
The AMPL Modeling Language — an Aid to Formulating and
Solving Optimization Problems

David M. Gay

AMPL Optimization, Inc.

dmg@ampl.com

http://www.ampl.com

ABSTRACT

Optimization problems arise in many contexts. Sometimes finding a good formula-
tion takes considerable effort. A modeling language, such as AMPL, facilitates experi-
menting with formulations and simplifies using suitable solvers to solve the resulting
optimization problems. AMPL lets one use notation close to familiar mathematical nota-
tion to state variables, objectives, and constraints and the sets and parameters that may be
involved. AMPL does some problem transformations and makes relevant problem infor-
mation available to solvers. The AMPL command language permits computing and dis-
playing information about problem details and solutions returned by solvers. It also lets
one modify problem formulations and solve sequences of problems. AMPL addresses
both continuous and discrete optimization problems and offers some constraint-
programming facilities for the latter. More generally, AMPL permits stating and solving
problems with complementarity constraints. For continuous problems, AMPL makes
first and second derivatives available via automatic differentiation. The freely available
AMPL/solver interface library (ASL) facilitates interfacing with solvers. This paper
gives an overview of AMPL and its interaction with solvers and discusses some problem
transformations and implementation techniques. It also looks forward to possible
enhancements to AMPL.

This paper is based on a talk presented at the Third International Conference on
Numerical Analysis and Optimization, which was held 5–9 January 2014 at Sultan
Qaboos University in Muscat, Oman. This was written for possible inclusion in Recent
Developments in Numerical Analysis and Optimization, to be published by Springer as
part of the book series Springer Proceedings in Mathematics and Statistics and edited by
Mehiddin Al-Baali, Lucio Grandinetti and Anton Purnama.

1. Introduction

Science is all about models and data — theories (models) that explain observed data
and make predictions about data that may be observed later. Science makes engineering
possible and has led to many developments that heavily influence modern human life.
Many kinds of models are useful. Some involve mathematical structures, such as distri-
butions or differential equations, to which one can devote lifetimes of study. Simpler
models, involving only finite numbers of variables, equations, inequalities, and objec-
tives and described by finitely many parameters and sets, have a surprisingly wide range
of uses. When one studies a new area, choices for suitable models may be far from

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 2 -

obvious, and it may be necessary to try many models. Statistics is largely about compar-
ing candidate models and, particularly with exploratory data analysis, finding suitable
ones.

Algebraic modeling languages, such as the AMPL language considered in this
paper, facilitate formulating, comparing, changing, and deriving results from a subset of
the class of ‘‘simpler’’ models outlined above in which equations, inequalities, objectives
and derived sets and parameters are expressed algebraically. In short, AMPL is focused
on mathematical programming problems, such as constrained optimization problems of
the form

minimize f (x) (1a)

s. t. ≤ c(x) ≤ u , (1b)

with x ∈ I Rn and c: I Rn → I Rm , possibly with some components of x restricted to inte-
ger values.

2. AMPL Design Principles

AMPL is meant to make it easy to transcribe models from mathematical notation,
such as one might write by hand on paper or white board, to the AMPL language. We
sought to make the language both close to elementary algebraic notation and easy to enter
on an ordinary computer keyboard. As explained below, AMPL was created at Bell
Labs, in the then Computing Science Research Center, where such languages as C
[26, 27], C++ [30], and awk [1, 2] had been created, so AMPL uses some of the same
notational conventions as these languages, such as square brackets for subscripts. Mod-
els often have sets of variables and constraints, and AMPL allows one to have various
kinds of subscripted entities. In model entities, such as constraints and objectives, all
subscripting is explicit, in part to make meaning of these entities clear. AMPL is a
declare-before-use language, so one can read a model from top to bottom without worry-
ing about the meaning of something whose properties are given later.

An AMPL model can represent a whole class of problems. For example, a linear
objective might be specified by the declarations

set S;
var x{S} >= 0;
param p{S};
minimize Cost: sum{i in S} p[i]*x[i];

in which the objective is named ‘‘Cost’’ and is a transcription of

i ∈ S
Σ p i x i .

Thus a model can involve sets (such as S) over which entities, such as parameters and
variables, e.g., p and x, are indexed, and can be stated without regard to the values that
its sets and parameters will have in a particular problem to be solved, i.e., an instance.
The AMPL language consists of three sub-languages: one for declarations, such as the

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 3 -

set, var, param, and objective (minimize) declarations above, a simplified lan-
guage in ‘‘data sections’’ for giving values to sets and parameters, and a command lan-
guage for modifying values, solving problems, and writing results in various ways.
While AMPL permits commingling declarations and instance data, AMPL also makes it
easy to separate pure models from instance data.

AMPL does not solve problems by itself (except when AMPL’s problem simplifica-
tions — its presolve — result in a solved problem), but instead writes files with full
details of the problem instances to be solved and invokes separate solvers. The
AMPL/solver interface library [19], whose source is freely available, provides problem
details to solver interfaces, which interact with particular solvers to find solutions and
return them to AMPL.

Often one needs to solve sequences of problems, with the solution of one problem
providing data used in the next problem. Sometimes this involves updating set and
parameter values. AMPL only instantiates or recomputes problem entities as needed,
effectively using lazy evaluation to help speed up processing.

