is bounded by just these
two amounts, it can be constrained to equal the lesser of them:

For each slotk,
ComplTime[JobForSlot[k]] = min (

dueTime[JobForSlot[k]],
ComplTime[JobForSlot[k+1]]

- procTime[JobForSlot[k+1]]
- setupTime[JobForSlot[k],JobForSlot[k+1]] )

A constraint programming solver does not attempt to bound the optimum by
relaxing integer variables, and so can deal directly with operators such asmin
that are not strictly linear. It is the use ofmin that permits this to be an equality
constraint; the equality has the advantage of fully defining theComplTime vari-
ables, so that the solver can be instructed to search only over theJobForSlot
variables.

It remains to constrain the variables to represent a valid sequencing. In the
integer programming formulation, this is done through “assignment” constraints
that allow only oneSeq[i,j] to be 1 for eachi and for eachj:

For each jobi,
sum {j in Jobs} Seq[i,j] = 1

For each jobj,
sum {i in Jobs} Seq[i,j] = 1

The same restriction can be expressed more naturally as a single assertion that
no job is repeated in theJobForSlot array. An AMPL iterated operator can
serve to express such an assertion:

all_different {k in Slots} JobForSlot[k]

A constraint programming solver operates directly on this constraint, using an
efficient matching procedure to reveal jobs that can be eliminated from the
variables’ domains at nodes of the search tree.

Conventional linear and integer programs are most easily conveyed to solvers,
which need to see only a matrix and some vectors. Conventional nonlinear pro-
gramming problems are more complicated, in that solvers must be able to eval-
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uate nonlinear expressions and their derivatives. AMPL converts conventional
linear and nonlinear programs to a standard format, a so-called.nl file, which
contains linear parts in a sparse-matrix format and expression graphs for non-
linear expressions. AMPL’s solver-interface library provides facilities to read
the .nl files and to evaluate expressions and their derivatives on request from
a solver. First and second derivatives are computed efficiently by backwards
automatic differentiation. (See [16] for more on automatic differentiation in
general, and [14] and [15] for details on AMPL’s use of it.) Source for AMPL’s
interface library is freely available; seewww.ampl.com/hooking.html for
more details.

When combinatorial constraints are employed as described in this subsection,
complications of an additional kind can arise. Some solvers need to be given the
.nl file’s actual expression graphs in particular formats. This can be achieved
by means of recursive “tree-walks” of the expression graphs after they have
been read from the .nl file; more details appear in [9], with illustrations from
the C++ interface to ILOG Solver.

5.4 Stochastic Programming

Many practical planning problems involve uncertainty. Tomorrow’s prices,
demands, and resources are seldom known precisely, so it is generally necessary
to make educated guesses. Sometimes historical data can guide those guesses
and even suggest probabilities for them. Other situations may require a more
Bayesian approach in which one simply guesses at probabilities for various
scenarios.

Stochastic programming deals with uncertainties of several kinds. Assum-
ing probability distributions on some input parameters, one might minimize
expected cost or maximize expected profit, perhaps as penalized by a variance
term. Sometimes it suffices — or is only feasible — to require that a constraint
hold with some probability, for example, that the probability of a particular kind
of failure be sufficiently low or that some measure of success be met with suf-
ficiently high probability. There is a large and growing literature on stochastic
programming; see for example [18] or [4].

Many kinds of algorithms have been proposed for stochastic programs. In
simple cases involving discrete random variables, perhaps in the form of sce-
narios, one can simply state a “deterministic equivalent”, a conventional math-
ematical programming problem equivalent to the stochastic program. If contin-
uous distributions are involved, one can approximate the problem by sampling,
and perhaps again deal with a deterministic equivalent. Unfortunately, it is
all too easy to find examples where the deterministic equivalent is too large
to solve. Decomposition algorithms, perhaps with dynamic sampling, such as
importance sampling, may then appear to be the only reasonable computational
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alternatives. In some such situations, it is desirable for the solver to be able to
sample the relevant distributions as necessary.

