
Revisiting Expression Representations for Nonlinear AMPL Models

David M. Gay

AMPL Optimization, Inc.

dmg@ampl.com

http://ampl.com

ABSTRACT

AMPL facilitates stating and solving nonlinear programming problems involving
algebraically defined objectives and constraints. For solving such problems, the
AMPL/solver interface library provides routines that compute objective functions, con-
straint residuals, and associated derivatives. Objectives and constraint bodies hitherto
have been represented by ‘‘executable’’ expression graphs, in which each node points to
its operands and to a function that computes the node’s result. Nodes also store partial
derivatives for use in computing gradients and Hessians by automatic differentiation.
Storing these values makes the graphs nonreentrant. To enable several threads to evalu-
ate the same expression at different points without having separate copies of the expres-
sion graphs, such details as variable values and partial derivatives must be stored in
thread-specific arrays. We describe and compare some expression-graph representations
for use in computing function, gradient, and Hessian values, and for extracting some aux-
iliary problem information. In particular, we describe some details of an updated
AMPL/solver interface library that uses operation lists to represent expressions.

1. Introduction

The AMPL modeling language [7, 8] facilitates formulating, instantiating, solving,
and examining solutions of mathematical programming problems, such as

minimize f (x) (1a)

s. t. ≤ c(x) ≤ u , (1b)

with x ∈ I Rn and c: I Rn → I Rm , possibly with some components of x restricted to inte-
ger values. (If there are no constraints, then m = 0. When m > 0, the i th lower bound

i can be finite or − ∞, i.e., i ∈ { − ∞} ∪ I R, and similarly u i ∈ { + ∞} ∪ I R, with

i = u i ∈ I R if constraint i is an equality constraint.)

While AMPL has ‘‘presolve’’ facilities [6] for simplifying (1), and these simplifica-
tions sometimes find solutions, normally AMPL does not solve problems, but relies on
separate solvers to find solutions. To use such a solver, AMPL writes a representation of
the current problem instance to a ‘‘.nl file’’ and invokes the solver as a separate program.
The solver typically uses facilities in a special library, the AMPL/solver interface library
(ASL), to read the .nl file and acquire various problem details. When f or c is nonlinear,
the solver calls ASL routines to compute function values f (x) and c(x) at a specified

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 2 -

vector x ∈ I Rn . Most nonlinear solvers also obtain gradient ∇ f (x) and Jacobian ∇c(x)
values from the ASL; some also use the ASL to obtain values of the Hessian of the
Lagrangian function,

∇2 L(x ,y) = ∇2 f (x) +
i = 1
Σ
m

y i ∇2 c i (x) (2)

or Hessian-vector products ∇2 L(x ,y) .v for specified vectors v ∈ I Rn . This paper
explains how the ASL has computed these values and presents an alternative way to com-
pute them. The goal of the present work is to revisit expression representations and eval-
uations in the ASL with an eye to separating expressions from data so multiple threads
can make independent use of the same expressions.

For concreteness, let us consider a tiny problem with n = 2 and m = 1:

minimize f (x) = (x 1 − 3)2 + (x 2 + 4)2 (3)

s.t. c(x) = x 1 + x 2 = 1.

An AMPL script for stating and solving this problem is

var x; var y;
minimize f: (x - 3)ˆ2 + (y + 4)ˆ2;
s.t. c: x + y == 1;
solve;
display x, y;

Putting this script into file tiny.x and invoking ‘‘ampl tiny.x’’, we get

MINOS 5.51: optimal solution found.
2 iterations, objective 2
Nonlin evals: obj = 6, grad = 5.
x = 4
y = -3

To process the ‘‘solve’’ command above, AMPL writes a .nl file containing

• problem statistics (number of variables, etc.)
• expression graphs for nonlinear parts of objectives and constraints
• linear parts of objectives and constraints
• starting guesses (if specified)
• suffixes, e.g., for a basis (if available)

2. Representations of Expression Graphs

There are various ways to represent expression graphs. The following four ways are
roughly equivalent in size and evaluation time.

1. Polish postfix: operands are pushed onto a stack, and operators remove operands
from the top of the stack, compute a result, and push the result onto the stack top. Thus

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 3 -

operators follow operands. For a while in the late twentieth century, Hewlett Packard
sold hand calculators that worked this way. For example, on an HP 15C calculator, the
computation of 3 × 4 + 5 = 17 proceeds as follows:

_ __________________
keystroke display

3 3
Enter 3.00

4 4
× 12.00
5 5
+ 17.00_ __________________ 




















Some interpreters for the Pascal programming language, e.g., [3], also used Polish postfix
for their ‘‘compiled’’ program representations.