While parts of the AMPL language are general purpose, other parts, such as the
presolve phase and computation of reduced costs, are tailored to mathematical program-
ming. AMPL is meant for use with both linear and nonlinear problems; its internal use of
sparse data structures allows AMPL to be useful with some very large problem instances.

3. AMPL History

AMPL arose in part because of Karmarkar’s linear-programming algorithm [24]. At
the time, there was much interest at the Computing Science Research Center in ‘‘little
languages’’, e.g., for graphing data, solving least-squares problems, drawing figures, etc.
While Karmarkar’s algorithm seemed to promise faster solutions of some linear program-
ming problems, we thought a ‘‘little language’’ to express such problems would help
make the algorithm useful in practice. I had known Bob Fourer since the mid 1970s,
when we both worked at the NBER Computer Research Center in Cambridge, Mas-
sachusetts, where Bob had done his undergraduate work at MIT. He had subsequently
obtained a Ph.D. at Stanford University under George Dantzig and had published a nice
paper [10] arguing for modeling languages. Bob was now a professor at Northwestern
University and, as I learned when I saw him at a meeting, was coming up for a sabbatical.
My management arranged for Bob to spend his sabbatical at Bell Labs in the 1985-86
academic year, during which he, Brian Kernighan, and I worked on the first version of
AMPL. (We were aware of GAMS [5], but GAMS was not yet generally available and,
anyway, we thought we could do a better language design. Such other modeling lan-
guages as AIMMS [4] and MPL [28] came along later.) Brian wrote the first implemen-
tation of AMPL; I wrote a preprocessor to transform data sections to a simpler, now
defunct, format for the original AMPL processor.

Our first technical report on AMPL [13] appeared in 1987. In revised form, it even-
tually appeared in Management Science [14]. By then, I had written a new implementa-
tion to facilitate various extensions we had in mind, such as handling nonlinearities.

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 4 -

Since the late 1970s I had been aware of Kedem’s work [25] on forward automatic
differentiation (AD), which provides a mechanical way to compute analytically correct
derivatives, and I was thinking of adding such facilities to AMPL. I mentioned this to
Andreas Griewank when I saw him in 1988 at the International Symposium on Mathe-
matical Programming (ISMP) in Tokyo, and he told me about the more efficient
‘‘reverse’’ automatic differentiation. (He has subsequently written much more about
AD; see [22] for pointers to AD history and [23] for more on AD in general.) Reverse
AD computes a function and its gradient with work proportional to that of computing the
function alone, whereas forward AD, like straightforward symbolic differentiation, can
turn a function evaluation involving n arithmetic operations into a computation involving
O(n 2) operations. Both avoid the truncation errors inherent in finite differences. Ever
since the Tokyo ISMP, I have been a fan of reverse AD. AMPL itself uses reverse AD to
compute nonlinear reduced costs, but most AD happens in the solver interface library.
See [17] for more on first derivative computations in this regard and [18] for some details
of finding and exploiting partially separable structure when doing Hessian (second
derivative) computations.

By the early 1990s we had enough material to write a book on AMPL [15]. We
continued adding facilities to AMPL and added much new material to the second edition
[16] of the book.

The ‘‘dot-com bubble burst’’ of 2001 threw a monkey wrench into AMPL develop-
ment, but did cause creation of the AMPL Optimization company. Eventually I went to
work at Sandia National Labs in Albuquerque, New Mexico, where I worked on AMPL
support after hours (and without pay). Brian became a professor at Princeton. The three
co-authors continued to interact via E-mail. When we got an NSF SBIR grant for some
new work on AMPL, I left Sandia to work for the AMPL company (and get some pay).
Bob Fourer retired somewhat later from Northwestern University and now also works
full time for the AMPL company.

4. Some Simple Declarations and Commands

Here is a simple example of some declarations, commands, and a little data section:

param p;
param q = p + 10;
data; param p := 2.5;
display p, q;

The third line is the data section, which gives a value to p that is used in the ‘‘display’’
command, which produces output

p = 2.5
q = 12.5

Data sections are good for conveying single values as well as tables of data, but data sec-
tions have relaxed quoting rules and other simplifications that preclude the appearance of
expressions. The ‘‘let’’ command, by contrast, can involve general expressions. For

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 5 -

example,

let p := 17; display p, q;

gives

p = 17
q = 27

Notice that q was automatically recomputed.

AMPL can be used in batch interactive mode (reading from a file) or interactive
mode (reading from the standard input). Prompts are given in interactive mode. Doing
the above exercise in interactive mode, one would see

ampl: param p;
ampl: param q = p + 10;
ampl: data; param p := 2.5;
ampl: display p, q;
p = 2.5
q = 12.5
ampl: let p := 17; display p, q;
p = 17
q = 27

5. Simple Sets

To illustrate some simple sets and an error, here is a continuation of the above
interactive-mode session.

ampl: set A; set B;
ampl: set C = p .. q;
ampl: display A;
Error executing "display" command:

no data for set A
ampl: data; set A := a b c; set B := c d;
ampl data: display A, B, C;
set A := a b c;

set B := c d;

set C := 17 18 19 20 21 22 23 24 25 26 27;