We are working on extensions to AMPL that would facilitate dealing with
at least some stochastic programming problems. One of our goals is to give
suitable solvers the ability to do their own sampling. To this end, we will permit
declaration of random parameters. Because of how they would be conveyed
to solvers and to accord with the conventional notion of “random variables”,
these quantities may in fact be declared as variables with therandom attribute.
Just as conventional parameters may either be fundamental or derived, with
fundamental ones being supplied values after the model has been stated and
derived ones computed from expressions in the model, so random variables
may be either fundamental or derived. For example, in the declarations

param avail_mean >= 0;
param avail_var >= 0;
var avail {1..T} random = Normal (avail_mean, avail_var);

avail is a derived random variable whose distribution is determined by the
fundamental parametersavail_mean andavail_var. Fundamental random
variables could be assigned distributions by thelet command, as illustrated
in Table 1.25. Both fundamental and derived random variables would be sent
to solvers as expression graphs, in much the same way as AMPL’s “defined
variables”.

Table 1.25. Assigning Distributions to Random Variables.

set PROD; param T integer > 0;
param mktbas {PROD} >= 0;
param grow_min {PROD} >= 0;
param grow_max {PROD} >= 0;
var Market {PROD,1..T} random;
.......
let {p in PROD} Market[p,1] := mktbas[p];
let {p in PROD, t in 2..T} Market[p,t] :=

Market[p,t] + Uniform (grow_min[p], grow_max[p]);

New kinds of expressions would help in stating some problems. For exam-
ple, a discrete distribution would be expressed by a sequence of (probability,
value) arguments to a newDiscrete built-in function, as in

Discrete (1/3, 20, 1/3, 50, 1/3, 175)
Discrete ( {s in SCEN} (prob[s],demand[s]) )

(In general, function arguments in AMPL can be iterated, as in the latter
Discrete invocation.) New built-in functionsExpected_valueandVariance
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would permit use of expected values and variances in objectives and constraints,
and the new built-in functionProbability (logical-expression) would per-
mit stating reliability constraints.

In recourse problems, one makes a decision now — in stage 1 — and makes
corrections, i.e., takes recourse, later — in subsequent stages, after new infor-
mation becomes available. For such problems, a declared suffix.stage could
be employed to distinguish the different stages of recourse variables; see the
discussion of suffixes in section 6.3. Solvers could learn which constraints in-
volve random entities from the sparsity pattern of the Jacobian matrix, which
is available in the.nl file.

Discrete, Uniform, and other (half-)bounded distributions will also offer
new opportunities for AMPL’s presolve phase to simplify the problem after
deducing bounds on certain expressions.

6 Communicating with Other Systems

In the following subsections, we consider a variety of ways that AMPL
can communicate with other entities, such as databases, compute servers, and
solvers.

6.1 Relational Database Access

In many practical applications, it is convenient to maintain data — both input
and certain forms of output — in the form of relational tables in database or
spreadsheet files. A relatively recent addition to AMPL is its general mecha-
nism for communicating with these external data repositories. Atable dec-
laration establishes connections between AMPL entities, such as sets, parame-
ters and variables, and their external representations. Subsequentread table
commands copy data from external repositories to the AMPL session, while
write table commands copy values back from the AMPL session to the ex-
ternal repositories. The AMPL model itself remains strictly independent of the
data. Specialtable handlerscommunicate with the external representations; an
open interface makes it possible for anyone to provide additional table handlers
that deal with new kinds of external data representations.

For example, the AMPL book [12] defines a variant of Table 1.5 above in
which there are also lower and upper boundsf_min[j] andf_max[j] on the
amountBuy[j] of foodj that is bought, and similarly lower and upper bounds
n_min[i] andn_max[i] on the amounts of nutrienti consumed. Table 1.26
is a script that obtains data fordiet.mod from a Microsoft Access database,
solves the problem, and writes some results to another Access table.

As seen in this script, the first part of a table declaration generally pro-
vides some quoted strings; these identify the table handler and provide handler-
dependent details about the external representation. In thetable dietFoods
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Table 1.26. Reading and writing database tables for the diet problem.

model diet.mod;
table dietFoods IN "ODBC" "diet1.mdb" "Foods":

FOOD <- [foods], cost, f_min, f_max;
table dietNutrs IN "ODBC" "diet1.mdb" "Nutrs":

NUTR <- [nutrients], n_min, n_max;
table dietAmts IN "ODBC" "diet1.mdb" "Amounts":

[nutrs, foods] amt;
read table dietFoods;
read table dietNutrs;
read table dietAmts;
solve;
table dietResults OUT "ODBC" "diet1.mdb" "Scen3":

[foodlist], Buy, Buy.rc ~ BuyRC,
{j in FOOD} Buy[j]/f_max[j] ~ BuyFrac;

write table dietResults;

declaration, for instance,"ODBC" identifies AMPL’s ODBC table handler, which
works on Microsoft systems with various representations, including Access and
Excel. The next string,"diet1.mdb", is the name of the database file, and
"Foods" is the name of a table within it. The syntaxFOOD <- [foods] causes
setFOOD to be assigned the set of names in external database column"foods";
the AMPL parameterscost,f_min, andf_max are also assigned from database
columns having the corresponding names.