2. Polish prefix: operators are followed by expressions for their operands. The ASL has
long worked this way [9]. For example, the expression graph for (3) could be represented
visually by Figure 1.

x 3

−

()2

+

f

()2

+

y 4

Figure 1. Expression graph for (3).

Inserting the lines

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 4 -

option nl_comments 1;
write gtiny;

before the ‘‘solve;’’ line in the ‘‘tiny.x’’ file shown above would cause AMPL to write
file ‘‘tiny.nl’’ containing the following lines to represent (3):

O0 0 #f
o0 # +
o5 #ˆ
o0 # +
n-3
v0 #x
n2
o5 #ˆ
o0 # +
n4
v1 #y
n2

The portion of each line starting with ‘‘#’’ is a comment that is only present when
‘‘option nl_comments 1’’ is in effect. For instance, the lines

o0 # +
n4
v1 #y

represent y + 4, and the lines

o5 #ˆ
o0 # +
n4
v1 #y
n2

represent (y + 4)2 .

3. Executable expression graphs: the ASL has hitherto represented each operation by a
data structure that includes pointers to operands and a pointer to a function that carries
out the operation. For a binary operation, the data structure has the form

struct expr {
real (*op)(struct expr*);
int a;
real dL;
struct expr *L, *R;
real dR;
};

Figure 2. Old ASL binary expression for gradients only.

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 5 -

in the C programming language. The ‘‘left’’ and ‘‘right’’ operands are L and R, and the
dL and dR fields are for the partial derivatives of the operation’s result with respect to
the left and right operands. These fields make the code nonreentrant. (The ‘‘a’’ field is
an ‘‘adjoint subscript’’ used when setting up derivative computations. Here and below,
we assume ‘‘typedef double real;’’ has appeared.) For example, C source for the ‘‘op’’
function for division, prepared for function and gradient evaluations, is

real f_OPDIV(expr *e) {
real L, R, rv;
expr *e1 = e->L;
L = (*e1->op)(e1);
e1 = e->R;
if (!(R = (*e1->op)(e1)))

zero_div(L, "/"); /*no return*/
rv = L / R;
if (want_deriv)

e->dR = -rv * (e->dL = 1. / R);
return rv;
}

Partial derivatives are not always needed. For instance, partials are not needed in com-
puting the test part of an ‘‘if test then texpr else fexpr’’ expression. In the f_OPDIV
source above, partials are only computed when want_deriv is true, in which case the
line after ‘‘if (want_deriv)’’ computes both dL and dR values.

4. Operation list: a list, similar in spirit to computer machine instructions, of operators,
input operands, and output result locations is sometimes useful. For example, Kearfott’s
GlobSol solver [14] uses a list of quadruples of integers (called a ‘‘codelist’’). To con-
vey the general idea, here is a list of instructions for computing (3), using a scratch array
w initialized with w[0] = x and w[1] = y.

w[2] = w[0] - 3; /* x - 3 */
w[2] = w[2] * w[2];
w[3] = w[1] + 4; /* y + 4 */
w[3] = w[3] * w[3];
w[2] = w[2] + w[3];

The computation ends with f (x) = w [2].

The present work uses a list of tuples of varying lengths to represent operations and
operands. For example, a unary operation is represented by three integers, a binary oper-
ation by four integers, and a sum of n terms by n + 3 integers. A ‘‘big switch’’, which a
good compiler will turn into a jump table, determines the operation carried out:

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 6 -

real eval1(int *o, EvalWorkspace *ew) {
real *w = ew->w;

top: switch(*o) {
case nOPRET:

return w[o[1]];
case nOPUMINUS:

w[o[1]] = -w[o[2]];
o += 3; goto top;

case nOPPLUS:
w[o[1]] = w[o[2]] + w[o[3]];
o += 4; goto top;

case nOPMINUS:
w[o[1]] = w[o[2]] - w[o[3]];
o += 4; goto top;

case nOPMULT:
w[o[1]] = w[o[2]] * w[o[3]];
o += 4; goto top;

...

The above eval1(...) routine has a separate work array, w, for computed
results. The executable expression graph approach could also be modified to use a sepa-
rate work array for computed results, but timing results shown below indicate it may be
better to use operation lists.

3. Gradient Computations

It is convenient and efficient to use automatic differentiation (AD) to compute gra-
dients, and possibly Hessians (2) or Hessian-vector products, related to (1). AD has been
addressed by many papers and books; see, for example, the book [12] by Griewank and
Walther, the publications cited therein, and those listed in the web site
http://www.autodiff.org. The basis for AD is simply the chain rule. Suppose t
is a variable whose role in (1) can be described as

φ(t) = f (y 1 (t) , y 2 (t) , . . . , y k (t)) ;

t might be a program variable x i or an intermediate value involved in (1). The notion
here is that t is directly involved in the computation of possibly intermediate values
y 1 , . . . , y k . The chain rule gives

φ′ (t) =
∂t
∂ f_ __ =

i = 1
Σ
k

∂y i

∂ f_ ___
∂t

∂y i_ ___ .

