

Outline
1. Modern Optimization in 2025

→ Industry level experience in Academia

→ Writing Optimization Code + Amplbot

2. AMPL/MP: Complex models can be made easy

→ Automatic Reformulations & Enhanced solvers

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

What is AMPL?

3INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

4

Mathematical
Optimization
Engine

→ Express problems as you think about them
○ Large-scale modeling
○ Linear, Non-Linear, Constraint

Programming...

→ Solver interfaces
○ Open-source: HiGHS, Scip, CBC, ipopt,. . .
○ Commercial: CPLEX, Gurobi, Xpress,

Knitro, COPT . . .

→ Amplpy

→ Other APIs
- C++, C#, Java, MATLAB, R

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved. 4

5

→ Solver interfaces
○ Open-source: HiGHS, Scip, CBC, ipopt,

Gecode. . .
○ Commercial: CPLEX, Gurobi, Xpress,

Knitro, COPT . . .

→ Amplpy

→ Other APIs
- C++, C#, Java, MATLAB, R

Models aren’t just “min cx s.t. Ax=b”
Example: If you are charging a thermal battery, you need to charge at a stable rate:

set Times ordered;

param MaxChargeRate;

var ChargeRate{t in Times} >= 0 <= MaxChargeRate;

subject to ChargeRateVariationLimit{t in Times: ord(t) >= 2}:

 ChargeRate[t] > 0 && ChargeRate[prev(t)] > 0

 ==>

 abs(ChargeRate[t]-ChargeRate[prev(t)]) <= 10;

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

6

Third-party benchmarks

Ref: GBOML: A Structure-Exploiting Optimization Modelling Language in Python
Bardhyl Miftari et al. (2023)

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

7INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Where is AMPL used most?

→ Mission-critical applications where mistakes can be very expensive (e.g.,

 damaging equipment) and transparent modeling is essential.

→ Large scale optimization applications where highly efficient optimization

 software is essentially indispensable due to performance requirements.

→ Very complex and detailed models incorporating complex business

 details and regulations.

→ Competitive environments where new models must be

 quick to develop and deploy.

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved. 9

How Optimization Generates
Millions💰

10INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

11

Zara Case Study

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Logistics
&

Supply Chain

in ActionAMPL

12INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://www.solverytic.com/modeling/

Finance
&

Energy

in ActionAMPL

13INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://www.solverytic.com/modeling/

14INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Solving Energy Models with GPUs (https://ampl.com/cuPDLP)

15INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://ampl.com/cuPDLP

Open-source repo of notebooks (https://ampl.com/colab)

16INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://ampl.com/colab

Interactive optimization Apps (https://ampl.com/streamlit)

17INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://ampl.com/streamlit

Industry level experience for
Academia too

18INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

AMPL for Academia

19

20

AMPL for
Academics

Includes:

→ Completely free

→ No size restrictions
→ Full Ampl

+ All Open source solvers
+ select Commercial solvers (Gurobi, CPLEX,

Mosek, COPT, Xpress)

Requires:

 → Academic email for access (sign-up at
portal.ampl.com)

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved. 20

http://portal.ampl.com

21

AMPL for
Courses

Includes:

→ Full AMPL + all solvers

→ Dynamic cloud licensing by default

1 uuid shareable with your course
→ Independent from installation

→ Straightforward Google Colab / Python
integration

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved. 21

22

AMPL
Career Starter

Includes:

→ Accessible within 24 months post-graduation
for 12-month period

→ Full AMPL with open source + commercial
solvers

→ Commercial/production use for your place of
business

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

AMPLify your career!

22

Writing optimization
in 2025

- Directly from Google Colab
- From wherever you write Python
- Amplide? (Nope)

23INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Visual Studio Code Extension

24

→ Develop Python and Ampl code through Visual Studio Code

→ Check out the new official plugin! VS Code Marketplace

+

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://marketplace.visualstudio.com/items?itemName=AMPLOptimizationInc.ampl-plugin-official

Visual Studio Code Extension

25

+

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Try the amplbot!
Available at chatgpt.com

→ High Level modeling

→ Troubleshooting

→ Explainability

→ Substantial improve

over baseline LLMs

26INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://chatgpt.com/g/g-68c00de8b030819185be6db190ad7bce-amplbot

Part II
Complex Problems Can Be Made Simple!

27INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Outline Part II
→ Why enhanced modeling?