Sometimes the external (database) and internal (AMPL) names differ. For
instance, thetable dietResults declaration specifies a new table, with ex-
ternal column names"foodlist", "Buy", "BuyRC", and"BuyFrac", that is
written after a solution is determined. As this declaration illustrates, specifica-
tion of database columns can involve iteration over sets; in fact, columns can
also be iterated, and tables can be subscripted. Many more details appear in
chapter 10 of [12].

6.2 Internet Optimization Services

Network services for optimization have grown in sophistication along with
the Internet and the World Wide Web [13]. One successful experiment of this
sort is the NEOS project, which makes various facilities related to mathematical
programming freely available over the Internet. The NEOS solver facility offers
many solvers for a growing list of problem areas, including those shown in Table
1.27. Many of these solvers accept AMPL input, as can be seen from the detailed
listing at the NEOS web site,www-neos.mcs.anl.gov/neos/.

The central NEOS Server can accept problem submissions via web forms,
e-mail, or a specialized client (the NEOS “submission tool”) that provides a
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Table 1.27. Problem types accepted by the NEOS Server.

Linear programming
Linear network optimization
Linear integer programming
Nonlinear programming
Nonlinear integer programming
Nondifferentiable & global optimization
Stochastic optimization
Complementarity problems
Semidefinite programming

graphical user interface. The Server has various workstations, in other Internet
locations, at its disposal; upon receiving a problem submission, it selects an
available workstation and sends it the problem. While the problem is being
worked on, NEOS may provide periodic progress reports. Once a problem is
solved, NEOS returns the solution or information about it; the details depend
on the solver and means of submission.

For submissions via web, e-mail, or submission tool, NEOS provides what
is essentially batch processing. This is fine for some purposes, but for appli-
cations where one must manipulate the computed solution, a closer connection
to AMPL’s interactive environment is highly desirable. Such a connection is
provided via NEOS’s Kestrel client. Tables 1.28 and 1.29 show Kestrel in a
typical use. To an AMPL session running locally, Kestrel appears to be a lo-
cally installed solver. When a problem is passed to Kestrel, it is not solved
locally, however, but is instead sent by the Kestrel routines to the NEOS Server.
Eventually the completed solution from the NEOS Server is passed back, and is

Table 1.28. Kestrel example, part 1: sending a problem instance to a remote solver.

ampl: model gridneta.mod; data gridneta.dat;
ampl: option solver kestrel, kestrel_options ’solver=knitro’;
ampl: option knitro_options ’hessopt=6 feastol=1.0e-5 iprint=2’;
ampl: solve;

Job has been submitted to Kestrel
Kestrel/NEOS Job number : 269646
Kestrel/NEOS Job password : QAYkBqEW
Check the following URL for progress report :

http://www-neos.mcs.anl.gov/neos/neos-cgi/
check-status.cgi?job=269646&pass=QAYkBqEW

In case of problems, e-mail :
neos-comments@mcs.anl.gov
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Table 1.29. Kestrel example, part 2: receiving the solver listing and displaying results from the
remote solver.

Intermediate Solver Output:
Checking the AMPL files
Executing algorithm...

Nondefault Options
------------------
hessopt = 6
feastol = 1.00E-05

Iter Res Objective Feas err Opt err ||Step|| CG its mu
------ --- ------------ -------- -------- -------- ------ --------

0 6.733333E-01 1.00E+01
1 Acc 1.050234E+00 4.78E+00 1.05E-01 5.23E+00 2 1.00E-01
2 Acc 2.512883E+00 1.78E+00 1.21E-01 6.70E+00 2
3 Acc 5.126285E+00 5.77E-15 1.11E-01 5.87E+00 2
4 Acc 5.072647E+00 3.11E-15 2.78E-02 7.87E-01 2 2.00E-02
5 Acc 5.042755E+00 1.78E-15 6.83E-03 8.79E-01 3 2.00E-04
6 Acc 5.038339E+00 6.66E-16 1.13E-03 3.95E-01 4
7 Acc 5.038202E+00 4.44E-16 5.03E-04 7.04E-02 6
8 Acc 5.038191E+00 8.88E-16 2.52E-04 1.31E-02 7
9 Acc 5.038189E+00 6.66E-16 6.48E-05 7.40E-03 7 4.00E-05