Once we know the adjoint
∂y
∂ f_ __ of an intermediate variable y, we can add its contribution

∂y
∂ f_ __

∂t
∂y_ __ to the adjoint of each variable t on which y depends directly. So-called back-

wards AD or reverse AD proceeds by computing adjoints in the reverse order of the

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 7 -

operations to compute f (x). Since the i th component of the gradient ∇ f (x) is the adjoint
of x i , reverse AD computes ∇ f (x) in a number of operations proportional to the number
needed to compute f (x) itself, which makes reverse AD very appealing for computing
gradients, at least for computations simple enough that relevant intermediate results can
be stored.

As described in [9], the ASL has long used reverse AD to compute gradients by
means of ‘‘derivative propagation’’ structures

struct derp {
struct derp *next;
real *a, *b, *c;
};

in which a and b point to adjoints and c points to a previously computed partial deriva-
tive value. The reverse AD computation proceeds via

void derprop(derp *d) {
*d->b = 1.;
do *d->a += *d->b * *d->c;

while((d = d->next));
}

Would it be faster to implement reverse AD another way? To see how using integer
subscripts rather than pointers would perform, we now consider three ways of computing
an inner product, based on the following structures:

struct Rpair { double a, b; } *rp;
struct Aoff { double *a, *b; } *p;
struct Ioff { int a, b; } *q;

With Rpair, the values to be multiplied are in the structure itself. With Aoff, pointers to
those values are in the structure. With Ioff, an auxiliary array, declared by

double *v;

contains those values. The basic operations for computing an inner product ‘‘dot’’ are

dot += rp->a * rp->b; /* Rpair */
dot += *p->a * *p->b; /* Aoff */
dot += v[p->a] * v[p->b]; /* Ioff */

In computing on a laptop computer with an Intel Celeron CPU, sequential memory
accesses are faster than randomly permuted ones, as indicated in the following table of
relative computation times for some inner products, with both 32- and 64-bit addressing:

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 8 -

32-bit 64-bit

Rpair 1.0 1.0
Aoff sequential 1.0 1.0
Ioff sequential 1.0 1.0
Aoff permuted 1.6 1.8
Ioff permuted 1.6 1.7______________________________ 


















Table 1. Relative times for ‘‘dot’’ variants.

On this machine, at least, there is no disadvantage to using integer subscripts. For sepa-
rating data fixed by the problem instance from data that depend on current variable val-
ues, it is convenient to use integer subscripts into a thread-specific work array, and the
above table suggests that doing so may not adversely affect single-thread computations,
at least not greatly.

4. Alternative Implementations of derprop

For computing gradients in a thread-safe way, i.e., with separate arrays for values
that vary with the thread, we could use a computation analogous to the derprop routine
shown above:

struct iderp { int a, b, c; } *d, *de;
for(d = ...; d < de; ++d)

s[d->a] += s[d->b] * w[d->c];

However, this has the disadvantage of using a potentially large s array, many compo-
nents of which must be initialized to zero. One possible alternative is to again use a ‘‘big
switch’’, such as

for(;;)
switch(*u) {

case ASL_derp_copy: s[u[1]] = s[u[2]];
u += 3; break;

case ASL_derp_add: s[u[1]] += s[u[2]];
u += 3; break;

case ASL_derp_copyneg: s[u[1]] = -s[u[2]];
u += 3; break;

case ASL_derp_addneg: s[u[1]] -= s[u[2]];
u += 3; break;

case ASL_derp_copymult: s[u[1]] = s[u[2]]*w[u[3]];
u += 4; break;

case ASL_derp_addmult: s[u[1]] += s[u[2]]*w[u[3]];
u += 4; break;

...

It is simpler to exploit the fact that, aside from ‘‘defined variables’’ (which amount to
named common subexpressions and are discussed more in §5 below), each intermediate

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 9 -

value is used just once, which allows us to use a loop of the form

for(d = ...; d < de; ++d) {
t = s[d->b] * w[d->c];
if ((a = d->a) >= a0)

s[a] = t;
else

s[a] += t;
}

In this loop, components s[i] with i < a0 correspond to decision variables x i or to
defined variables; such components must be initialized suitably, e.g., with linear coeffi-
cients in the case of decision variables. There is no need to initialize the other compo-
nents of s, and the s array can be much shorter. The w array contains known constants,
variable values, and computed results, including (where appropriate) partial derivatives,
with a layout of the form

_ _________________
const 1
. . .

const k

w → var 1

var 2
. . .

var n

result 1
. . ._ _________________ 
























so that w[0] is the value of the first decision variable and negative subscripts are for
constants.