○ User vs. solver perspective

→ Enhanced expression support

○ (Automatic) reformulation examples & control options
○ MINLP support
○ Multi-objective modeling

→ Tools

○ Automatic solution checker
○ Reformulation Explorer
○ Solvers

28INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

ChatGPT: “how to formulate a disjunction in MIP?”
1. General Form of a Disjunction

A disjunction expresses that at least one of several constraint sets must hold:

(A1x≤b1)  ∨  (A2x≤b2)

2. Standard MIP Reformulation Using Binary Variables
To encode this in a linear MIP, introduce a binary variable y∈{0,1}.

Then, we can linearize as:

A1 x≤b1 +M1 y
A2x≤b2+M2(1−y)

Here:

● M1, M2 are big-M constants (large enough to “turn off” the constraints when not
active).

29INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

ChatGPT: “how to formulate a disjunction in MIP?”

........ (continued)

7. Example in AMPL (Using Logical Constraints via MP Library)

AMPL MP allows disjunctions directly:

subject to either_or:

 (x1 <= 5) or (x2 <= 3);

→ As a modeler, which would be your preference?

30INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Enhanced modeling: solver perspective

Disjunction modeling

→ Most commercial MIP solvers: indicator constraints

→ Except Mosek: disjunctive normal form

→ Constraint Programming solvers: arbitrary logical formulas

Solvers claim that their specialized input representations are best for them!

31INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

AMPL MP Library: new solver interfaces
Motivation

→ Describe optimization models to computers more like you think about them

○ Development speed, transparency, maintainability
○ Better/more general information for the solver => performance ?

Strategy

→ Extend modeling tools to more natural objective and constraint expressions

→ Build solver interfaces to convert natural expressions to forms that solvers require

32INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Supported Expressions
AMPL operators and functions

○ Conditional: if-then-else; = =>, <= =, <= =>

○ Logical: or, and, not; exists, forall

○ Piecewise linear: abs; min, max; <<breakpoints; slopes>>

○ Counting: count; atmost, atleast, exactly; numberof

○ Comparison: >, <, !=; alldiff

○ Complementarity: complements

○ Nonlinear: *, /, ^; exp, log; sin, cos, tan; sinh, cosh, tanh

○ Set membership: in

Recognizable expressions
○ High-order polynomials

○ Second-order cones

○ Exponential cones (MOSEK driver!)

33INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

A basic case: indicator (into inequality)
var b binary;
s.t. Indicator: b==1 ==> 5*x[1] + 2*x[2] <= 0;

● Natively supported by many solvers
● Important: tight bounds on the compared expression, e.g.:

var x {1..2} >=0 <=15;

● Linearized when not supported, or when desired (option
acc:indle=0):

s.t. BigM: 5*x[1] + 2*x[2] <= 105*(1-b);

34INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Disjunction: ||, exists
subject to Disjunction:

(level_A <= 5) || (level_B >= 10);

Reformulation for a typical MIP solver using indicators:

var {1..3} aux_result: binary;
s.t. Term1: aux_result[1] ==> level_A <= 5;
s.t. Term2: aux_result[2] ==> level_B >= 10;
s.t. Disj__:

aux_result[3] ==> (aux_result[1] || aux_result[2]);
s.t. FixResult: aux_result[3] <==> True;

Indicators and OR are linearized if necessary.

35INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

==> vs <==> vs <==: when which?
minimize TotalCost:

if (level_A <= 5) || (level_B >= 10) then 1000; # else 0

Reformulation:

var {1..3} aux_result: binary;
s.t. Term1: aux_result[1] <== level_A <= 5;
s.t. Term2: aux_result[2] <== level_B >= 10;
s.t. Disj__:

aux_result[3] <== (aux_result[1] || aux_result[2]);
minimize TotalCost__: 1000*aux_result[3];

The disjunction is in negative context which reverses the implications.

36INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

An experiment with max()
From S. Brand et al. (2008), Flexible, rule-based constraint model linearisation,
citing a radiation model for intensity-modulated radiotherapy, core part:
min-cardinality decomposition in C1P matrices:

subject to Increment_Constraints {i in ROWS, b in BTIMES}:
 N[b] >= Q[i,1,b]

 + sum {j in 2..n} max(Q[i,j,b] - Q[i,j-1,b], 0);

● The max() expressions are in negative context: sufficient linearization is
var Z {i,j,b} >=0;
s.t. LinearizeNegCtx {i,j,b}:

Z[i,j,b] >= Q[i,j,b] - Q[i,j-1,b];
subject to Increment_Constraints_Lin {i in ROWS, b in BTIMES}:
 N[b] >= Q[i,1,b]

