


Outline
1. Modern Optimization in 2025

→ Industry level experience in Academia

→ Writing Optimization Code + Amplbot

2. AMPL/MP: Complex models can be made easy

→ Automatic Reformulations & Enhanced solvers
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What is AMPL?
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Mathematical 
Optimization 
Engine

→ Express problems as you think about them
○ Large-scale modeling
○ Linear, Non-Linear, Constraint 

Programming...

→ Solver interfaces
○ Open-source: HiGHS, Scip, CBC, ipopt,. . .
○ Commercial: CPLEX, Gurobi, Xpress, 

Knitro, COPT . . .

→ Amplpy

→ Other APIs
- C++, C#, Java, MATLAB, R
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→ Solver interfaces
○ Open-source: HiGHS, Scip, CBC, ipopt, 

Gecode. . .
○ Commercial: CPLEX, Gurobi, Xpress, 

Knitro, COPT . . .

→ Amplpy

→ Other APIs
- C++, C#, Java, MATLAB, R

Models aren’t just “min cx s.t. Ax=b”
Example: If you are charging a thermal battery, you need to charge at a stable rate:

set Times ordered;

param MaxChargeRate;

var ChargeRate{t in Times} >= 0 <= MaxChargeRate;

subject to ChargeRateVariationLimit{t in Times: ord(t) >= 2}:

   ChargeRate[t] > 0 && ChargeRate[prev(t)] > 0

       ==> 

   abs(ChargeRate[t]-ChargeRate[prev(t)]) <= 10;
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Third-party benchmarks

Ref: GBOML: A Structure-Exploiting Optimization Modelling Language in Python
Bardhyl Miftari et al. (2023)
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Where is AMPL used most?

→ Mission-critical applications where mistakes can be very expensive (e.g., 

    damaging equipment) and transparent modeling is essential.

→ Large scale optimization applications where highly efficient optimization 

    software is essentially indispensable due to performance requirements.

→ Very complex and detailed models incorporating complex business 

    details and regulations.

→ Competitive environments where new models must be 

    quick to develop and deploy.
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How Optimization Generates 
Millions💰
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Zara Case Study
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Logistics
&

Supply Chain

in ActionAMPL
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https://www.solverytic.com/modeling/


Finance
&

Energy

in ActionAMPL
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https://www.solverytic.com/modeling/
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Solving Energy Models with GPUs (https://ampl.com/cuPDLP)
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https://ampl.com/cuPDLP


Open-source repo of notebooks (https://ampl.com/colab)
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https://ampl.com/colab


Interactive optimization Apps (https://ampl.com/streamlit)
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https://ampl.com/streamlit


Industry level experience for 
Academia too
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AMPL for Academia
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AMPL for 
Academics

Includes:

→ Completely free

→ No size restrictions
→ Full Ampl

+ All Open source solvers
+ select Commercial solvers (Gurobi, CPLEX, 

Mosek, COPT, Xpress)

Requires:

   → Academic email for access (sign-up at 
portal.ampl.com)
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AMPL for 
Courses

Includes:

→ Full AMPL + all solvers

→ Dynamic cloud licensing by default

1 uuid shareable with your course
→ Independent from installation

→ Straightforward Google Colab / Python 
integration 
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AMPL
Career Starter

Includes:

→ Accessible within 24 months post-graduation 
for 12-month period

→ Full AMPL with open source + commercial 
solvers

→ Commercial/production use for your place of 
business
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AMPLify your career!
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Writing optimization 
in 2025

- Directly from Google Colab
- From wherever you write Python
- Amplide? (Nope)
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Visual Studio Code Extension

24

→ Develop Python and Ampl code through Visual Studio Code

→ Check out the new official plugin! VS Code Marketplace

+
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https://marketplace.visualstudio.com/items?itemName=AMPLOptimizationInc.ampl-plugin-official


Visual Studio Code Extension

25

+
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Try the amplbot!
Available at chatgpt.com

→ High Level modeling

→ Troubleshooting

→ Explainability

→ Substantial improve

over baseline LLMs
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https://chatgpt.com/g/g-68c00de8b030819185be6db190ad7bce-amplbot


Part II
Complex Problems Can Be Made Simple!
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Outline Part II
→ Why enhanced modeling?