5. Funneling Defined Variables

AMPL permits declaring a ‘‘variable’’ whose value is computed from an expression
involving other variables. This is logically equivalent to introducing a new variable and
an equality constraint that specifies the new variable’s value, except that some solvers
may arrange for equality constraints only to be satisfied in the limit, whereas defined
variables always have exactly their specified value (except for roundoff errors). Some
problems that would otherwise involve equality constraints may be stated as uncon-
strained problems with the help of defined variables, making a wider range of solvers
available to solve such problems.

When a defined variable is used in several constraints or objectives, and the expres-
sion for the defined variable is sufficiently complicated, it can be worthwhile to precom-
pute the partials of the defined variable with respect to the variables on which it depends.
This is sometimes called funneling the gradient computation. The current heuristic is to
funnel µ adjoint operations to k variables when µ > 3k, since with no funnel we would
do at least 2µ adjoint-propagation operations (as the defined variable is shared by at least

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 10 -

two constraints or objectives); creating the funnel costs about µ + k adjoint operations,
and applying it twice costs 2k more such operations. We only want to do this when it
saves time, i.e., when 2µ > µ + 3k.

The MINPACK [16] test problem ‘‘Chebyquad’’, as given in the following AMPL
model, provides an example where funnels are worthwhile:

chb50b.mod: MINPACK Chebyquad 50 as
both objective and constraints
param n > 0 default 50;
var x {j in 1..n} := j/(n+1);
var Tj{j in 1..n} = 2*x[j] - 1;
var T{i in 0..n, j in 1..n} =

if (i = 0) then 1
else if (i = 1) then Tj[j]
else 2 * Tj[j] * T[i-1,j] - T[i-2,j];

minimize ssq: sum{i in 1..n} ((1/n) * sum {j in 1..n} T[i,j]
- if (i mod 2 = 0) then 1/(1-iˆ2))ˆ2;

s.t. eqn {i in 1..n}:
(1/n) * sum{j in 1..n} T[i,j] =

if (i mod 2 = 0) then 1/(1-iˆ2) else 0;

In this model, T[i,j] is the i th Cheybshev polynomial evaluated at variable x[j], and
Tj is a helper defined variable.

The following table shows evaluation times for the above model with some ASL
variants, some without funneling, relative to evaluation time for ‘‘old ASL’’, which is the
ASL that has long been available; here and below, unless otherwise noted, timing is on
the same machine used for Table 1. The ‘‘bad ASL with funnels’’ variant was my initial
attempt to improve funneling by using data structures that I thought would take less
memory. The ‘‘new ASL’’ variant uses an operation list, but the same funneling
approach as the old ASL.

_ ___
f , ∇ f c , ∇c

ASL variant 32-bit 64-bit 32-bit 64-bit
old ASL with funnels 1.00 1.00 1.00 1.00
old ASL without funnels 1.68 1.14 1.62 1.15
bad ASL with funnels 1.01 0.67 6.47 3.68
new ASL with funnels 0.40 0.28 0.39 0.28
new ASL without funnels 0.45 0.29 0.44 0.29_ ___ 




















Table 2. Relative evaluation times for ch50b with ASL variants.

Using funnels sometimes gives faster gradient computations. It remains to be seen
whether other ways of handling funnels would sometimes give still faster gradient com-
putations.

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 11 -

6. Detecting and Extracting Quadratic Forms

Some solvers provide special treatment for quadratic objectives and possibly qua-
dratic constraints. With the old ASL, determining whether an objective or constraint is
quadratic and, if so, extracting its Hessian matrix, is done with qpcheck() functions
that require calling a special qp_read() routine to read the .nl file. To compute the
values of nonlinear, nonquadratic objectives or constraints, it is then necessary to call a
qp_opify() routine, and to compute Hessians or Hessian-vector products, it is neces-
sary to completely re-read the .nl file. With the new ASL, the qpcheck() routines
operate directly on operation lists, carrying out an ‘‘evaluation’’ that computes expres-
sion information rather than numeric values, so qp_opify() is not needed and Hes-
sians or Hessian-vector products can be computed without re-reading the .nl file. Similar
comments apply to the indicator_constrs() routine that helps process indicator
constraints: the old ASL required calling qp_read, and the new ASL does not.

7. Hessians and Hessian-vector Products

For computing Hessians, an approach described by Bruce Christianson in [4] works
well. Let p ∈ I Rn be nonzero and consider

φ(τ) = f (x + τp).

Then

φ′ (τ) = ∇ f (x + τp) T p . (4)

If we compute φ′ (0) by forward AD, then we can use reverse AD to compute ∇2 f (x) p,
i.e., a Hessian-vector product. Solvers that use a (possibly preconditioned) nonlinear
conjugate-gradient algorithm can use Hessian-vector products directly. For solvers that
use explicit (possibly sparse) Hessian matrices, we can use Hessian-vector products to
assemble the Hessian matrix.

