AMPL Optimization | INFORMS Annual Meeting 2025

From Classroom to Industry

Modern Optimization with AMPL for Energy, Finance, Supply Chain, and Beyond

Marcos Dominguez Gleb Belov

Outline

- 1. Modern Optimization in 2025
 - → Industry level experience in Academia
 - → Writing Optimization Code + Amplbot

- 2. AMPL/MP: Complex models can be made easy
 - → Automatic Reformulations & Enhanced solvers

What is AMPL?

Mathematical Optimization Engine

→ Express problems as you think about them

- Large-scale modeling
- Linear, Non-Linear, Constraint Programming...

→ Solver interfaces

- Open-source: HiGHS, Scip, CBC, ipopt,...
- Commercial: CPLEX, Gurobi, Xpress, Knitro, COPT...

\rightarrow Amplpy

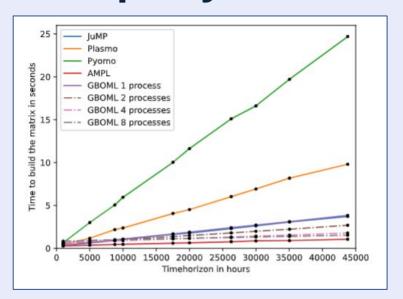
→ Other APIs

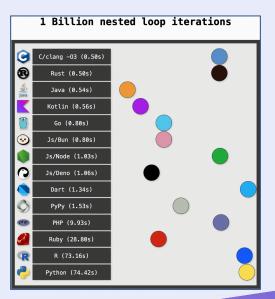
- C++, C#, Java, MATLAB, R

Models aren't just "min cx s.t. Ax=b"

```
Example: If you are charging a thermal battery, you need to charge at a stable rate:
set Times ordered:
param MaxChargeRate;
var ChargeRate{t in Times} >= 0 <= MaxChargeRate;</pre>
subject to ChargeRateVariationLimit{tin Times: ord(t) >= 2}:
   ChargeRate[t] > 0 && ChargeRate[prev(t)] > 0
       ==>
   abs (ChargeRate[t]-ChargeRate[prev(t)]) <= 10;
```

Third-party benchmarks





Ref: GBOML: A Structure-Exploiting Optimization Modelling Language in Python Bardhyl Miftari et al. (2023)

GBOML: a structure-exploiting optimization modelling language in Python

Abstract

Mixed-Integer Linear Programs (MILPs) have many practical applications. Most modelling tools for MILPs fall in two broad categories. Indeed, tools such as algebraic modelling languages allow practitioners to compactly encode models using syntax close to mathematical notation but usually lack support for special structures, while other tools instead provide predefined components that can be easily assembled but modifying or adding new components is difficult. In this work, we present the inner workings of the Graph-Based Optimization Modelling Language (GBOML), an open-source modelling tool implemented in Python combining the strengths of both worlds. GBOML natively supports special structures that can be encoded by a hierarchical hypergraph, offers syntax close to mathematical notation and facilitates the modular construction and reuse of time-indexed models. We detail design choices enabling these features and show that they simplify problem encoding, lead to faster instance generation times and sometimes faster solve times. We benchmark the times taken by GBOML, JuMP, Plasmo, Pyomo and AMPL to generate instances of a structured MILP. We find that GBOML outperforms Plasmo and Pyomo, is tied with JuMP but is slower than AMPL. With parallel model generation, GBOML outperforms JuMP and closes the gap with AMPL. GBOML has the smallest memory footprint.



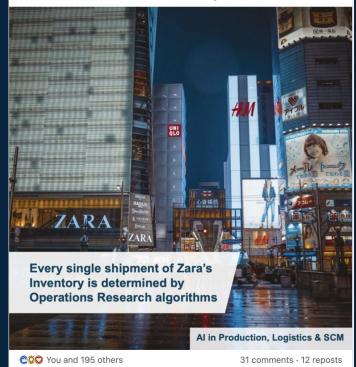
Where is AMPL used most?

- → Large scale optimization applications where highly efficient optimization software is essentially indispensable due to **performance requirements**.
- → Very **complex and detailed models** incorporating complex **business details** and **regulations**.
- → Mission-critical applications where mistakes can be very expensive (e.g. damaging equipment) and **transparent modeling is essential**.
- → Competitive environments where new models must be **quick to develop and deploy**.