The prompt ‘‘ampl data:’’ indicates data-section mode; the ‘‘display’’ command causes
AMPL to revert to model/command reading mode. Here are examples of some set opera-
tions:

ampl: display A intersect B, A union B;
set A inter B := c;

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 6 -

set A union B := a b c d;

display A diff B, A symdiff B;
set A diff B := a b;

set A symdiff B := a b d;

6. Iterated and Recursive Expressions

Often it is useful to use iterated expressions, such as iterated sums. Here are some
iterated expressions and a recursive definition, illustrated with the help of ‘‘print’’ com-
mands.

ampl: print sum {i in 1..4} i;
10
ampl: print prod {i in 1..4} i;
24
ampl: param fac{ i in 1..9 }
ampl? = if i == 1 then 1 else i*fac[i-1];
ampl: print max{i in 1..9}
ampl? abs(fac[i] - prod{j in 2..i} j);
0
ampl: display fac, {i in 1..9} prod{j in 2..i} j;
: fac prod{j in 2 .. i} j :=
1 1 1
2 2 2
3 6 6
4 24 24
5 120 120
6 720 720
7 5040 5040
8 40320 40320
9 362880 362880
;

7. Example Model: diet.mod

The diet model in the AMPL book [16] provides a short but complete example of a
model for choosing what foods to buy. The model involves sets NUTR and FOOD of
nutrients and foods, subscripted parameters f_min, f_max, and cost that specify min-
imum and maximum amounts of each food to buy and how much one unit of each food
costs, a doubly subscripted parameter amt that tells how many units of each nutrient are
provided by one unit of each food, and subscripted parameters n_min and n_max that
give lower and upper bounds on the amounts of each nutrient that the foods we buy are to
provide. The objective is to satisfy the nutritional requirements at minimal cost by
choosing suitable values for the decision variables Buy.

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 7 -

set NUTR;
set FOOD;

param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

param amt {NUTR,FOOD} >= 0;

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];

subject to Diet {i in NUTR}:
n_min[i] <= sum{j in FOOD} amt[i,j]*Buy[j] <= n_max[i];

The above model describes a class of problems. Here is an example of a data section
(called ‘‘diet.dat’’ in the AMPL book) that provides data for a particular problem
instance.

data; set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;

param: cost f_min f_max :=
BEEF 3.19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;

param: n_min n_max :=
A 700 10000
C 700 10000
B1 700 10000
B2 700 10000 ;

param amt (tr):
A C B1 B2 :=

BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 8 -

MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10 ;

The data section above illustrates some tabular input formats. AMPL also has ‘‘table’’
declarations and ‘‘read table’’ and ‘‘write table’’ commands for reading data from, and
writing data to, external repositories, such as data bases and spreadsheets.

8. Sample Session

Here is an example of solving the above problem instance.

ampl: model diet.mod; data diet.dat;
ampl: solve;
MINOS 5.51: optimal solution found.
6 iterations, objective 88.2
ampl: display Buy;
Buy [*] :=
BEEF 0
CHK 0
FISH 0
HAM 0
MCH 46.6667
MTL 1.57618e-15
SPG 8.42982e-15
TUR 0
;

The resulting menu is not very satisfactory: 46 and 2/3 packages of macaroni and cheese
(‘‘MCH’’). We probably want to buy only whole packages, which we can do by using
integer variables:

ampl: redeclare var Buy{j in FOOD}
ampl? integer >= f_min[j] <= f_max[j];
ampl: solve;
MINOS 5.51: ignoring integrality of 8 variables
MINOS 5.51: optimal solution found.
4 iterations, objective 88.2

Since MINOS (the default solver) does not deal with integer variables, we need to use a
solver that only allows integer variables to have integer values. Many solvers can do
this; here we use CPLEX:

ampl: option solver cplex; solve;
CPLEX 12.6.0.0: optimal integer solution; objective 88.44
4 MIP simplex iterations
0 branch-and-bound nodes
ampl: display Buy;

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 9 -

Buy [*] :=
BEEF 0
CHK 2
FISH 0
HAM 0
MCH 43
MTL 1
SPG 0
TUR 0
;

9. Analyzing Infeasibility

Formulating a good model is often an iterative process: we repeatedly try a formu-
lation, examine its consequences, then modify it. As a simple example, the diet above is
still not very satisfactory, so we could change the data to provide positive lower bounds
on the amounts of each food bought. Here is file ‘‘diet2.dat’’ from the AMPL book:

set NUTR := A B1 B2 C NA CAL ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;

param: cost f_min f_max :=
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10 ;

param: n_min n_max :=
A 700 20000
C 700 20000
B1 700 20000
B2 700 20000
NA 0 40000
CAL 16000 24000 ;

param amt (tr):
A C B1 B2 NA CAL :=

BEEF 60 20 10 15 938 295
CHK 8 0 20 20 2180 770
FISH 8 10 15 10 945 440
HAM 40 40 35 10 278 430
MCH 15 35 15 15 1182 315
MTL 70 30 15 15 896 400
SPG 25 50 25 15 1329 370

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 10 -

TUR 60 20 15 10 1397 450 ;

By using a ‘‘reset data’’ command, we can keep the current model but associate a fresh
set of data with it.

ampl: reset data; data diet2.dat;
ampl: solve;
CPLEX 12.6.0.0: integer infeasible.
1 MIP simplex iterations
0 branch-and-bound nodes
No basis.