Griewank and Toint [11] point out that many objectives f (x) have the form

f (x) =
i = 1
Σ
q

f i (U i x) (5)

in which each matrix U i ∈ I Rm i ×n has only a few rows (i.e., m i << n). For such a func-
tion f,

∇ f (x) =
i = 1
Σ
q

Ui
T ∇ f i (U i x)

and

∇2 f (x) =
i = 1
Σ
q

Ui
T ∇2 f i (U i x) U i .

In LANCELOT [5], Conn, Gould and Toint exploit ‘‘group partially separable’’ struc-
ture:

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 12 -

f (x) =
i = 1
Σ
q

θ i (
j = 1
Σ
k i

f i j (U i j x))

in which θ i () is a unary function. For such f, if ψ i (x) =
j = 1
Σ
k i

f i j (U i j x), then

∇ f (x) =
i = 1
Σ
q

θi′ (ψ i (x))
j = 1
Σ
k i

Ui j
T ∇ f i j (U i j x)

and

∇2 f (x) =
i = 1
Σ
q

{ θi′ (ψ i (x))
j = 1
Σ
k i

Ui j
T ∇2 f i j (U i j x) U i j

+ θi′ ′ (ψ i (x))
j = 1
Σ
k i

(Ui j
T ∇ f i j (U i j x)) (Ui j

T ∇ f i j (U i j x)) T } .

By using a suitable expression-graph walk [10], we can find the structure (5) automati-
cally. This graph walk is fairly elaborate, so the new ASL initially keeps the same
expression graph representation as the old ASL. After the structure (5) is found, the new
ASL does another graph walk to produce the operation lists used for evaluations. With
both ASL versions, the net effect is that AMPL users can exploit the structure (5) without
even being aware of it.

An example with a rich structure (5) is an empirical energy function for protein
folding. In connection with [13], Teresa Head-Gordon provided us with Fortran for the
CHARM empirical energy function, and we converted it to an AMPL model,
pfold.mod, of which the following is an excerpt:

CHARM empirical energy function, derived
from Fortran supplied by Teresa Head-Gordon.
set D3 circular := 1..3;
set Atoms; var x{i in Atoms, j in D3};

set Bonds;
param ib{Bonds} integer;
param jb{Bonds} integer;
param fcb{Bonds}; param b0{Bonds};

var bond_energy = sum{i in Bonds} fcb[i] *
(sqrt(sum{j in D3} (x[ib[i],j] - x[jb[i],j]})ˆ2) - b0[i])ˆ2;
...
minimize energy: bond_energy + angle_energy + torsion_energy

+ improper_energy + pair14_energy + pair_energy;

The decision variables are the Cartesian coordinates of a collection of atoms. The overall
empirical energy is the sum of six energy terms, each a sum of nonlinear expressions
involving differences of the coordinates of the atoms involved. Thus each U i j x is a

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 13 -

vector of coordinate differences.

8. Implementations of Hessian-vector Products

When arranging to compute Hessians and Hessian-vector products, the old ASL
used a more detailed version of the expr structure shown in Figure 1:

struct expr2 {
real (*op)(expr2 *);
int a; /* adjoint index, then operator class */
expr2 *fwd, *bak;
real dO; /* deriv of op w.r.t. t in x + t*p */
real aO; /* adjoint (in Hv computation) of op */
real adO; /* adjoint (in Hv computation) of dO */
real dL; /* deriv of op w.r.t. left operand */
expr2 *L, *R; /* left and right operands */
real dR; /* deriv of op w.r.t. right operand */
real dL2; /* second partial w.r.t. L, L */
real dLR; /* second partial w.r.t. L, R */
real dR2; /* second partial w.r.t. R, R */
};

Figure 3. Old ASL binary expression for gradients and Hessians.

The fwd and bak pointers enable computing (4), i.e., φ′ (τ), and applying reverse AD to
this computation. In the old ASL, computing (4) used code of the form

void hv_fwd(expr *e) {
for(; e; e = e->fwd) {

e->aO = e->adO = 0;
switch(e->a) {

...
case Hv_binaryLR:

e->dO = e->L->dO*e->dL + e->R->dO*e->dR;
break;

case Hv_minusR:
e->dO = -e->R->dO;
break;

...
}}}

Figure 4. Old ASL forward computation of φ′ .