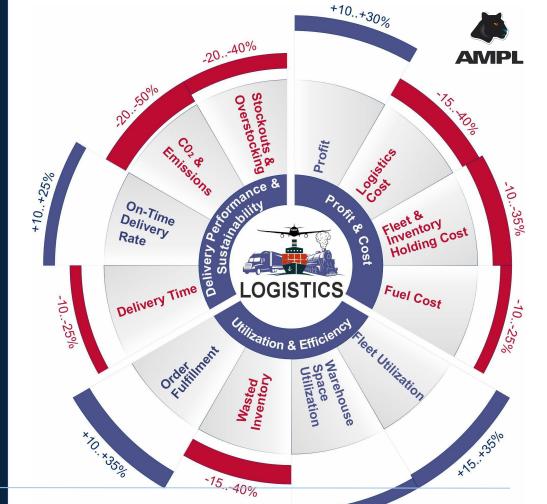
How Optimization Generates Millions

Zara Case Study

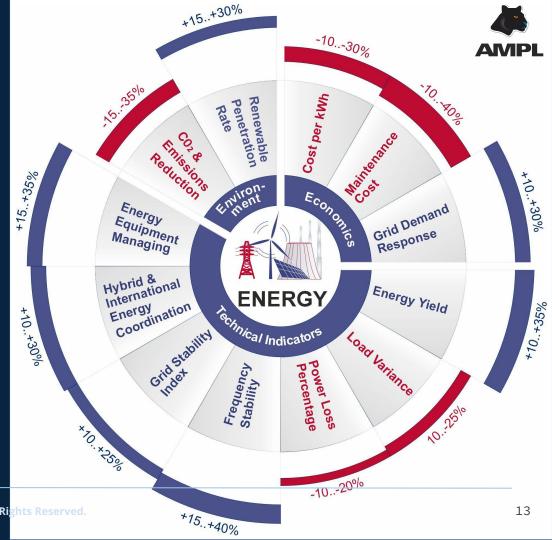
[Case Study] How Fast-Fashion Giant Zara Increased Revenue by \$200'000'000+ with data-driven Decision Making ...more

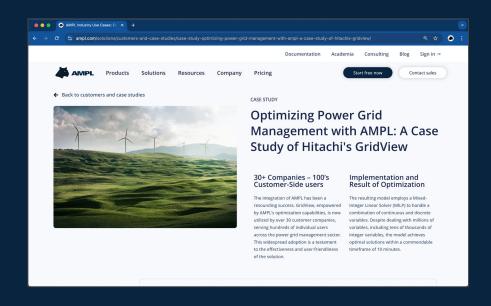


Logistics & Supply Chain



Finance Energy

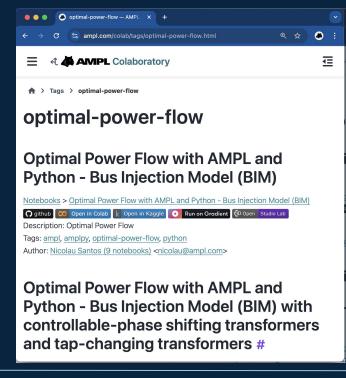


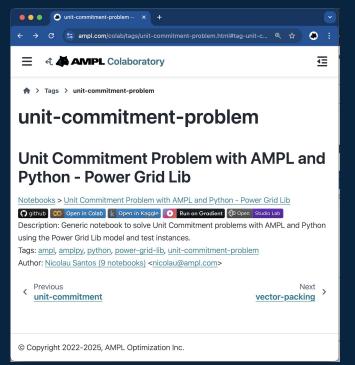


Solving Energy Models with GPUs (https://ampl.com/cuPDLP)