 + sum {j in 2..n} Z[i,j,b];

37INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

An experiment with max()
subject to Increment_Constraints{i in ROWS, b in BTIMES}:
 N[b] >= Q[i,1,b] + sum{j in 2..n} max(Q[i,j,b] - Q[i,j-1,b], 0);

● The max() expressions are in negative context: sufficient linearization is

var Z {i,j,b} >=0;
s.t. LinearizeNegCtx {i,j,b}: Z[i,j,b] >= Q[i,j,b] - Q[i,j-1,b];

● Authors observe that CPLEX 9.1 performs much better with full linearization which
includes positive context:

var B {i,j,b,1..2} binary;
s.t. Disjunction {i,j,b}: B[i,j,b,1] + B[i,j,b,2] >= 1;
s.t. LinearizePosCtx {i,j,b}:

B[i,j,b,1]==1 ==> Z[i,j,b] <= Q[i,j,b] - Q[i,j-1,b]
&& B[i,j,b,1]==1 ==> Z[i,j,b] <= 0;

38INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Replicate the experiment
Native max() Linear max() Linear max(), full

N solved mean t N solved mean t N solved mean t

Max.
intens.
10

CPLEX 22.1.1 - - 10 1.80 10 2.53

Gurobi 12.0.3 10 0.81 10 1.02 10 1.06

Highs 1.11 - - 10 3.33 10 6.37

Max.
intens.
12

CPLEX - - 10 18.47 10 26.05

Gurobi 10 6.21 10 10.27 9 33.50

Highs - - 10 12.18 10 20.69

Apple M1 Pro, 1 thread, 10 instances per category, time limit 300s

39INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Discussion
● Observations contrast those from S. Brand et al. (2008):

○ Gurobi:
■ Native max() is best, followed by simple linearization.

Full linearization is worst.
○ CPLEX 22.1.1, Highs:

■ Simple (context-aware) linearization is best, as expected.

● Options to control reformulations (dev.ampl.com):
○ acc:max=4 as expression tree node, if supported
○ acc:max=2 as general constraint, if supported
○ acc:max=0 linearize (context-aware by default)
○ cvt:pre:ctx:max=0 full linearization

40INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://dev.ampl.com/

Corner Case: Strict Comparison
Consider the above reverse implication:

s.t. Term1: aux_result[1] <== level_A <= 5;

Which is equivalent to the indicator constraint

Term1IndStrict: (aux_result[1]==0) ==> (level_A > 5);

Assuming level_A is real-valued, what is the meaning of (level_A > 5)?

● For the modeler…
● For the chip…

41INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Strict comparison tolerance
IndStrict: (aux_result[1]==0) ==> (level_A > 5);

AMPL MP converts strict comparisons for MIP solvers into non-strict comparisons
using option cmp:mip:eps (default value 1e-4):

IndNonStrict: (aux_result[1]==0) ==> (level_A >= 5.0001);

● A guideline for the value of cmp:mip:eps is to set it at least 10x larger as
feastol, the primal feasibility tolerance (default 1e-6 for most solvers).

● When the comparison has a single context (pos/neg), the strictness can be
chosen to avoid tolerance application:

minimize TotalCost_NoFinalStrictCmp:
if (level_A < 5) || (level_B > 10) then 1000;

42INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

(Dis)equalities
● Implied equality: again, an indicator

s.t. IndEq: b==0 ==> 5*x[1] + 2*x[2] == 7;

● Reverse implication:
s.t. IndEqRev0: b==0 <== 5*x[1] + 2*x[2] == 7;

○ Equivalent to implied disequality
s.t. IndDiseq: b==1 ==> 5*x[1] + 2*x[2] != 7;

■ Reformulation as a disjunction:
... ==> (5*x[1]+2*x[2] < 7 or 5*x[1]+2*x[2] > 7);

■ Unary encoding is applied in some cases

43INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Unary encoding
var Final_patt_seq {SLOT_SEQ} in PATTERNS_ALL; # integer vars

s.t. assign_color_SLV {r in ROUND, s in SLOT, k in PATTERNS: ...}:
Final_patt_seq[slot_r_cum[r] + s]==k

 ==> exists {i in 1..noSLV}
 (Color_SLV[slot_r_cum[r] + s,i]==color_spec1[k]
 and Avail_SLV[slot_r_cum[r] + s,i]);

● When an integer variable compares to several values, unary encoding applies:

var x in 1..3;

translates into

var unary {1..3} binary;
x == unary[1] + 2*unary[2] + 3*unary[3];
1 == sum {i in 1..3} unary[i];

44

Options uenc:ratio and
uenc:negctx control the
choice between
reformulations.