This code uses partial derivatives stored in the expr2 structure shown in Figure 3, mak-
ing the code nonreentrant. The new ASL stores thread-dependent quantities in a separate
workspace, some of which is composed of structures of the form

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 14 -

struct Eresult {
real O; /* op value */
real dO; /* deriv of op w.r.t. t in x + t*p */
real aO; /* adjoint (in Hv computation) of O */
real adO; /* adjoint (in Hv computation) of dO */
real dL; /* deriv of op w.r.t. left operand L */
real dL2; /* second partial w.r.t. L,L (R,R for OPDIV01) */
real dR; /* deriv of op w.r.t. right operand R */
real dLR; /* second partial w.r.t. L,R */
real dR2; /* second partial w.r.t. R,R */
};

In the new ASL, computing (4) uses code of the form

void hv_fwd(int *o, real *w, ...) { ...
for(;;) {

switch(*o) { ...
case nOPDIV2:

r = (Eresult*)(w + o[2]);
L = (Eresult*)(w + o[3]);
R = (Eresult*)(w + o[4]);
r->dO = L->dO*r->dL + R->dO*r->dR;
o += 5;
break;

... }
r->aO = r->adO = 0.;
}}

Figure 5. New ASL forward computation of φ′ .

The assignment ‘‘e = e->fwd’’ in Figure 4, to move forward to the next relevant
operation, is replaced in Figure 5 by the assignment ‘‘o += 5’’ (i.e., ‘‘o = o + 5’’).
The assignment ‘‘r->aO = r->adO = 0.’’ after the switch statement in Figure 5
is an initialization in preparation for the following reverse AD on φ′ .

In the old ASL, applying reverse AD to (4) used code of the form

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 15 -

void hv_back(expr *e) { ...
for(; e; e = e->bak) {

switch(e->a) { ...
case Hv_binaryLR:

e1 = e->L;
e2 = e->R;
adO = e->adO;
t1 = adO * e1->dO;
t2 = adO * e2->dO;
e1->aO += e->aO*e->dL + t1*e->dL2 + t2*e->dLR;
e2->aO += e->aO*e->dR + t1*e->dLR + t2*e->dR2;
e1->adO += adO * e->dL;
e2->adO += adO * e->dR;
break;

... }}}

Figure 6. Old ASL reverse AD of φ′ .

In the new ASL, the corresponding code has the form

void hv_back(int *o, real *w) { ...
for(;;) {

switch(o[0]) { ...
case nOPPOW2: case nOP_atan22:

r = (Eresult*)(w + o[2]);
L = (Eresult*)(w + o[3]);
R = (Eresult*)(w + o[4]);
L->adO += r->adO * r->dL;
R->adO += r->adO * r->dR;
t1 = r->adO * L->dO; t2 = r->adO * R->dO;
L->aO += r->aO*r->dL + t1*r->dL2 + t2*r->dLR;
R->aO += r->aO*r->dR + t1*r->dLR + t2*r->dR2;
break; ...}

o -= o[1];
}}

Figure 7. New ASL reverse AD of φ′ .

The assignment ‘‘o -= o[1]’’ in Figure 7 corresponds to ‘‘e = e->bak’’ in Figure
6.

9. Comparative Timings

The tables below present some timings of the new ASL relative to the old on some
test problems summarized in Table 3. Problems bearing, clnlbeam, gasoil, and henon80
were provided by Hans Mittelmann [15]; problem denhex is from the AMPL model

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 16 -

denhex.mod: dense Hessian
expressed without structure
param n integer > 0 default 500;
set I = 1 .. n;
var x{I};
minimize q: sum{i in I} x[i]ˆ2

+ sum{i in I, j in I} i*j*x[i]*x[j];

problem denhop is from the AMPL model

denhop.mod: dense, structured Hessian
param n integer > 0 default 5000;
set I = 1 .. n;
var x{I};
minimize q: sum{i in I} x[i]ˆ2

+ (sum{i in I} i*x[i])ˆ2;

problem pfold3 is the pfold.mod mentioned in §7, together with data connected with
[13]; problem chemeq is from chemeq.mod in [1]; problem ch50b corresponds to the
ch50b.mod shown above, and ch50 is ch50b.mod with just the least-squares objec-
tive (no constraints).

_ ___
name n m comments

n = number of variables
m = number of constraints

bearing 16000 0 sparse quadratic objective
ch50 50 0 many defined variables
ch50b 50 50 many defined variables
chemeq 38 12 nonlinear objective, linear constraints
clnlbeam 59999 40000 all nonlinear
denex 500 0 dense quadratic, all explicit
denop 5000 0 quadratic, dense due to outer-product
gasoil 32001 31998 quadratic objective, nonlinear constraints
henon80 21601 161 linear objective, 80 quadratic constraints

81 more nonlinear constraints
pfold3 66 0 many defined variables_ ___ 






































Table 3. Test problems.

Problems denex and denop have dense Hessians and are for timing Hessian-vector prod-
ucts. The other problems have sparse Hessians, and the timings are for computing them
explicitly.