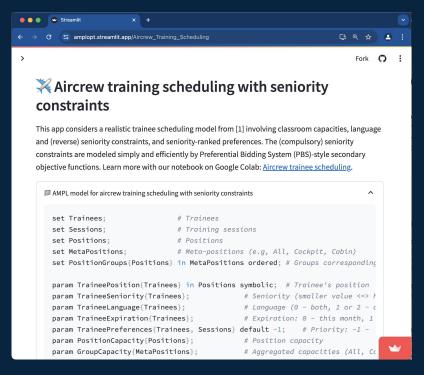


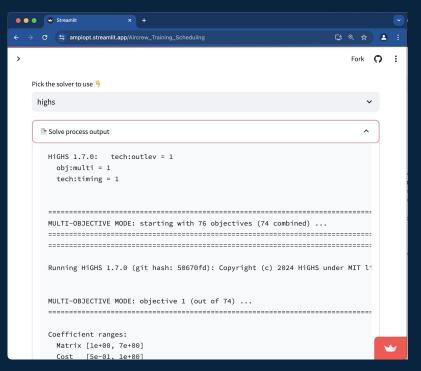
Open-source repo of notebooks (https://ampl.com/colab)





Interactive optimization Apps (https://ampl.com/streamlit)





Industry level experience for Academia too

AMPL for Academia

activation codes enabling collaborative use for



solvers - ideal for coursework, thesis projects.

AMPL Career Starter (ACS) enables recent graduates to take their optimization skills from the classroom to professional practice, bridging the gap between academic study and

AMPL Career Starter (ACS)

Young Professionals License

AMPL for Academics

Includes:

- → Completely free
- → No size restrictions
- → Full Ampl
 - + All Open source solvers
- + select Commercial solvers (Gurobi, CPLEX, Mosek, COPT, Xpress)

Requires:

→ Academic email for access (sign-up at portal.ampl.com)

AMPL for Courses

Includes:

- → Full AMPL + all solvers
- → Dynamic cloud licensing by default1 uuid shareable with your course
- → Independent from installation
- ightarrow Straightforward Google Colab / Python integration

AMPL Career Starter

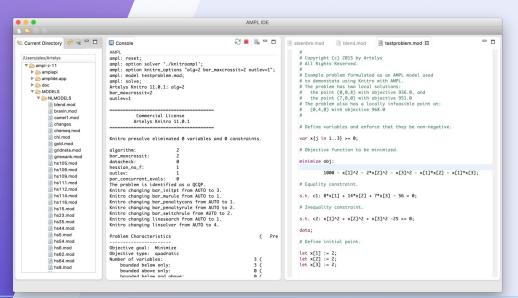
AMPLify your career!

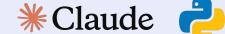
Includes:

- → Accessible within 24 months post-graduation for 12-month period
- → Full AMPL with open source + commercial solvers
- → Commercial/production use for your place of business

Writing optimization in 2025

- Directly from Google Colab
- From wherever you write Python
- Amplide? (Nope)





Visual Studio Code Extension

- → Develop Python and Ampl code through Visual Studio Code
- → Check out the **new official plugin**! <u>VS Code Marketplace</u>

We recommend using VSCode with an AMPL plugin. Download Here

Download Visual Studio Code (our recommend IDE)

Visual Studio Code Extension

```
XI File Edit Selection View Go Run Terminal Help
      EXPLORER
                           ≡ uc.mod ×

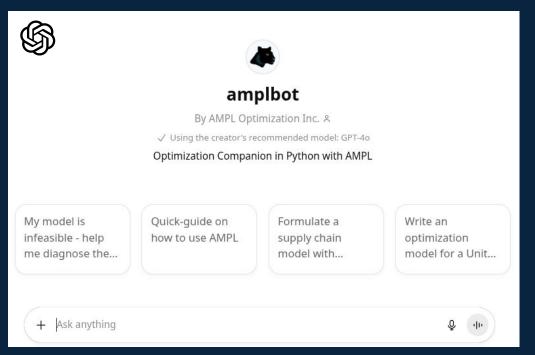
∨ OPTIMIZATION

                           src > ≣ uc.mod > ...
                             1  # Sets and parameters
      > .vscode
      > scripts
                                 set thermal gens;
      ∨ src
                                 set renewable gens;
       uc.py
                                 param S {thermal gens};
      > tests
                                 set gen_startup_categories {g in thermal_gens} := 1..S[g];
                                 param startup lag {q in thermal gens, gen startup categories[q]};
                                 param startup cost {q in thermal gens, gen startup categories[q]};
                                 param L {thermal gens};
                                 set gen pwl points {g in thermal gens} := 1..L[g];
                                 param piecewise mw {g in thermal gens, gen pwl points[g]};
                                param piecewise cost {q in thermal gens, gen pwl points[q]};
                                 param T;
                                 set time periods := 1..T;
                                param demand {time periods};
                                 param reserves {time periods};
                                                            {thermal gens};
                                 param must run
                            25 param power output minimum {thermal gens};
                                param power_output_maximum {thermal gens};
                                 param ramp up limit
                                                            {thermal gens};
```