There are various approaches to diagnosing infeasibility. Sometimes it is helpful just to
see which constraints are infeasible and what variables are at lower or upper bound at the
variable values where the solver detected infeasibility. For example,

ampl: option solver minos; solve;
MINOS 5.51: ignoring integrality of 8 variables
MINOS 5.51: infeasible problem.
9 iterations
ampl: display Diet.lb, Diet.body, Diet.ub, Diet.slack;
: Diet.lb Diet.body Diet.ub Diet.slack :=
A 700 1993.09 20000 1293.09
B1 700 841.091 20000 141.091
B2 700 601.091 20000 -98.9086
C 700 1272.55 20000 572.547
CAL 16000 17222.9 24000 1222.92
NA 0 40000 40000 7.27596e-12
;

Here, Diet.lb, Diet.body and Diet.ub correspond to , c(x) and u in (1b), and
the constraint slack Diet.slack corresponds to min (u − c(x) , c(x) −). Most of
the constraints are satisfied as inequalities (i.e., they have positive slacks), but the B2
constraint has a decidedly negative slack, while the NA (sodium) constraint is essentially
satisfied as an equality (with a slack of about 7. 3×10 − 12) and Diet.body essentially at
its upper bound. Increasing the upper bound on the sodium constraint might help:

ampl: let n_max[’NA’] := 50000; solve;
MINOS 5.51: ignoring integrality of 8 variables
MINOS 5.51: optimal solution found.
5 iterations, objective 118.0594032

so allowing more sodium is one way to remove the infeasibility.

Another way to diagnose infeasibility is by finding an irreducible infeasible set
(IIS) of constraints and variable bounds that are mutually inconsistent; see [29, 7] and
references therein for more details. Some solvers nowadays have facilities for finding an
IIS. With CPLEX, for example,

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 11 -

option cplex_options ’iisfind=1’; solve;

would also implicate the B2 and sodium constraints.

10. A Nonlinear Example

AMPL allows general nonlinear expressions in constraints and objectives. The
‘‘largest small hexagon’’ problem [21] provides a small example of an interesting nonlin-
ear optimization problem. Here is a lightly edited variant of a little AMPL model,
‘‘pgon.mod’’, that describes the problem and has long been available as
http://www.netlib.org/ampl/models/pgon.mod:

Maximum area for unit-diameter polygon of N sides.
The following model started as a GAMS model by Francisco J. Prieto.

param N integer > 0 default 6;
set I = 1..N;

param pi = 4*atan(1.);

var rho{i in I} <= 1, >= 0 # polar radius (distance to fixed vertex)
:= 4*i*(N + 1 - i)/(N+1)**2;

var theta{i in I} >= 0 # polar angle (measured from fixed direction)
:= pi*i/N;

subject to cd{i in I, j in i+1 .. N}:
rho[i]**2 + rho[j]**2 - 2*rho[i]*rho[j]*cos(theta[j]-theta[i])
<= 1;

subject to ac{i in 2..N}:
theta[i] >= theta[i-1];

subject to fix_theta: theta[N] = pi;
subject to fix_rho: rho[N] = 0;

maximize area:
.5*sum{i in 2..N} rho[i]*rho[i-1]*sin(theta[i]-theta[i-1]);

The # character introduces a comment that extends to the end of the line. The ‘‘:=
expression’’ phrases specify initial guesses for the variables. Perhaps surprisingly, the
solution is not the regular N-gon. Figure 1 depicts a solution for N = 6.

11. Slices

AMPL’s basic indexing notation introduces one new dummy variable for each com-
ponent of the tuples that comprise a set. For example,

set S dimen 2;

declares a set of pairs, and

{(i,j) in S}

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 12 -

Figure 1: solution of pgon.mod for N = 6.
is an ‘‘indexing’’ in which dummy variables i and j assume the values of the first and
second components of each pair in the set. Sometimes one wants a ‘‘slice’’ of a set of
tuples, i.e., an indexing in which some components are given by expressions valid in the
context of the indexing. For example,

s.t. c{a in A}:
sum{(i,j) in S: i == a} x[i,j] == 1;

is a constraint declaration with a sum that effectively involves a slice. AMPL’s slice
notation allows one to put desired values directly into the indexing notation. The above
example has the same effect as

s.t. c{a in A}:
sum{(a,j) in S} x[a,j] == 1;

but the latter is easier to read and can be much faster, since internally S is split into a set
of one-dimensional sets. For a set S of n members, this can turn an O(n 2) computation
into an O(n) computation. A few years ago I saw an example in which changing the for-
mer to the latter reduced problem instantiation time from four hours to a minute.