10 Acc 5.038188E+00 8.88E-16 1.48E-05 2.86E-03 7 4.00E-07
11 Acc 5.038188E+00 4.44E-16 5.02E-06 6.20E-04 6
12 Acc 5.038188E+00 1.33E-15 1.84E-06 3.93E-04 5
13 Acc 5.038188E+00 4.44E-16 7.21E-07 9.79E-05 5

EXIT: OPTIMAL SOLUTION FOUND.
Results completed on remote station.

ampl: display Cost;
Cost = 5.03819

ampl: display {(i,j,0) in A} x[i,j,0];
x[i,j,0] [*,*] (tr)
: 0 1 2 3 4 :=
0 5.01906 3.57129 2.08151 1.48575 0.826271
1 2.0354 1.42124 1.44185 0.891306 0.336723
2 0.663005 1.39555 1.26844 1.06157 0.838679
3 0.761372 0.632623 0.991102 0.966883 0.673966
4 0.250817 0.96421 1.19955 1.41281 1.59119
5 1.27034 2.01509 3.01755 4.18168 5.73317
;
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accessible through the AMPL command environment as if it had been computed
locally. Kestrel’s calls to the remote server employ the CORBA protocols, as
summarized in [6] and explained more fully in [5].

Kestrel allows for a simple sort of parallel processing. The idea is to use
AMPL scriptskestrelsub to submit multiple solve requests andkestrelret
to retrieve the results in the order of submission. The NEOS server distributes
the requests to multiple workstations, queuing some of the requests if necessary.
Thekestrelret script does not return control to AMPL until the results of the
correspondingkestrelsubmit are available. Table 1.30 shows an example
from a decomposition script.

Table 1.30. Kestrel parallel processing.

for {p in PROD} {
problem subI[p];
commands kestrelsub;

}
for {p in PROD} {

problem subI[p];
include kestrelret;
display Artif_Reduced_Cost[p];
...

}

Table 1.30 also illustrates both AMPL’scommandscommand and itsinclude
facility. The former reads and processes the indicated file,kestrelsub, anew
during each iteration of the loop. The rereading would be important ifkestrelsub
were updated elsewhere in the loop. Since neitherkestrelsubnorkestrelret
is modified by the loop in which it appears, it suffices to read them with AMPL’s
include facility, which simply interpolates text from the indicated file during
parsing of the loop, so the file is read only once no matter how many times the
loop body is executed.

Kestrel uses some powerful machinery (CORBA and NEOS) to run solvers
on remote machines, but simpler approaches are possible where the AMPL user
is also the owner of a copy of a solver on a different machine. The key is that
AMPL runs solvers as separate processes that can do whatever they want, such
as cause the problem to be solved remotely. On Unix and Linux systems, one
can easily use a shell script as a solver, and such a solver script can usessh
or (when security is not an issue)rsh to invoke a remote solver, perhaps after
copying the.nl file to the user’s directory at the remote location.
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6.3 Communication with Solvers via Suffixes

AMPL represents auxiliary information associated with model components
by appending to a component’s name a construction of the form.suffix-name.
For a variable, the auxiliary information includes the variable’s lower and upper
bounds and, after a solve, its reduced cost. In Table 1.26, for instance,Buy.rc
denotes the reduced cost of variableBuy.

Some suffixes are built-in, including.sstatus for exchanging basis in-
formation with simplex-based solvers, but AMPL also lets one declare new
suffixes, both for arbitrary use in AMPL scripts and for exchanging auxiliary
information with suitable solvers. Mixed-integer programming solvers, for ex-
ample, often use priorities on integer variables to help decide which variable
to branch on next. A properly written AMPL interface to such a solver would
recognize suffix.priority on integer variables and act accordingly. After
declaring a suffix, one can assign values to it with alet command, as in

model multmip1.mod; data multmip1.dat;
suffix priority;
let {i in ORIG, j in DEST} Use[i,j].priority

:= sum {p in PROD} demand[j,p];

One can also specify suffix values in a variable’s declaration:

suffix priority;
var Use {ORIG, j in DEST} binary

suffix priority sum {p in PROD} demand[j,p];

Solvers can return information in suffixes and even declare new suffixes if
necessary. For instance, on request, when a problem is infeasible, some solvers
return in suffix.iis an indication of which variables and constraints belong to
an irreducible infeasible subset, a minimal set of mutually inconsistent variable
bounds and constraints. An IIS can help pinpoint a cause of infeasibility.