Try the amplbot!

Available at *chatgpt.com*

- → High Level modeling
- → Troubleshooting
- → Explainability
- → Substantial improve over baseline LLMs



Part II Complex Problems Can Be Made Simple!

Outline Part II

- → Why enhanced modeling?
 - User vs. solver perspective
- → Enhanced expression support
 - (Automatic) reformulation examples & control options
 - MINLP support
 - Multi-objective modeling
- \rightarrow Tools
 - Automatic solution checker
 - Reformulation Explorer
 - Solvers

ChatGPT: "how to formulate a disjunction in MIP?"

1. General Form of a Disjunction

A disjunction expresses that at least one of several constraint sets must hold:

```
(A1x \le b1) V (A2x \le b2)
```

2. Standard MIP Reformulation Using Binary Variables

To encode this in a linear MIP, introduce a **binary variable** $y \in \{0,1\}$.

Then, we can linearize as:

Here:

• M1, M2 are **big-M constants** (large enough to "turn off" the constraints when not active).

ChatGPT: "how to formulate a disjunction in MIP?"

```
..... (continued)
7. Example in AMPL (Using Logical Constraints via MP Library)
AMPL MP allows disjunctions directly:
     subject to either_or:
           (x1 \le 5) or (x2 \le 3);
→ As a modeler, which would be your preference?
```

Enhanced modeling: solver perspective

Disjunction modeling

- → Most commercial MIP solvers: *indicator constraints*
- → Except Mosek: *disjunctive normal form*
- → Constraint Programming solvers: arbitrary logical formulas

Solvers claim that their specialized input representations are best for them!

AMPL MP Library: new solver interfaces

Motivation

- → Describe optimization models to computers more like you think about them
 - Development speed, transparency, maintainability
 - Better/more general information for the solver => performance ?

Strategy

- → Extend modeling tools to more natural objective and constraint expressions
- → Build solver interfaces to convert natural expressions to forms that solvers require

Supported Expressions

AMPL operators and functions

```
conditional: if-then-else; ==>, <==, <==>
Logical: or, and, not; exists, forall
Piecewise linear: abs; min, max; <<bre>counting: count; atmost, atleast, exactly; number of
Comparison: >, <, !=; all diff
Complementarity: complements
Nonlinear: *, /, ^; exp, log; sin, cos, tan; sinh, cosh, tanh
Set membership: in</pre>
```

Recognizable expressions

- High-order polynomials
- Second-order cones
- Exponential cones (MOSEK driver!)

A basic case: indicator (into inequality)

```
var b binary;
s.t. Indicator: b==1 ==> 5*x[1] + 2*x[2] <= 0;</pre>
```

- Natively supported by many solvers
- Important: tight bounds on the compared expression, e.g.:

```
var x \{1...2\} >= 0 <= 15;
```

 Linearized when not supported, or when desired (option acc:indle=0):

```
s.t. BigM: 5*x[1] + 2*x[2] \le 105*(1-b);
```

Disjunction: ||, exists

```
subject to Disjunction:
        (level A \le 5) || (level B >= 10);
Reformulation for a typical MIP solver using indicators:
        var {1..3} aux result: binary;
        s.t. Term1: aux result[1] ==> level A <= 5;
        s.t. Term2: aux result[2] ==> level B >= 10;
        s.t. Disj :
             aux result[3] ==> (aux result[1] || aux result[2]);
        s.t. FixResult: aux result[3] <==> True;
```

Indicators and OR are linearized if necessary.