12. Iterated Unions

In various contexts, it is useful to construct sets by iterating over computed set
expressions and forming their union. For example, given the declaration

set A dimen 2;

of a set of pairs, the declaration

set J = union{(i,j) in A} {j};

forms the set J of second components of the pairs in A. For forming iterated unions of
singleton sets, such as {j} above, the setof operator provides simpler syntax that
achieves the same effect:

set J = setof{(i,j) in A} j;

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 13 -

As an example where setof is useful, here is a little model for choosing a convex com-
bination of classifiers that is ‘‘best’’ in a least-squares sense.

set A dimen 2; # (observation, classifier) pairs
param E{A}; # signed, weighted predictions
set I = setof {(i,j) in A} i; # observations
set J = setof {(i,j) in A} j; # classifiers
param y{I} in {1,-1}; # y[i] = 1 ==> "yes", -1 ==> "no"
var x{J} >= 0; # weights on classifiers
set B = {(i,j) in A: y[i]*E[i,j] < 0}; # mis-classified pairs

minimize errsq: sum{i in I} (sum{(i,j) in B} y[i]*E[i,j]*x[j])ˆ2;
s.t. convex: sum{i in J} x[i] = 1;

More elaborate iterated unions are sometimes useful. For example, the following frag-
ment from a mesh-untangling model declares the set of directed edges of some boxes.

set P; # points
set Boxes within {P,P,P,P,P,P,P,P};
set Edges = union {(a,b,c,d,e,f,g,h) in Boxes} {

(a,b), (a,d), (a,e),
(b,c), (b,a), (b,f),
(c,d), (c,b), (c,g),
(d,a), (d,c), (d,h),
(e,h), (e,f), (e,a),
(f,e), (f,g), (f,b),
(g,f), (g,h), (g,c),
(h,g), (h,e), (h,d)};

Products of matrices appear surprisingly rarely in the mathematical programming
problems one sees in practice, but the sparse product of sparse matrices is easily
expressed with the help of an iterated union (via setof) and slice notation:

set IJ dimen 2; param A{IJ};
set JK dimen 2; param B{JK};
set IK = setof{(i,j) in IJ, (j,k) in JK} (i,k);
param C{(i,k) in IK} =

sum{(i,j) in IJ: (j,k) in JK} A[i,j]*B[j,k];

13. AMPL Flexibility Goals

We have sought to make AMPL useful in various contexts. For developing models,
it can be useful to use AMPL interactively, typing commands at it. For longer computa-
tions, ‘‘batch’’ mode, in which AMPL reads everything from specified files, can be con-
venient. We have long had some experimental graphical user interfaces (GUIs) and have
recently put considerable effort into developing a new ‘‘integrated development environ-
ment’’ (IDE); see http://ampl.com/products/ide/.

The AMPL language itself is primitive recursive, but AMPL has facilities for

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 14 -

importing libraries of functions implemented in other languages. A README file about
these facilities and some examples appear in http://www.netlib.org/ampl/solvers/
funclink. (At times, http://www.ampl.com/netlib/ampl/solvers/funclink may be more up
to date.) A library that includes more than 300 functions from the GNU Scientific
Library (http://www.gnu.org/software/gsl/) is available in source and binary form at
http://ampl.com/resources/extended-function-library/. AMPL’s imported function facili-
ties also allow AMPL to import ‘‘table handlers’’ for reading data from and writing data
to external repositories, such as spreadsheets and data bases. Details on using the table
facilities appear in http://ampl.com/resources/database-and-spreadsheet-table-handlers/.
Details on writing your own table handlers are in http://ampl.com/NEW/TABLES/. The
tableproxy table handler permits accessing data on remote machines and facilitates mix-
ing 32- and 64-bit versions of AMPL and data providers on the same machine. See
http://ampl.com/NEW/TABLEPROXY/.

In various ways, we have sought to make it convenient for AMPL to interact with
its host environment (operating system). A general ‘‘shell’’ command allows one to run
arbitrary programs. AMPL’s printing commands (print for unformatted printing,
printf for formatted printing, and display for labeled printing) can have their output
directed to files, which may either be created afresh or appended to. The remove com-
mand is for deleting files. ‘‘Pipe’’ functions provide a simple way for AMPL to interact
with external programs: AMPL writes function arguments to the standard input of an
external program, and the program returns the function value by writing to its standard
output. A program implementing a ‘‘pipe’’ function must flush its output buffers before
reading new function arguments, which can be awkward.

The currently popular operating systems all provide an ‘‘environment’’ of name-
value pairs that programs can see and manipulate. The names are ‘‘environment vari-
ables’’. AMPL’s ‘‘option’’ command operates on these environment variables and
exports them to solvers (which are invoked as separate processes) and ‘‘shell’’ com-
mands (which also are invoked as separate processes). AMPL’s behavior is affected by
some options. When starting execution, AMPL acquires values for these options from
the incoming environment if present there and provides default values for them if not.
Most solvers also are affected by environment variable values. Conventionally, the
AMPL interface to a solver named mysolver would look at the environment variable
named mysolver_options, which could be specified in an AMPL session by
‘‘option mysolver_options’’ commands, such as

option cplex_options ’advance=2 lpdisplay=1 \
prestats = 1 \
primalopt’

" aggregate=1 aggfill=20";

option solver knitro,
knitro_options "maxit=30";

Strings may be quoted by single or double quotes. For option values, adjacent strings are

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 15 -

concatenated.

Currently under development is ‘‘AMPL API’’, another way for AMPL to interact
with external programs. See http://ampl.com/products/apibeta/.

14. Interaction with Solvers

AMPL’s ‘‘solve’’ command proceeds by writing a ‘‘.nl file’’ (a file whose name
ends with ‘‘.nl’’) containing

• problem statistics
• coefficients for linear expressions
• expression graphs for nonlinear expressions
• initial guesses (primal and dual)
• suffixes (builtin or user declared).