Table 4 shows relative times: new ASL time divided by old ASL time, for comput-
ing function and gradient values (‘‘f, ∇ f’’ indicates function and gradient values for the
objective, and ‘‘c, ∇c’’ indicates corresponding values for the constraints). The ‘‘no
Hes.’’ results only involve computing and storing first partial derivatives, whereas the

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 17 -

‘‘Hes.’’ results include time for computing (but not using) second partial derivatives.
With both old and new ASL, possibly useful partial derivatives are computed during
function evaluations and are stored for possible later use in computing gradients and Hes-
sians or Hessian-vector products.

_ __
32-bit 64-bit 32-bit 64-bit

no Hes. no Hes. Hes. Hes.
bearing f, ∇ f 0.57 0.41 0.41 0.42
ch50 f, ∇ f 0.62 0.52 0.43 0.28
ch50b f, ∇ f 0.92 0.49 0.40 0.28
ch50b c, ∇c 0.11 0.08 0.40 0.28
chemeq f, ∇ f 0.68 0.67 0.77 0.85
clnlbeam f, ∇ f 0.63 0.55 0.74 0.68
clnlbeam c, ∇c 0.23 0.23 0.77 0.64
denex f, ∇ f 0.56 0.43 0.15 0.21
denop f, ∇ f 0.53 0.48 0.64 0.54
gasoil f, ∇ f 0.56 0.39 0.28 0.27
gasoil c, ∇c 0.48 0.36 0.82 0.68
henon80 c, ∇c 0.11 0.12 0.58 0.45
pfold3 f, ∇ f 0.74 0.64 0.73 0.74_ __ 








































Table 4. Relative function and gradient times: new ASL divided by old,
computed on an Intel Celeron CPU with 2048 KB of cache.

Cache size and various CPU details may affect the results in Table 4. The Intel
Celeron CPU used for Table 4 has 2048 KB of cache. Tables 5 and 6 are similar to Table
4, and were computed using the same binaries (compiled by gcc with –O2), but for differ-
ent CPUs. The results in Table 5 were computed on an Intel Core 2 Quad CPU with
4096 KB of cache, and those in Table 6 were computed on an Intel Core i7-4700MQ
CPU with 6144 KB of cache.

Despite the differences among the CPUs considered here, the general trend is that
the new ASL, with its use of operation lists, often runs faster for function and gradient
evaluations than does the old ASL. Moreover, the new ASL often takes less memory to
represent nonlinear expressions when just one thread is used, as indicated by Table 7
below, which shows ratios of net memory use for the new ASL relative to the old.

The figures in Table 7 include memory for the operation lists as well as for one
thread-specific work array. Each additional thread just needs its own work array, so sub-
stantial memory savings are often possible on large problems when multiple threads are
used. Allocation of large memory blocks may cause small problems like chemeq to take
more memory for one thread, but even small problems generally take less additional
memory for each additional thread. For example, with chemeq, each additional thread
requires less than a quarter of the memory needed by the old ASL.

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 18 -

_ __
32-bit 64-bit 32-bit 64-bit

no Hes. no Hes. Hes. Hes.
bearing f, ∇ f 0.35 0.29 0.40 0.36
ch50 f, ∇ f 0.75 0.73 0.69 0.36
ch50b f, ∇ f 0.89 0.78 0.47 0.29
ch50b c, ∇c 0.12 0.11 0.48 0.30
chemeq f, ∇ f 0.85 0.84 0.86 0.89
clnlbeam f, ∇ f 0.57 0.46 0.42 0.42
clnlbeam c, ∇c 0.23 0.20 0.71 0.65
denex f, ∇ f 0.32 0.25 0.30 0.25
denop f, ∇ f 0.58 0.61 0.73 0.74
gasoil f, ∇ f 0.72 0.54 0.31 0.29
gasoil c, ∇c 0.37 0.32 0.63 0.57
henon80 c, ∇c 0.13 0.10 0.44 0.33
pfold3 f, ∇ f 0.78 0.79 0.84 1.07_ __ 








































Table 5. Relative function and gradient times: new ASL divided by old,
computed on an Intel Core 2 Quad CPU with 4096 KB of cache.

_ __
32-bit 64-bit 32-bit 64-bit

no Hes. no Hes. Hes. Hes.
bearing f, ∇ f 0.44 0.29 0.39 0.29
ch50 f, ∇ f 0.58 0.51 0.48 0.19
ch50b f, ∇ f 0.78 0.58 0.38 0.17
ch50b c, ∇c 0.12 0.10 0.41 0.18
chemeq f, ∇ f 0.63 0.64 0.81 0.89
clnlbeam f, ∇ f 0.55 0.45 0.55 0.41
clnlbeam c, ∇c 0.25 0.21 0.62 0.53
denex f, ∇ f 0.49 0.32 0.15 0.14
denop f, ∇ f 0.51 0.48 0.66 0.64
gasoil f, ∇ f 0.49 0.43 0.22 0.23
gasoil c, ∇c 0.37 0.27 0.76 0.62
henon80 c, ∇c 0.12 0.11 0.50 0.36
pfold3 f, ∇ f 0.63 0.54 0.71 0.75_ __ 








































Table 6. Relative function and gradient times: new ASL divided by old,
computed on an Intel Core i7-4700MQ CPU with 6144 KB of cache.