==> vs <==> vs <==: when which?

```
minimize TotalCost:
    if (level A \leq 5) || (level B \geq 10) then 1000; # else 0
Reformulation:
    var {1..3} aux result: binary;
    s.t. Term1: aux result[1] <== level A <= 5;
    s.t. Term2: aux result[2] <== level B >= 10;
    s.t. Disj :
        aux result[3] <== (aux result[1] || aux result[2]);</pre>
    minimize TotalCost : 1000*aux result[3];
The disjunction is in negative context which reverses the implications.
```

An experiment with max()

From S. Brand et al. (2008), Flexible, rule-based constraint model linearisation, citing a radiation model for intensity-modulated radiotherapy, core part: min-cardinality decomposition in C1P matrices: subject to Increment Constraints {i in ROWS, b in BTIMES}: N[b] >= O[i,1,b]+ sum $\{j \text{ in } 2...n\}$ max(Q[i,j,b] - Q[i,j-1,b], 0);The max() expressions are in negative context: sufficient linearization is $var Z \{i, j, b\} >=0;$ s.t. LinearizeNegCtx {i,j,b}: Z[i,i,b] >= O[i,i,b] - O[i,i-1,b];subject to Increment Constraints Lin {i in ROWS, b in BTIMES}: N[b] >= O[i,1,b]+ sum { j in 2..n} **Z[i,j,b]**;

An experiment with max()

```
subject to Increment_Constraints{i in ROWS, b in BTIMES}:
   N[b] >= Q[i,1,b] + sum{j in 2..n} max(Q[i,j,b] - Q[i,j-1,b], 0);
```

• The max() expressions are in negative context: sufficient linearization is

```
var Z {i,j,b} >=0;
s.t. LinearizeNegCtx {i,j,b}: Z[i,j,b] >= Q[i,j,b] - Q[i,j-1,b];
```

• Authors observe that CPLEX 9.1 performs much better with full linearization which includes positive context:

```
var B {i,j,b,1..2} binary;
s.t. Disjunction {i,j,b}: B[i,j,b,1] + B[i,j,b,2] >= 1;
s.t. LinearizePosCtx {i,j,b}:
    B[i,j,b,1]==1 ==> Z[i,j,b] <= Q[i,j,b] - Q[i,j-1,b]
    && B[i,j,b,1]==1 ==> Z[i,j,b] <= 0;</pre>
```

Replicate the experiment

		Native max()		Linear max()		Linear max(), full	
		N solved	mean t	N solved	mean t	N solved	mean t
Max. intens. 10	CPLEX 22.1.1	-	-	10	1.80	10	2.53
	Gurobi 12.0.3	10	0.81	10	1.02	10	1.06
	Highs 1.11	-	-	10	3.33	10	6.37
Max. intens. 12	CPLEX	-	-	10	18.47	10	26.05
	Gurobi	10	6.21	10	10.27	9	33.50
	Highs	-	-	10	12.18	10	20.69

Apple M1 Pro, 1 thread, 10 instances per category, time limit 300s

Discussion

- Observations contrast those from S. Brand et al. (2008):
 - o Gurobi:
 - Native max() is best, followed by simple linearization.
 Full linearization is worst.
 - o CPLEX 22.1.1, Highs:
 - Simple (context-aware) linearization is best, as expected.
- Options to control reformulations (dev.ampl.com):
 - o acc:max=4 as expression tree node, if supported
 - o acc:max=2 as general constraint, if supported
 - o acc:max=0 linearize (context-aware by default)
 - o cvt:pre:ctx:max=0 full linearization

Corner Case: Strict Comparison

Strict comparison tolerance

```
IndStrict: (aux_result[1] == 0) ==> (level_A > 5);
```

AMPL MP converts strict comparisons for MIP solvers into non-strict comparisons using option cmp:mip:eps (default value 1e-4):

```
IndNonStrict: (aux_result[1] == 0) == > (level_A >= 5.0001);
```

- A guideline for the value of cmp:mip:eps is to set it at least 10x larger as feastol, the primal feasibility tolerance (default 1e-6 for most solvers).
- When the comparison has a single context (pos/neg), the strictness can be chosen to avoid tolerance application:

```
minimize TotalCost_NoFinalStrictCmp:
    if (level_A < 5) || (level_B > 10) then 1000;
```