Solvers return solution results to AMPL by writing a ‘‘.sol’’ file for AMPL to read. This
file contains a ‘‘solve_message’’ and status code and may contain updated primal and
dual variable values. It may also contain suffix values, which are auxiliary values associ-
ated with individual variables, constraints, objectives and problems, such as basis status
for variables and constraints.

15. Problem Transformations

AMPL’s presolve phase [11] derives and propagates bounds with directed roundings
and may fix variables, remove constraints (e.g., inequalities that are never tight), resolve
complementarities, turn nonlinear expressions into linear expressions (after fixing rele-
vant variables), simplify convex piecewise-linear expressions, and convert nonconvex
piecewise-linear expressions into equivalent systems of integer variables and SOS-2 [3]
constraints. It also processes ‘‘defined variables’’, which in effect are named common
expressions. For example, the declarations

param N integer > 0;
set I = 1 .. N;
var x{I}; var y{I};
var dot = sum{i in I} x[i]*y[i];

declares independent variables x and y and defined-variable dot, which is the inner prod-
uct of x and y. Constraints and objectives could involve dot, but the solver would only
see x and y as independent variables.

16. Spline Example

A referee asked about splines. I do not recall anyone wanting to use splines with
AMPL, but the following illustration of constructing a spline approximation provides an
example of using some of the facilities sketched above. We will use an imported func-
tion called bspline that, given a spline degree, a set of breakpoints and weights on B-
spline basis functions (see chapter X of [6]) and a point x sufficiently within the break-
points that all relevant basis functions are defined, computes the value of the spline at x

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 16 -

and the first derivatives of this value with respect to x, the weights, and the breakpoints.
The derivatives facilitate choosing the weights to fit specified data. The derivatives are
handled by the ASL and do not explicitly appear in the following model.

param N default 3; # degree of splines
param ND; # ND+1 = number of data points
set SD = 0 .. ND; # indices of data points
param xd{SD}; # ordinates of data points
param fd{SD}; # function values at data points

check{i in 1 .. ND}: xd[i-1] < xd[i];

param NI >= 1; # number of intervals for
x in bspline(n,x,...)

set SK = -N .. NI + 3; # indices of knots
set SW = 1 .. NI + N; # indices of B-spline weights
param wrange = xd[ND] - xd[0];
param b0{i in SK} := xd[0] + i*wrange/NI;
var b{i in SK} := b0[i]; # spline knots
var w{i in SW}; # spline weights

function bspline;
var s{i in SD} =

bspline(N, xd[i], {j in SK} b[j], {j in SW} w[j]);

minimize ssq: sum{i in SD} 0.5*(fd[i] - s[i])ˆ2;

s.t. resid{i in SD}: s[i] == fd[i];

problem SSQ: b, w, ssq;
problem NLS: b, w, resid; option presolve 0;

It might be good to add constraints that would keep the breakpoints ordered, but for
the solvers used in the sample session shown below, this turns out not to be unnecessary.
To find values for b and w so bspline(n,xd[i],...) approximates fd[i] in a least-
squares sense, we can either use an unconstrained solver with problem SSQ or a least-
squares solver with problem NLS; least-squares solvers, such as nl2 (discussed in [19]
and based on NL2SOL [8]) solve equations in a least-squares sense. For such solving, it
is often necessary to turn AMPL’s presolve off to prevent it from satisfying some equa-
tions exactly.

For an example session, let us fit a cubic spline to the sine function. Suppose the
above model appears in file bspline.mod and that file sine.fit contains

model splined.mod;
param pi = 4*atan(1);

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 17 -

data;
param ND := 21; param NI := 5;

let{i in SD} xd[i] := 2*pi*(i/ND);
let{i in SD} fd[i] := sin(xd[i]);
fix{i in -N .. -1} b[i];
fix{i in NI+1 .. NI+N} b[i];

Here is a session fitting the data both ways with the above model and setup files:

ampl: include spline.fit
ampl: load bspline.dll;
ampl: option solver nl2; solve;
nl2: Relative Function Convergence; function = 5.40485704e-06

RELDX = 8.12e-05; PRELDF = 1.94e-11; NPRELDF = 1.94e-11
19 func. evals; 16 grad. evals

ampl: printf "%.3g\n", max{i in SD} abs(s[i] - fd[i]);
0.00109
ampl: problem SSQ;
ampl: option reset_initial_guesses 1, solver snopt;
ampl: solve;
SNOPT 7.2-8 : Optimal solution found.
80 iterations, objective 5.404937356e-06
Nonlin evals: obj = 67, grad = 66.
ampl: printf "%.3g\n", max{i in SD} abs(s[i] - fd[i]);
0.00109

Both solvers achieved about the same residual sum of squares and maximum fit error on
the set of sample points.

The problem of choosing b and w to fit best in a least-squares sense is a separable
nonlinear least-squares problem [20], as the w variables appear linearly, and a separable
solver probably would be faster and somewhat more robust. At any rate, after determin-
ing b and w, we could fix them (causing them to retain their current values and be treated
as parameters) and deal with some application where the spline just found would be use-
ful.