○ User vs. solver perspective

→ Enhanced expression support

○ (Automatic) reformulation examples & control options
○ MINLP support
○ Multi-objective modeling

→ Tools

○ Automatic solution checker
○ Reformulation Explorer
○ Solvers
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ChatGPT: “how to formulate a disjunction in MIP?”
1. General Form of a Disjunction

A disjunction expresses that at least one of several constraint sets must hold:

(A1x≤b1)  ∨  (A2x≤b2)

2. Standard MIP Reformulation Using Binary Variables
To encode this in a linear MIP, introduce a binary variable y∈{0,1}.

Then, we can linearize as:

A1 x≤b1 +M1 y
A2x≤b2+M2(1−y)

Here:

● M1, M2 are big-M constants (large enough to “turn off” the constraints when not 
active).
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ChatGPT: “how to formulate a disjunction in MIP?”
  

........ (continued)

7. Example in AMPL (Using Logical Constraints via MP Library)

AMPL MP allows disjunctions directly:

subject to either_or:

 (x1 <= 5) or (x2 <= 3);

→ As a modeler, which would be your preference?
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Enhanced modeling: solver perspective

Disjunction modeling

→ Most commercial MIP solvers: indicator constraints

→ Except Mosek: disjunctive normal form

→ Constraint Programming solvers: arbitrary logical formulas

Solvers claim that their specialized input representations are best for them!
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AMPL MP Library: new solver interfaces
Motivation

→ Describe optimization models to computers more like you think about them

○ Development speed, transparency, maintainability
○ Better/more general information for the solver => performance ?

Strategy

→ Extend modeling tools to more natural objective and constraint expressions

→ Build solver interfaces to convert natural expressions to forms that solvers require
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Supported Expressions
AMPL operators and functions

○ Conditional: if-then-else;  = =>, <= =, <= =>

○ Logical: or, and, not; exists, forall

○ Piecewise linear: abs; min, max; <<breakpoints; slopes>>

○ Counting: count; atmost, atleast, exactly; numberof

○ Comparison: >, <, !=; alldiff

○ Complementarity: complements

○ Nonlinear: *, /, ^; exp, log; sin, cos, tan; sinh, cosh, tanh

○ Set membership: in

Recognizable expressions
○ High-order polynomials

○ Second-order cones

○ Exponential cones (MOSEK driver!)
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A basic case: indicator (into inequality)
var b binary;
s.t. Indicator: b==1 ==> 5*x[1] + 2*x[2] <= 0;

● Natively supported by many solvers
● Important: tight bounds on the compared expression, e.g.:

var x {1..2} >=0 <=15;

● Linearized when not supported, or when desired (option 
acc:indle=0):

s.t. BigM: 5*x[1] + 2*x[2] <= 105*(1-b);
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Disjunction: ||, exists
subject to Disjunction:

(level_A <= 5) || (level_B >= 10);

Reformulation for a typical MIP solver using indicators:

var {1..3} aux_result: binary;
s.t. Term1: aux_result[1] ==> level_A <= 5;
s.t. Term2: aux_result[2] ==> level_B >= 10;
s.t. Disj__:

aux_result[3] ==> (aux_result[1] || aux_result[2]);
s.t. FixResult: aux_result[3] <==> True;

Indicators and OR are linearized if necessary.
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==> vs <==> vs <==: when which?
minimize TotalCost:

if (level_A <= 5) || (level_B >= 10) then 1000;  # else 0

Reformulation:

var {1..3} aux_result: binary;
s.t. Term1: aux_result[1] <== level_A <= 5;
s.t. Term2: aux_result[2] <== level_B >= 10;
s.t. Disj__:

aux_result[3] <== (aux_result[1] || aux_result[2]);
minimize TotalCost__: 1000*aux_result[3];

The disjunction is in negative context which reverses the implications.
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An experiment with max()
From S. Brand et al. (2008), Flexible, rule-based constraint model linearisation, 
citing a radiation model for intensity-modulated radiotherapy, core part: 
min-cardinality decomposition in C1P matrices:

subject to Increment_Constraints {i in ROWS, b in BTIMES}:
    N[b] >= Q[i,1,b]

 + sum {j in 2..n} max(Q[i,j,b] - Q[i,j-1,b], 0);

● The max() expressions are in negative context: sufficient linearization is
var Z {i,j,b} >=0;
s.t. LinearizeNegCtx {i,j,b}:

Z[i,j,b] >= Q[i,j,b] - Q[i,j-1,b];
subject to Increment_Constraints_Lin {i in ROWS, b in BTIMES}:
    N[b] >= Q[i,1,b]

 + sum {j in 2..n} Z[i,j,b];
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An experiment with max()
subject to Increment_Constraints{i in ROWS, b in BTIMES}:
    N[b] >= Q[i,1,b] + sum{j in 2..n} max(Q[i,j,b] - Q[i,j-1,b], 0);

● The max() expressions are in negative context: sufficient linearization is

var Z {i,j,b} >=0;
s.t. LinearizeNegCtx {i,j,b}: Z[i,j,b] >= Q[i,j,b] - Q[i,j-1,b];

● Authors observe that CPLEX 9.1 performs much better with full linearization which 
includes positive context:

var B {i,j,b,1..2} binary;
s.t. Disjunction {i,j,b}: B[i,j,b,1] + B[i,j,b,2] >= 1;
s.t. LinearizePosCtx {i,j,b}:

B[i,j,b,1]==1 ==> Z[i,j,b] <= Q[i,j,b] - Q[i,j-1,b]
&& B[i,j,b,1]==1 ==> Z[i,j,b] <= 0;
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Replicate the experiment
Native max() Linear max() Linear max(), full

N solved mean t N solved mean t N solved mean t

Max. 
intens. 
10

CPLEX 22.1.1 - - 10 1.80 10 2.53

Gurobi 12.0.3 10 0.81 10 1.02 10 1.06

Highs 1.11 - - 10 3.33 10 6.37

Max. 
intens. 
12

CPLEX - - 10 18.47 10 26.05

Gurobi 10 6.21 10 10.27 9 33.50

Highs - - 10 12.18 10 20.69

Apple M1 Pro, 1 thread, 10 instances per category, time limit 300s
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Discussion
● Observations contrast those from S. Brand et al. (2008):

○ Gurobi:
■ Native max() is best, followed by simple linearization. 

Full linearization is worst.
○ CPLEX 22.1.1, Highs:

■ Simple (context-aware) linearization is best, as expected.

● Options to control reformulations (dev.ampl.com):
○ acc:max=4 as expression tree node, if supported
○ acc:max=2 as general constraint, if supported
○ acc:max=0 linearize  (context-aware by default)
○ cvt:pre:ctx:max=0  full linearization
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Corner Case: Strict Comparison
Consider the above reverse implication:

s.t. Term1: aux_result[1] <== level_A <= 5;

Which is equivalent to the indicator constraint

Term1IndStrict: (aux_result[1]==0) ==> (level_A > 5);

Assuming level_A is real-valued, what is the meaning of (level_A > 5)?

● For the modeler…
● For the chip…
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Strict comparison tolerance
IndStrict: (aux_result[1]==0) ==> (level_A > 5);

AMPL MP converts strict comparisons for MIP solvers into non-strict comparisons 
using option cmp:mip:eps (default value 1e-4):

IndNonStrict: (aux_result[1]==0) ==> (level_A >= 5.0001);

● A guideline for the value of cmp:mip:eps is to set it at least 10x larger as 
feastol, the primal feasibility tolerance (default 1e-6 for most solvers).

● When the comparison has a single context (pos/neg), the strictness can be 
chosen to avoid tolerance application:

minimize TotalCost_NoFinalStrictCmp:
if (level_A < 5) || (level_B > 10) then 1000;
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(Dis)equalities
● Implied equality: again, an indicator

s.t. IndEq: b==0 ==> 5*x[1] + 2*x[2] == 7;

● Reverse implication:
s.t. IndEqRev0: b==0 <== 5*x[1] + 2*x[2] == 7;

○ Equivalent to implied disequality
s.t. IndDiseq: b==1 ==> 5*x[1] + 2*x[2] != 7;

■ Reformulation as a disjunction:
... ==> (5*x[1]+2*x[2] < 7 or 5*x[1]+2*x[2] > 7);

■ Unary encoding is applied in some cases
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Unary encoding
var Final_patt_seq {SLOT_SEQ} in PATTERNS_ALL;    # integer vars

s.t. assign_color_SLV {r in ROUND, s in SLOT, k in PATTERNS: ...}:
Final_patt_seq[slot_r_cum[r] + s]==k