(Dis)equalities

```
Implied equality: again, an indicator
s.t. IndEq: b==0 ==> 5*x[1] + 2*x[2] == 7;
Reverse implication:
s.t. IndEqRev0: b==0 <== 5*x[1] + 2*x[2] == 7;

    Equivalent to implied disequality

     s.t. IndDiseq: b==1 ==> 5*x[1] + 2*x[2] != 7;
         Reformulation as a disjunction:
                     \dots ==> (5*x[1]+2*x[2] < 7 \text{ or } 5*x[1]+2*x[2] > 7);
       Unary encoding is applied in some cases
```

Unary encoding

```
var Final_patt_seq {SLOT_SEQ} in PATTERNS_ALL;  # integer vars
s.t. assign_color_SLV {r in ROUND, s in SLOT, k in PATTERNS: ...}:
     Final_patt_seq[slot_r_cum[r] + s]==k
               ==> exists {i in 1..noSLV}
                  (Color_SLV[slot_r_cum[r] + s,i]==color_spec1[k]
                   and Avail SLV[slot r cum[r] + s,i]);
When an integer variable compares to several values, unary encoding applies:
var x in 1..3;
translates into
                                               Options uenc:ratio and
                                               uenc:negctx control the
var unary {1...3} binary;
                                               choice between
x == unary[1] + 2*unary[2] + 3*unary[3];
                                               reformulations.
1 == sum {i in 1..3} unary[i];
```

Operators count, atleast/atmost/exactly, number of

```
Generalize disjunction to count the number of true terms:
     minimize NumBigDeviations:
          count {i in ASSETS}
               ( abs( weight[i]-benchmark[i] ) > 0.005 );
     s.t. LimitBigWeights:
          atmost 5 {i in ASSETS} ( weight[i] > 0.05 );
Finance AMPL Colab notebooks: <a href="https://colab.ampl.com/tags/finance.html">https://colab.ampl.com/tags/finance.html</a>
```

The Golomb Ruler problem

A Golomb ruler is a set of marks at integer positions along a ruler such that no two pairs of marks are the same distance apart.

```
param m default 4;
param n = m*m;

set OrdPairs = {i in 1..m-1, j in 2..m: i<j};

var mark {i in 1..m} in 0..n;
var differences {(i,j) in OrdPairs} in 1..n;

s.t. AssignDiffs {(i,j) in OrdPairs}:
    differences[i,j] == mark[j] - mark[i];

s.t. FixMark1: mark[1] == 0;
s.t. MarksOrdered {i in 1..m-1}: mark[i] <= mark[i+1]-1;</pre>
```

The Golomb Ruler problem

```
param DefaultAllDiff default 1; ## Choose the alldiff
s.t. AllDiff {if DefaultAllDiff}: ## MIP reform. uses UEnc
    alldiff {(i,j) in OrdPairs} differences[i,j]; ## CP: native
s.t. AllDiffNaive {if not DefaultAllDiff}:
    forall {(i,j) in OrdPairs, (k,l) in OrdPairs:
                         i<k || (i==k && j<1)}
     differences[i,j] != differences[k,l];
s.t. AntiSymm3: mark[2] - mark[1] \le mark[m] - mark[m-1] - 1;
minimize Largest: mark[m];
```

Golomb Ruler

		Native alldiff		alldiff -> Uenc		Naïve alldiff	
m (opt)		nodes/cp	t	nodes/cp	t	nodes/cp	t
7 (25)	IBM ILOG CP	1693	0.02	96782	2.35	1693	0.02
	Gurobi	-	_	985	2.94	1533	0.47
	Highs	-	-	660	2.57	1282	1.26
9 (44)	IBM ILOG CP	149818	1.82	3613742	269.85	149818	1.81
	Gurobi	-	-	4437	69.81	18463	82.32
	Highs	-	-	34194	154.75	286620	508.96