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Operators count, atleast/atmost/exactly, numberof

Generalize disjunction to count the number of true terms:

minimize NumBigDeviations:
count {i in ASSETS}

(abs(weight[i]-benchmark[i]) > 0.005);

s.t. LimitBigWeights:
atmost 5 {i in ASSETS} (weight[i] > 0.05);

Finance AMPL Colab notebooks: https://colab.ampl.com/tags/finance.html

45INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://colab.ampl.com/tags/finance.html

The Golomb Ruler problem
A Golomb ruler is a set of marks at integer positions along a ruler such that no two pairs
of marks are the same distance apart.

param m default 4;
param n = m*m;

set OrdPairs = {i in 1..m-1, j in 2..m: i<j};

var mark {i in 1..m} in 0..n;
var differences {(i,j) in OrdPairs} in 1..n;

s.t. AssignDiffs {(i,j) in OrdPairs}:
differences[i,j] == mark[j] - mark[i];

s.t. FixMark1: mark[1] == 0;
s.t. MarksOrdered {i in 1..m-1}: mark[i] <= mark[i+1]-1;

46INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

The Golomb Ruler problem
param DefaultAllDiff default 1; ## Choose the alldiff

s.t. AllDiff {if DefaultAllDiff}: ## MIP reform. uses UEnc
alldiff {(i,j) in OrdPairs} differences[i,j]; ## CP: native

s.t. AllDiffNaive {if not DefaultAllDiff}:
 forall {(i,j) in OrdPairs, (k,l) in OrdPairs:

 i<k || (i==k && j<l)}
 differences[i,j] != differences[k,l];

s.t. AntiSymm3: mark[2] - mark[1] <= mark[m] - mark[m-1] - 1;

minimize Largest: mark[m];

47INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Golomb Ruler
Native alldiff alldiff -> Uenc Naïve alldiff

m (opt) nodes/cp t nodes/cp t nodes/cp t

7 (25) IBM ILOG CP 1693 0.02 96782 2.35 1693 0.02

Gurobi - - 985 2.94 1533 0.47

Highs - - 660 2.57 1282 1.26

9 (44) IBM ILOG CP 149818 1.82 3613742 269.85 149818 1.81

Gurobi - - 4437 69.81 18463 82.32

Highs - - 34194 154.75 286620 508.96

Apple M1 Pro, 1 thread

48INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Golomb Ruler OLD
alldiff alldiff naive

m (opt) nodes/cp t nodes/cp t

7 (25) IBM ILOG CP 1693 0.02 1693 0.02

Gurobi 985 2.94 1533 0.47

Highs 660 2.57 1282 1.26

9 (44) IBM ILOG CP 149818 1.82 149818 1.81

Gurobi 4437 69.81 18463 82.32

Highs 34194 154.75 286620 508.96

Apple M1 Pro, 1 thread
49INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Reformulation control essentials (dev.ampl.com)
● Options acc:max, acc:abs, cvt:pre:ctx:cos, etc.

○ Native constraint/expression acceptance and context
● Option cvt:mip:eps

○ Real-valued strict comparison tolerance
● Option cvt:bigM

○ Default big-M value for unbounded variables, when linearization is
necessary or desired. Avoid unbounded variables.

● Options cvt:compl[:eps]
○ Complementarity reformulations

● Options cvt:plapprox:...
○ Domain and precision of piecewise-linear approximation of nonlinear

functions

50INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

http://dev.ampl.com

(MI)NLP support for MP-based solvers
(MI)NLP support for Gurobi, Xpress Global, COPT (NLP only), BaronMP,
and SCIP

minimize Fchi:
 x[1]^2 - 12*x[1] + 11 + 10*cos(pi*x[1]/2)
+ 8*sin(pi*5*x[1]) - exp(-(x[2] - .5)^2/2)/sqrt(5);

● Disabled in COPT by default, set
acc:_expr=2 [alg:relax=1]

51INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Multiobjective modeling

52

● Multiobjective models can be simpler for certain problems
○ Some constraints can be moved to the objectives as penalties
○ Lexicographic optimization allows objective ranking

● Example on AMPL Colab: aircrew trainee scheduling with
seniority constraints https://colab.ampl.com/tags/multi-objective.html