                   ==> exists {i in 1..noSLV}
                      (Color_SLV[slot_r_cum[r] + s,i]==color_spec1[k]
                       and Avail_SLV[slot_r_cum[r] + s,i]);

● When an integer variable compares to several values, unary encoding applies:

var x in 1..3;

translates into

var unary {1..3} binary;
x == unary[1] + 2*unary[2] + 3*unary[3];
1 == sum {i in 1..3} unary[i];

44

Options uenc:ratio and 
uenc:negctx control the 
choice between 
reformulations.
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Operators count, atleast/atmost/exactly, numberof

Generalize disjunction to count the number of true terms:

minimize NumBigDeviations:
count {i in ASSETS}

( abs( weight[i]-benchmark[i] ) > 0.005 );

s.t. LimitBigWeights:
atmost 5 {i in ASSETS} ( weight[i] > 0.05 );

Finance AMPL Colab notebooks: https://colab.ampl.com/tags/finance.html
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The Golomb Ruler problem
A Golomb ruler is a set of marks at integer positions along a ruler such that no two pairs 
of marks are the same distance apart.

param m default 4;
param n = m*m;

set OrdPairs = {i in 1..m-1, j in 2..m: i<j};

var mark {i in 1..m} in 0..n;
var differences {(i,j) in OrdPairs} in 1..n;

s.t. AssignDiffs {(i,j) in OrdPairs}:
differences[i,j] == mark[j] - mark[i];

s.t. FixMark1: mark[1] == 0;
s.t. MarksOrdered {i in 1..m-1}: mark[i] <= mark[i+1]-1;
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The Golomb Ruler problem
param DefaultAllDiff default 1;      ## Choose the alldiff

s.t. AllDiff {if DefaultAllDiff}:    ## MIP reform. uses UEnc
alldiff {(i,j) in OrdPairs} differences[i,j];   ## CP: native

s.t. AllDiffNaive {if not DefaultAllDiff}:
    forall {(i,j) in OrdPairs, (k,l) in OrdPairs:

 i<k || (i==k && j<l)}
     differences[i,j] != differences[k,l];

s.t. AntiSymm3: mark[2] - mark[1] <= mark[m] - mark[m-1] - 1;

minimize Largest: mark[m];

47INFORMS Annual Meeting 2025 | © AMPL Optimization, Inc. 2025. All Rights Reserved.



Golomb Ruler
Native alldiff alldiff -> Uenc Naïve alldiff

m (opt) nodes/cp t nodes/cp t nodes/cp t

7 (25) IBM ILOG CP 1693 0.02 96782 2.35 1693 0.02

Gurobi - - 985 2.94 1533 0.47

Highs - - 660 2.57 1282 1.26

9 (44) IBM ILOG CP 149818 1.82 3613742 269.85 149818 1.81

Gurobi - - 4437 69.81 18463 82.32

Highs - - 34194 154.75 286620 508.96

Apple M1 Pro, 1 thread
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Golomb Ruler OLD
alldiff alldiff naive

m (opt) nodes/cp t nodes/cp t

7 (25) IBM ILOG CP 1693 0.02 1693 0.02

Gurobi 985 2.94 1533 0.47

Highs 660 2.57 1282 1.26

9 (44) IBM ILOG CP 149818 1.82 149818 1.81

Gurobi 4437 69.81 18463 82.32

Highs 34194 154.75 286620 508.96

Apple M1 Pro, 1 thread
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Reformulation control essentials (dev.ampl.com)
● Options acc:max, acc:abs, cvt:pre:ctx:cos, etc.

○ Native constraint/expression acceptance and context
● Option cvt:mip:eps

○ Real-valued strict comparison tolerance
● Option cvt:bigM

○ Default big-M value for unbounded variables, when linearization is 
necessary or desired. Avoid unbounded variables.