Apple M1 Pro, 1 thread

Golomb Ruler OLD

		allo	diff	alldiff naive		
m (opt)		nodes/cp	t	nodes/cp	t	
7 (25)	IBM ILOG CP	1693	0.02	1693	0.02	
	Gurobi	985	2.94	1533	0.47	
	Highs	660	2.57	1282	1.26	
9 (44)	IBM ILOG CP	149818	1.82	149818	1.81	
	Gurobi	4437	69.81	18463	82.32	
	Highs	34194	154.75	286620	508.96	

Apple M1 Pro, 1 thread

Reformulation control essentials (<u>dev.ampl.com</u>)

- Options acc:max, acc:abs, cvt:pre:ctx:cos, etc.
 - Native constraint/expression acceptance and context
- Option cvt:mip:eps
 - Real-valued strict comparison tolerance
- Option cvt:bigM
 - Default big-M value for unbounded variables, when linearization is necessary or desired. Avoid unbounded variables.
- Options cvt:compl[:eps]
 - Complementarity reformulations
- Options cvt:plapprox:...
 - Domain and precision of piecewise-linear approximation of nonlinear functions

(MI)NLP support for MP-based solvers

acc: expr=2 [alg:relax=1]

Multiobjective modeling

- Multiobjective models can be simpler for certain problems
 - Some constraints can be moved to the objectives as penalties
 - Lexicographic optimization allows objective ranking
- Example on AMPL Colab: aircrew trainee scheduling with seniority constraints https://colab.ampl.com/tags/multi-objective.html
 - Smaller model and faster solving than the original hard-constrained model

```
maximize ReverseSeniority {e in 1..2, i in I: E[i]==e}:
    sum {t in V[i]: Pr[i, t]==0}
        (S[i] - min {j in I} S[j] + 1) * x[i, t]
    suffix objpriority (2-e)*S_range + 1 + S[i] - min {j in I} S[j];
```

Automatic solution checker

- All MP solvers automatically check every solution
- Tolerance options
 - o sol:chk:feastol, sol:chk:feastolrel (both default 1e-6)
 - o sol:chk:inttol (default 1e-5) integrality
 - Warning on violation, or abort if option sol:chk:fail given
- Checks only original (AMPL-side) and final (solver-side) model items by default
 - Option sol:chk:mode can add intermediate reformulated expressions

https://mp.ampl.com/modeling-tools.html#automatic-solution-check

Check solutions yourself!

```
E.g., in AMPL:
   Objective value(s):
    obj
  Algebraic constraints and variable bounds:
    min\{i in 1 .. ncons\} con[i].slack # Should be >= -1e-6
    min{i in 1 .. nvars} var[i].slack
  Logical constraints:
    if forall {i in 1.. nlogcons} logcon[i] then 1
  Complementarities:
    max{i in 1 .. nccons} abs(ccon[i]) # Should be <= 1e-6</pre>
```

Reformulation Explorer

- Want to know what AMPL MP does to your model?
- Simplest way: option writeprob=model.lp or similar
 - o Exports solver model in the LP or another format
- To see intermediate reformulation steps, use https://mp.ampl.com/modeling-tools.html#reformulation-explorer.
 - ▼ NL Objectives (1) {1}
 - ▼ minimize TotalCost: if $x < 5 \mid \mid y > 10$ then 1000; {10}
 - minimize TotalCost___: 1000*TotalCost__6___; {0}
 - ▶ var TotalCost_2___ binary; {0}
 - ▼ TotalCost_3__: TotalCost_2__==1 <==> (x___ < 5); {1}
 - ▶ TotalCost_3__: TotalCost_2__==0 ==> (x___ >= 5);
 - ▶ var TotalCost__4___ binary; {0}
 - ▶ TotalCost_5_: TotalCost_4__==1 <==> (y___ > 10); {1}

NL reader and writer libraries

- NL is a low-level model format accepted by AMPL solvers and used by several modeling systems
- NL reader and writer libraries in MP use low-overhead C++ template-based interfaces
- C and Python NL writer wrappers are available for MILP
 Package nlwpy on PyPi

Which solver to use?

(Originally) Linear solvers

[1]
GPU-accelerated
algorithms, such as

<u>PDLP</u>, are available.

[2]

Conic programming:
MOSEK supports
SOCP and exponential cones, other solvers only SOCP.