Source for bspline.dll is too long to include with this paper, but is available as
http://www.ampl.com/netlib/ampl/solvers/examples/bspline.c

17. Implementation Techniques

AMPL’s implementation is an exercise in practical computer science. Parsing pro-
ceeds via the venerable Unix tools lex and yacc, which build up expression graphs that
are subsequently manipulated. Declared names are associated with unique ‘‘symbols’’
found by hashing. Hashing is also used in a ‘‘compile’’ phase to find common expres-
sions. The compile phase lifts invariant subexpressions out of inner loops. With the help

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 18 -

of dependency graphs, entities are only instantiated or updated when needed — lazy eval-
uation. When appropriate, cleanup routines are registered, so they can be invoked either
when an operation completes normally or when it is interrupted by an error, such as an
invalid subscript or missing data. Error handling proceeds via longjump. Some things
are reference-counted, and sparse-matrix techniques make processing large, sparse mod-
els feasible. AMPL is written (and debugged) in C++, but for porting to various plat-
forms, the AMPL source code is converted to portable C with the help of cfront (the orig-
inal C++ ‘‘compiler’’).

18. Wish List

There are many improvements we hope to make to AMPL and its associated ASL
(solver-interface library). Just when and whether these improvements will be available
remains to be seen. Functions expressed directly in AMPL would turn AMPL from a
primitive-recursive language to a Turing-complete language. When conveyed to solvers
via the ASL, they would allow providing callbacks to solvers, e.g., for influencing
branching decisions in integer programming. They would also find some use in AMPL
models. Ordered sets of tuples would sometimes be useful. While AMPL already facili-
tates solving sequences of related problems, updating entities could sometimes be done
more efficiently. AMPL has long had some facilities for constraint programming, but
allowing variables in subscripts remains to be done. When there is just one objective (for
multi-objective optimization, AMPL allows one to declare several objectives, including
indexed collections of objectives), AMPL’s presolve could exploit duality. (It already
does reductions for complementarity.) AMPL has long permitted some declarations
related to stochastic programming, but corresponding extensions to the ASL need to be
completed and examples of their use need to be created. Facilities supporting semi-
definite programming and multi-level optimization would be useful. We have long
wanted AMPL to be able to carry on two-way conversations with solvers, so after a prob-
lem has been solved, a slightly modified problem could be conveyed just by telling the
solver of changes to the existing problem. Units (of distance, time, charge, etc.) might
help catch or avoid some mistakes. For some mathematical research, such data types as
rational, complex, and complex rational could be helpful. Facilities for parallel evalua-
tions in the ASL would be useful. Constructs for parallelism might also be useful in
AMPL itself.

19. Other AMPL Facilities

This paper provides an overview of AMPL, but gives little or no detail about vari-
ous useful AMPL facilities:

• drop, restore (affecting what constraints and objectives a solver sees)
• fix, unfix (affecting the variables a solver sees)
• named problems and environments
• suffixes
• tables and table handlers
• column-generation syntax (e.g., node and arc)

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 19 -

• complementarity constraints [9]
• subscripted sets versus tuples
• constraint programming [12]

The AMPL web site (http://www.ampl.com) provides pointers to more detail on the
above topics, including

• the AMPL book (and free PDF files for it)
• examples (models and data)
• descriptions of new facilities
• a new IDE
• a new API
• Try AMPL! and NEOS for free web-based use
• course licenses
• trial licenses
• downloads

student binaries
ASL (solver-interface library) source
example solver interfaces
‘‘standard’’ table handler (binaries, source)
papers, reports, talk slides

20. Concluding Remarks

Mathematical programming models, such as (1), are useful in many contexts. For-
mulating good models is often an iterative process: you test a formulation, assess how
well it works, modify it and test again. The AMPL modeling language can assist in this
endeavor. Its associated interface library (ASL) provides automatically derived details to
solvers, such as sparsity information and derivatives.

21. REFERENCES

[1] A. V. AHO, P. J. WEINBERGER, AND B. W. KERNIGHAN, ‘‘AWK — a Pattern Scan-
ning and Processing Language,’’ Software—Practice and Experience (July 1978).

[2] A. V. AHO, P. J. WEINBERGER, AND B. W. KERNIGHAN, The AWK Programming
Language, Addison-Wesley, 1988.

[3] E. M. L. BEALE AND J. A. TOMLIN, ‘‘Special Facilities in a General Mathematical
System for Non-Convex Problems Using Ordered Sets of Variables,’’ pp. 447–454
in Proceedings of the Fifth International Conference on Operational Research, ed.
J. Lawrence, Tavistock Publications, London (1970).

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 20 -

[4] JOHANNES BISSCHOP AND ROBERT ENTRIKEN, AIMMS, The Modeling System,
Paragon Decision Technology, 1993.

[5] J. BISSCHOP AND A. MEERAUS, ‘‘Selected Aspects of a General Algebraic Model-
ing Language,’’ pp. 223–233 in Optimization Techniques, Part 2, ed. K. Iracki, K.
Malanowski, and S. Walukiewicz, Springer-Verlag, Berlin (1980). Proceedings of
the 9th IFIP Conference on Optimization Techniques, Warsaw, Sept. 4–8, 1979

[6] C. DE BOOR, A Practical Guide to Splines, Springer-Verlag, 1978.