Table 1.31 demonstrates finding an IIS and illustrates some details of suffixes
and generic synonyms. In response to the first infeasiblesolve, this solver re-
turns in suffix.dunbdd a direction of dual unboundedness. Since.dunbdd has
not yet been declared as a suffix, AMPL creates and exhibits asuffix decla-
ration statement automatically. The followingdisplay command involves the
generic synonyms_conname for the names of all constraints and_con for the
constraints themselves; in this case,_con.dunbdd shows the.dunbdd values
of all the constraints. The output suggests an inconsistency between the bounds
on sodium (NA) and vitamin B2.

For further confirmation, a suitableoption command and secondsolve re-
quest an IIS. Following thesolve, AMPL creates and exhibits anothersuffix
declaration, for the suffix.iis. Since this is asymbolic suffix, the solver has
provided symbolic synonyms for the.iisvalues, shown in theoptioniis_table
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Table 1.31. Retrieval of auxiliary solver information via solver-defined suffixes.

ampl: model diet.mod; data diet2.dat;
ampl: option solver cplex; solve;
CPLEX 8.0.0: infeasible problem.
4 dual simplex iterations (0 in phase I)
constraint.dunbdd returned

suffix dunbdd OUT;
ampl: display _conname, _con.dunbdd;
: _conname _con.dunbdd :=
1 "Diet[’A’]" 0
2 "Diet[’B1’]" 0
3 "Diet[’B2’]" 0.322951
4 "Diet[’C’]" 0
5 "Diet[’NA’]" -0.00409836
6 "Diet[’CAL’]" 0
;

ampl: option cplex_options ’iisfind=1’; solve;
CPLEX 8.0.0: iisfind=1
CPLEX 8.0.0: infeasible problem.
0 simplex iterations (0 in phase I)
Returning iis of 7 variables and 2 constraints.
constraint.dunbdd returned

suffix iis symbolic OUT;

option iis_table ’\
0 non not in the iis\
1 low at lower bound\
2 fix fixed\
3 upp at upper bound\
’;

ampl: display _varname, _var.iis, _conname, _con.iis;
: _varname _var.iis _conname _con.iis :=
1 "Buy[’BEEF’]" non "Diet[’A’]" non
2 "Buy[’CHK’]" low "Diet[’B1’]" non
3 "Buy[’FISH’]" low "Diet[’B2’]" low
4 "Buy[’HAM’]" upp "Diet[’C’]" non
5 "Buy[’MCH’]" low "Diet[’NA’]" upp
6 "Buy[’MTL’]" upp "Diet[’CAL’]" non
7 "Buy[’SPG’]" low . .
8 "Buy[’TUR’]" low . .
;
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command. (Solvers always deal with numeric suffix values; in the AMPL ses-
sion, the numeric values are available in the.iis_num suffix.) Finally, the
display output shows that, in this example, the IIS consists of the bounds on
severalBuy variables plus the lower limit on vitamin B2 and the upper limit on
sodium. This can be interpreted as indicating that, for instance, if it is essential
to keep allBuy amounts within their specified bounds, then the infeasibility can
be alleviated only by relaxing either the lower limit on B2 or the upper limit on
sodium.

More information about declaring and using suffixes appears in chapter 14
of [12].

7 Updated AMPL Book

The first edition of the AMPL book appeared in late 1992, with a 1993
copyright. The second edition [12] appeared a decade later (late 2002, with
a 2003 copyright). It describes many extensions made during that decade,
with new chapters on modeling commands, database access, command scripts,
complementarity problems, display commands, and interactions with solvers.
The other chapters and the reference manual in the appendix are extensively
revised. More details about the book appear atwww.ampl.com/ampl/BOOK/.

8 Concluding Remarks

Since its inception in the mid-1980s, AMPL has evolved in many ways, but
several goals and principles have guided its evolution from the beginning:

Stay close to conventional mathematical notation, but use notation that
is easy to enter on an ordinary keyboard.

Use a consistent style in designing notation.

Permit entities to be iterated whenever this makes sense.

Make most indexing explicit, to avoid surprise interpretations and to allow
complicated relationships to be expressed.

Encourage separation of model and data.