	LP	MILP	QP	MIQP	convex (MI)QCP	non-convex (MI)QCP	Conic	MINLP	MP
Gurobi	V	V	V	V	▼	V	V	V	V
FICO XPRESS	V	V	V	$\overline{\checkmark}$	V	▽	$\overline{\checkmark}$	V	V
IBM CPLEX	V	V	V	$\overline{\checkmark}$	V	×	V	×	V
COPT		V	V	V	V	×	\checkmark	×	V
MOSEK	V	V	V	V	~	×	[2]	×	V
NVIDIA cuOpt		VU	×	×	×	×	×	×	V
<u>HiGHS</u>	[1]	V	V	×	×	×	×	×	V
CBC	V	V	V	~	×	×	×	×	V
SCIP	V	V	V	V	V	~	V	V	✓
GCG	V	V	V	V	✓	~	V	✓	V

Nonlinear solvers

[3]
Global optimality:
while Knitro and
Bonmin accept
integer variables,
they only guarantee
local optimum for
non-convex models.

[4] With the MP2NL meta-driver.

	NLP	MINLP	Global [3]	<u>MP</u>
Knitro	V	~	×	[4]
BARON	$\overline{\checkmark}$	~	▽	V
LINDO Global Solver	V	V	V	<u>[4]</u>
Octeract	$\overline{\checkmark}$	▽	▽	<u>[4]</u>
RAPOSa	V	~	V	<u>[4]</u>
<u>LGO</u>	V	×	▽	[4]
CONOPT	V	×	×	<u>[4]</u>
LOQO	✓	×	×	<u>[4]</u>
MINOS	V	×	×	[4]
SNOPT	V	×	×	[4]
<u>IPOPT</u>	V	×	×	[4]
BONMIN	✓	V	×	(4)
COUENNE	$\overline{\mathbf{V}}$	~	V	<u>[4]</u>

AMPL Constraint Programming solvers

- IBM ILOG CP
- Gecode

CP solvers support most combinatorial MP constructs natively.

Summary

- AMPL+MP: bridge between modelers and solvers
 - Write models more like you think about them
 - Solvers receive the preferred model form

 "Set and forget": our approach to modern real-world optimization development

References

- https://ampl.com/academia
 - Free full-size academic licenses
- https://mp.ampl.com/model-guide.html
 - Modeling Guide for MP-based AMPL Solvers
- https://ampl.com/streamlit
 - Streamlit App with many examples
- https://ampl.com/mo-book
 - New AMPL+Python Book
- https://ampl.com/colab
 - Collection of AMPL models in Jupyter Notebooks
- try.ampl.com

Thank you!

Visit us @ Booth 221

Technology Showcase: From Classroom to Industry: Modern Optimization with AMPL

Tuesday, October 28 | 11:00 AM - 12:15 PM

Building A Level 3 A301

Technical session: *Efficient Data Exchange in Amplpy via Apache Arrow Integration.* Jurgen Lentz

Tuesday, October 28 | 2:45 PM - 4:00 PM

Building B Level 2 B201

Contact us:

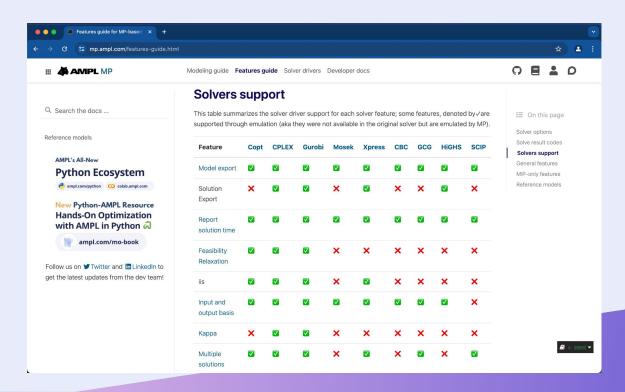
academia@ampl.com

AMPL Academic Community:

https://discuss.ampl.com/

Supported Solver Features and Emulated Features

(https://mp.ampl.com/features-guide.html)



Supported Solver Features and Emulated Features: the list goes on...

(https://mp.ampl.com/features-guide.html)