[7] J. W. CHINNECK AND E. W. DRAVNIEKS, ‘‘Locating Minimal Infeasible Constraint
Sets in Linear Programs,’’ ORSA J. Computing 3 #2 (1991), pp. 157–168.

[8] J. E. DENNIS, JR., D. M. GAY, AND R. E. WELSCH, ‘‘An Adaptive Nonlinear
Least-Squares Algorithm,’’ ACM Trans. Math. Software 7 (1981), pp. 348–368.

[9] MICHAEL C. FERRIS, ROBERT FOURER, AND DAVID M. GAY, ‘‘Expressing Com-
plementarity Problems in an Algebraic Modeling Language and Communicating
Them to Solvers,’’ SIAM Journal on Optimization 9 #4 (1999), pp. 991–1009.

[10] R. FOURER, ‘‘Modeling Languages Versus Matrix Generators for Linear Program-
ming,’’ ACM Trans. Math. Software 9 #2 (1983), pp. 143–183.

[11] ROBERT FOURER AND DAVID M. GAY, ‘‘Experience with a Primal Presolve Algo-
rithm,’’ pp. 135–154 in Large Scale Optimization: State of the Art, ed. W. W.
Hager, D. W. Hearn, and P. M. Pardalos, Kluwer Academic Publishers (1994).

[12] ROBERT FOURER AND DAVID M. GAY, ‘‘Extending an Algebraic Modeling Lan-
guage to Support Constraint Programming,’’ INFORMS Journal on Computing 14
#4 (2002), pp. 322–344.

[13] R. FOURER, D. M. GAY, AND B. W. KERNIGHAN, ‘‘AMPL: A Mathematical Pro-
gramming Language,’’ Computing Science Technical Report No. 133 (Jan. 1987
(revised June 1989)), AT&T Bell Laboratories, Murray Hill, NJ 07974.

[14] R. FOURER, D. M. GAY, AND B. W. KERNIGHAN, ‘‘A Modeling Language for
Mathematical Programming,’’ Management Science 36 #5 (1990), pp. 519–554.

[15] ROBERT FOURER, DAVID M. GAY, AND BRIAN W. KERNIGHAN, AMPL: A Model-
ing Language for Mathematical Programming, Duxbury Press/Wadsworth, 1993.
ISBN: 0-89426-232-7.

[16] ROBERT FOURER, DAVID M. GAY, AND BRIAN W. KERNIGHAN, AMPL: A Model-
ing Language for Mathematical Programming, Duxbury Press / Brooks/Cole Pub-
lishing Company, 2003. ISBN: 0-534-38809-4.

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 21 -

[17] DAVID M. GAY, ‘‘Automatic Differentiation of Nonlinear AMPL Models,’’ pp.
61–73 in Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, ed. A. Griewank and G. F. Corliss, SIAM (1991).

[18] D. M. GAY, ‘‘More AD of Nonlinear AMPL Models: Computing Hessian Informa-
tion and Exploiting Partial Separability,’’ in Computational Differentiation: Appli-
cations, Techniques, and Tools, ed. George F. Corliss, SIAM (1996).

[19] DAVID M. GAY, ‘‘Hooking Your Solver to AMPL,’’ Technical Report 97-4-06
(April, 1997), Computing Sciences Research Center, Bell Laboratories. See http://-
www.ampl.com/ampl/REFS/hooking2.ps.gz.

[20] G. H. GOLUB AND V. PEREYRA, ‘‘The Differentiation of Pseudo-Inverses and Non-
linear Least-Squares Problems Whose Variables Separate,’’ SIAM J. Numer. Anal.
10 (1973), pp. 413–432.

[21] R. L. GRAHAM, ‘‘The Largest Small Hexagon,’’ J. Combinatorial Theory (A) 18
(1975), pp. 165–170.

[22] A. GRIEWANK, ‘‘On Automatic Differentiation,’’ pp. 83–107 in Mathematical Pro-
gramming, ed. M. Iri and K. Tanabe, Kluwer Academic Publishers (1989).

[23] ANDREAS GRIEWANK AND ANDREA WALTHER, Evaluating Derivatives, SIAM,
2008.

[24] N. KARMARKAR, ‘‘A New Polynomial-time Algorithm for Linear Programming,’’
Combinatorica 4 (1984), pp. 373–395.

[25] GERSHON KEDEM, ‘‘Automatic Differentiation of Computer Programs,’’ ACM
Trans. Math. Software 6 #2 (1980), pp. 150–165.

[26] B. W. KERNIGHAN AND D. M. RITCHIE, The C Programming Language, Prentice-
Hall, 1978.

[27] B. W. KERNIGHAN AND D. M. RITCHIE, The C Programming Language, Prentice-
Hall, 1988. Second Edition

[28] BJARNI KRISTJANSSON, MPL — Modelling System Quick Guide, Maximal Soft-
ware, Reykjavik, Iceland, 1991.

[29] J. VAN LOON, ‘‘Irreducibly Inconsistent Systems of Linear Inequalities,’’ European
J. Operational Research 8 (1981), pp. 283–288.

DRAFT FOR COMMENT October 30, 2014 23:00:24

- 22 -

[30] B. STROUSTRUP, The C++ Programming Language, Addison-Wesley, 1986.

DRAFT FOR COMMENT October 30, 2014 23:00:24