● Options cvt:compl[:eps]
○ Complementarity reformulations

● Options cvt:plapprox:...
○ Domain and precision of piecewise-linear approximation of nonlinear 

functions
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(MI)NLP support for MP-based solvers
(MI)NLP support for Gurobi, Xpress Global, COPT (NLP only), BaronMP, 
and SCIP

minimize Fchi:
  x[1]^2 - 12*x[1] + 11 + 10*cos(pi*x[1]/2)
+ 8*sin(pi*5*x[1]) - exp(-(x[2] - .5)^2/2)/sqrt(5);

● Disabled in COPT by default, set
acc:_expr=2 [alg:relax=1]
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Multiobjective modeling

52

● Multiobjective models can be simpler for certain problems
○ Some constraints can be moved to the objectives as penalties
○ Lexicographic optimization allows objective ranking

● Example on AMPL Colab: aircrew trainee scheduling with 
seniority constraints https://colab.ampl.com/tags/multi-objective.html

○ Smaller model and faster solving than the original hard-constrained model

maximize ReverseSeniority {e in 1..2, i in I: E[i]==e}:
  sum {t in V[i]: Pr[i, t]==0}
    (S[i] - min {j in I} S[j] + 1) * x[i, t]
  suffix objpriority (2-e)*S_range + 1 + S[i] - min {j in I} S[j];
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Automatic solution checker

53

● All MP solvers automatically check every solution

● Tolerance options
○ sol:chk:feastol, sol:chk:feastolrel (both default 1e-6)
○ sol:chk:inttol (default 1e-5) integrality
○ Warning on violation, or abort if option sol:chk:fail given

● Checks only original (AMPL-side) and final (solver-side) 
model items by default

○ Option sol:chk:mode can add intermediate reformulated expressions

https://mp.ampl.com/modeling-tools.html#automatic-solution-check
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Check solutions yourself!

54

E.g., in AMPL:

● Objective value(s):
_obj

● Algebraic constraints and variable bounds:
min{i in 1 .. _ncons} _con[i].slack    # Should be >= -1e-6
min{i in 1 .. _nvars} _var[i].slack

● Logical constraints:
if forall {i in 1.._nlogcons} _logcon[i] then 1

● Complementarities:
max{i in 1 .. _nccons} abs(_ccon[i])   # Should be <= 1e-6
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Reformulation Explorer

55

● Want to know what AMPL MP does to your model?

● Simplest way: option writeprob=model.lp or similar
○ Exports solver model in the LP or another format

● To see intermediate reformulation steps, use 
https://mp.ampl.com/modeling-tools.html#reformulation-explorer.
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NL reader and writer libraries

56

● NL is a low-level model format accepted by AMPL solvers 
and used by several modeling systems

● NL reader and writer libraries in MP use low-overhead C++ 
template-based interfaces

● C and Python NL writer wrappers are available for MILP
○ Package nlwpy on PyPi
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Which solver to use?
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[1]
GPU-accelerated 
algorithms, such as 
PDLP, are 
available.

[2]
Conic 
programming: 
MOSEK supports 
SOCP and 
exponential cones, 
other solvers only 
SOCP.

(Originally)
Linear solvers
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[3]
Global optimality: 
while Knitro and 
Bonmin accept 
integer variables, 
they only guarantee 
local optimum for 
non-convex models.

[4]
With the MP2NL 
meta-driver.

Nonlinear solvers
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AMPL Constraint Programming solvers

● IBM ILOG CP
● Gecode

CP solvers support most combinatorial MP constructs natively.
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Summary

61

- AMPL+MP: bridge between modelers and solvers
- Write models more like you think about them
- Solvers receive the preferred model form

- “Set and forget”: our approach to modern
real-world optimization development
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- https://ampl.com/academia
- Free full-size academic licenses

- https://mp.ampl.com/model-guide.html
- Modeling Guide for MP-based AMPL Solvers

- https://ampl.com/streamlit
- Streamlit App with many examples

- https://ampl.com/mo-book
- New AMPL+Python Book

- https://ampl.com/colab
- Collection of AMPL models in Jupyter Notebooks

- try.ampl.com
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Thank you!
 

Visit us @ Booth 221

 
Technology Showcase: From Classroom to Industry: 
Modern Optimization with AMPL

Tuesday, October 28 | 11:00 AM - 12:15 PM 

Building A Level 3 A301

Technical session: Efficient Data Exchange in Amplpy 
via Apache Arrow Integration. Jurgen Lentz

Tuesday, October 28 | 2:45 PM - 4:00 PM  

Building B Level 2 B201

Contact us: 
academia@ampl.com

AMPL Academic Community: 
https://discuss.ampl.com/ 
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Supported Solver Features and Emulated Features
(https://mp.ampl.com/features-guide.html)
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Supported Solver Features and Emulated Features: the list goes on…
(https://mp.ampl.com/features-guide.html)
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