Automatically update derived entities as needed after fundamental data
values have changed.

Provide reasonable default values and behaviors and make specifying
alternatives easy.

Use open interfaces where possible, for example to solvers, databases,
and user-defined functions.



32

References

[1] E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathemat-
ical system for non-convex problems using ordered sets of variables. In
J. Lawrence, editor,Proceedings of the Fifth International Conference on
Operational Research, pages 447–454. Tavistock Publications, London,
1970.

[2] Jon L. Bentley, Lynn W. Jelinski, and Brian W. Kernighan. CHEM — A
language for phototypesetting chemical structure diagrams.Computers
and Chemistry, 11(4):281–297, 1987.

[3] Jon L. Bentley and Brian W. Kernighan. GRAP — A language for type-
setting graphs.Communications of the ACM, 29(8):782–792, 1986.

[4] John R. Birge and François Louveaux.Introduction to Stochastic Pro-
gramming. Springer Verlag, 1997.

[5] Elizabeth D. Dolan, Robert Fourer, Jean-Pierre Goux, and Todd S. Mun-
son. Kestrel: An interface from modeling systems to the neos server.
Technical report, Argonne National Laboratory, 2002. URL =http://
www-neos.mcs.anl.gov/neos/ftp/kestrel2.pdf.

[6] Elizabeth D. Dolan and Todd S. Munson. The kestrel interface to the
neos server. Technical report, Argonne National Laboratory, 2002. URL
= http://www-neos.mcs.anl.gov/neos/ftp/kestrel.pdf.

[7] Michael Ferris, Robert Fourer, and David M. Gay. Expressing comple-
mentarity problems in an algebraic modeling language and communicat-
ing them to solvers.SIAM J. Optimization, 9(4):991–1009, 1999.

[8] Robert Fourer. Modeling languages versus matrix generators for linear
programming.ACM Trans. Math. Software, 9(2):143–183, 1983.

[9] Robert Fourer and David M. Gay. Extending an algebraic modeling
language to support constraint programming.INFORMS J. Computing,
14(4):322–344, 2002.

[10] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A math-
ematical programming language. Technical Report Computing Science
Technical Report No. 133, AT&T Bell Laboratories, Murray Hill, NJ,
USA, Jan. 1987. revised June 1989.

[11] Robert Fourer, David M. Gay, and Brian W. Kernighan. A modeling lan-
guage for mathematical programming.Management Science, 36(5):519–
554, 1990.

[12] Robert Fourer, David M. Gay, and Brian W. Kernighan.AMPL:
A Modeling Language for Mathematical Programming. Duxbury
Press/Brooks/Cole Publishing Co., second edition, 2003.



REFERENCES 33

[13] Robert Fourer and Jean-Pierre Goux. Optimization as an internet resource.
Interfaces, 31(2):130–150, 2001.

[14] D. M. Gay. Automatic differentiation of nonlinear AMPL models. In
A. Griewank and G. Corliss, editors,Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, pages 61–73. SIAM,
1991.

[15] David M. Gay. More AD of nonlinear AMPL models: Computing Hessian
information and exploiting partial separability. In Martin Berz, Christian
Bischof, George Corliss, and Andreas Griewank, editors,Computational
Differentiation: Techniques, Applications, and Tools. SIAM, 1996.

[16] Andreas Griewank.Evaluating Derivatives: Principles and Techniques
of Algorithmic. SIAM, 2000.

[17] Carsten Jordan and Andreas Drexl. A comparison of constraint and
mixed-integer programming solvers for batch sequencing with sequence-
dependent setups.INFORMS J. Computing, 7(2):160–165, 1995.

[18] Peter Kall and Stein W. Wallace.Stochastic Programming. John Wiley &
Sons, Chichester, 1994.

[19] Josef Kallrath. Exact computation of global minima of a nonconvex port-
folio optimization problem. In C. A. Floudas and P. M. Pardalos, editors,
Frontiers in Global Optimization. Kluwer Academic Publishers, 2003.

[20] Narendra Karmarkar. A new polynomial-time algorithm for linear pro-
gramming.Combinatorica, 4:373–395, 1984.

[21] Irvin J. Lustig and Jean Francois Puget. Program does not equal program:
Constraint programming and its relationship to mathematical program-
ming. Interfaces, 31(6):29–53, 2001.

[22] Kim Marriott and Peter J. Stuckey.Programming with Constraints: An
Introduction. MIT Press, 1998.