○ Smaller model and faster solving than the original hard-constrained model

maximize ReverseSeniority {e in 1..2, i in I: E[i]==e}:
 sum {t in V[i]: Pr[i, t]==0}
 (S[i] - min {j in I} S[j] + 1) * x[i, t]
 suffix objpriority (2-e)*S_range + 1 + S[i] - min {j in I} S[j];

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://colab.ampl.com/tags/multi-objective.html

Automatic solution checker

53

● All MP solvers automatically check every solution

● Tolerance options
○ sol:chk:feastol, sol:chk:feastolrel (both default 1e-6)
○ sol:chk:inttol (default 1e-5) integrality
○ Warning on violation, or abort if option sol:chk:fail given

● Checks only original (AMPL-side) and final (solver-side)
model items by default

○ Option sol:chk:mode can add intermediate reformulated expressions

https://mp.ampl.com/modeling-tools.html#automatic-solution-check

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://mp.ampl.com/modeling-tools.html#automatic-solution-check

Check solutions yourself!

54

E.g., in AMPL:

● Objective value(s):
_obj

● Algebraic constraints and variable bounds:
min{i in 1 .. _ncons} _con[i].slack # Should be >= -1e-6
min{i in 1 .. _nvars} _var[i].slack

● Logical constraints:
if forall {i in 1.._nlogcons} _logcon[i] then 1

● Complementarities:
max{i in 1 .. _nccons} abs(_ccon[i]) # Should be <= 1e-6

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Reformulation Explorer

55

● Want to know what AMPL MP does to your model?

● Simplest way: option writeprob=model.lp or similar
○ Exports solver model in the LP or another format

● To see intermediate reformulation steps, use
https://mp.ampl.com/modeling-tools.html#reformulation-explorer.

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

http://model.lp
https://mp.ampl.com/modeling-tools.html#reformulation-explorer

NL reader and writer libraries

56

● NL is a low-level model format accepted by AMPL solvers
and used by several modeling systems

● NL reader and writer libraries in MP use low-overhead C++
template-based interfaces

● C and Python NL writer wrappers are available for MILP
○ Package nlwpy on PyPi

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Which solver to use?

57INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

58

[1]
GPU-accelerated
algorithms, such as
PDLP, are
available.

[2]
Conic
programming:
MOSEK supports
SOCP and
exponential cones,
other solvers only
SOCP.

(Originally)
Linear solvers

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://ampl.com/cuPDLP
https://dev.ampl.com/solvers/index.html#id3
https://amplopt.streamlit.app/Logistic_Regression

59

[3]
Global optimality:
while Knitro and
Bonmin accept
integer variables,
they only guarantee
local optimum for
non-convex models.

[4]
With the MP2NL
meta-driver.

Nonlinear solvers

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://dev.ampl.com/solvers/index.html#id9
https://mp.ampl.com/modeling-tools.html#meta-driver-mp2nl
https://mp.ampl.com/modeling-tools.html#meta-driver-mp2nl

AMPL Constraint Programming solvers

● IBM ILOG CP
● Gecode

CP solvers support most combinatorial MP constructs natively.

60INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

Summary

61

- AMPL+MP: bridge between modelers and solvers
- Write models more like you think about them
- Solvers receive the preferred model form

- “Set and forget”: our approach to modern
real-world optimization development

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

References

62

- https://ampl.com/academia
- Free full-size academic licenses

- https://mp.ampl.com/model-guide.html
- Modeling Guide for MP-based AMPL Solvers

- https://ampl.com/streamlit
- Streamlit App with many examples

- https://ampl.com/mo-book
- New AMPL+Python Book

- https://ampl.com/colab
- Collection of AMPL models in Jupyter Notebooks

- try.ampl.com

INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

http://try.ampl.com

Thank you!

Visit us @ Booth 221

Technology Showcase: From Classroom to Industry:
Modern Optimization with AMPL

Tuesday, October 28 | 11:00 AM - 12:15 PM

Building A Level 3 A301

Technical session: Efficient Data Exchange in Amplpy
via Apache Arrow Integration. Jurgen Lentz

Tuesday, October 28 | 2:45 PM - 4:00 PM

Building B Level 2 B201

Contact us:
academia@ampl.com

AMPL Academic Community:
https://discuss.ampl.com/

63INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

mailto:academia@ampl.com
https://discuss.ampl.com/

Supported Solver Features and Emulated Features
(https://mp.ampl.com/features-guide.html)

64INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://mp.ampl.com/features-guide.html

Supported Solver Features and Emulated Features: the list goes on…
(https://mp.ampl.com/features-guide.html)

65INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.

https://mp.ampl.com/features-guide.html