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 19 -

_ ___
32-bit 64-bit 32-bit 64-bit
no Hes. no Hes. Hes. Hes.

bearing 0.65 0.42 0.68 0.60
ch50 0.75 0.51 0.45 0.33
ch50b 0.85 0.57 0.49 0.36
chemeq 6.65 3.70 3.04 2.49
clnlbeam 0.78 0.58 0.52 0.48
denex 0.68 0.41 0.78 0.58
denop 0.85 0.59 0.90 0.86
gasoil 0.89 0.70 0.90 0.86
henon80 0.69 0.42 0.70 0.61
pfold3 0.89 0.62 0.88 0.82_ ___ 
































Table 7. Relative memory use (one thread): new ASL divided by old.

10. Concluding Remarks

For large problems, using lists of operations rather than executable expression
graphs often leads to faster computations and less memory use, particularly when multi-
ple threads are deployed that do independent function (and gradient, etc.) evaluations.
Source for the new ASL, using operation lists, appears in [2].

11. REFERENCES

[1] http://ampl.com/netlib/ampl/models/nlmodels.

[2] http://ampl.com/netlib/ampl/solvers2.tgz.

[3] Turbo Pascal Reference Manual, Borland International, 1983.

[4] B. CHRISTIANSON, ‘‘Automatic Hessians by Reverse Accumulation,’’ IMA J.
Numer. Anal. 12 (1992), pp. 135–150.

[5] A. R. CONN, N. I. M. GOULD, AND PH. L. TOINT, LANCELOT, a Fortran Package
for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag, 1992.
Springer Series in Computational Mathematics 17.

[6] ROBERT FOURER AND DAVID M. GAY, ‘‘Experience with a Primal Presolve Algo-
rithm,’’ pp. 135–154 in Large Scale Optimization: State of the Art, ed. W. W.
Hager, D. W. Hearn, and P. M. Pardalos, Kluwer Academic Publishers (1994).

DRAFT FOR COMMENT July 20, 2017 15:20:26

- 20 -

[7] R. FOURER, D. M. GAY, AND B. W. KERNIGHAN, ‘‘A Modeling Language for
Mathematical Programming,’’ Management Science 36 #5 (1990), pp. 519–554.

[8] ROBERT FOURER, DAVID M. GAY, AND BRIAN W. KERNIGHAN, AMPL: A Model-
ing Language for Mathematical Programming, Duxbury Press / Brooks/Cole Pub-
lishing Company, 2003. second edition, ISBN: 0-534-38809-4.

[9] DAVID M. GAY, ‘‘Automatic Differentiation of Nonlinear AMPL Models,’’ pp.
61–73 in Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, ed. A. Griewank and G. F. Corliss, SIAM (1991).

[10] D. M. GAY, ‘‘More AD of Nonlinear AMPL Models: Computing Hessian Informa-
tion and Exploiting Partial Separability,’’ in Computational Differentiation: Appli-
cations, Techniques, and Tools, ed. George F. Corliss, SIAM (1996).

[11] A. GRIEWANK AND PH. L. TOINT, ‘‘On the Unconstrained Optimization of Partially
Separable Functions,’’ pp. 301–312 in Nonlinear Optimization 1981, ed. M. J. D.
Powell, Academic Press (1982).

[12] ANDREAS GRIEWANK AND ANDREA WALTHER, Evaluating Derivatives, SIAM,
2008.

[13] TERESA HEAD-GORDON, FRANK H. STILLINGER, DAVID M. GAY, AND MAR-

GARET H. WRIGHT, ‘‘Poly(L-alanine) as a Universal Reference Material for Under-
standing Protein Energies and Structures,’’ Proc. Natl. Acad. Sci. USA 89 (1992),
pp. 11513–11517.

[14] R. BAKER KEARFOTT, ‘‘GlobSol User Guide,’’ Optimization Methods and Software
24 #4-5 (2009), pp. 687–708.

[15] HANS MITTELMANN, private communication (2017).

[16] J. J. MORÉ, B. S. GARBOW, AND K. E. HILLSTROM, ‘‘User Guide for MINPACK-
1,’’ ANL-80-74 (1980), Argonne National Laboratory, Argonne, IL.

DRAFT FOR COMMENT July 20, 2017 15:20:26

