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ABSTRACT

Sometimes an optimization problem can be simplified to a form that is faster to solve.
Indeed, sometimes it is convenient to state a problem in a way that admits some obvious
simplifications, such as eliminating fixed variables and removing constraints that become
redundant after simple bounds on the variables have been updated appropriately. Because
of this convenience, the AMPL modeling system includes a ‘‘presolver’’ that attempts to
simplify a problem before passing it to a solver. The current AMPL presolver carries out
all the primal simplifications described by Brearely et al. in 1975. This paper describes
AMPL’s presolver, discusses reconstruction of dual values for eliminated constraints, and
presents some computational results.

Introduction

Consider the constrained optimization problem

find x ∈ I Rn to minimize f (x) (1)

subject to b ≤ g(x) ≤ d (2)

and ≤ x ≤ u (3)

in which I Rk is the set of vectors having k real components and g: I Rn → I Rm. This paper is about simpli-
fying the constraints (2) and (3), primarily when the general constraints (2) are linear, i.e., they have the
form

b ≤ Ax ≤ d (4)

for some matrix A ∈ I Rm×n . Sometimes the general constraints (2) may imply bounds (3) on the variables
or may imply the only values that certain variables can assume. This may let us remove some variables and
constraints, a process sometimes called presolving the problem.

We are interested in presolving optimization problems expressed in the AMPL modeling language
[8]. Indeed, several advantages accrue if the AMPL processor presolves a problem before passing it to a
solver. The main advantage is that presolving gives AMPL users flexibility in stating optimization prob-
lems. Sometimes it is convenient to have an indexed collection of ‘‘variables’’, some of which have a fixed
value, such as an initial inventory. Sometimes it is simplest to specify bounds on a variable when declaring
the variable, and other times it is more convenient to state some variable bounds as separate constraints.
Another advantage is that presolving may reveal inconsistent constraints, thus providing an early warning
about an incorrect problem formulation or data error. Depending on the solver and problem, presolving
may make the ‘‘solve’’ step faster, because the solver sees a smaller, simpler problem.

April 23, 1993



- 2 -

Presolve Overview

In their oft-cited paper of 1975, Brearley, Mitra, and Williams [5] discuss presolving linear program-
ming problems (LPs). They recommend recursively

(i) folding singleton rows into bounds on the variables;

(ii) omitting inequalities that will always be slack;

(iii) deducing bounds from constraints that involve several bounded variables; and

(iv) deducing bounds on dual variables.

Because we are concerned in general with nonlinear problems and because we may transmit several objec-
tives to the solver (which might select one of them to optimize or might use all in a multi-criterion opti-
mization algorithm), we do not currently attempt to deduce dual variable bounds (iv). Our current presolve
algorithm is thus just a ‘‘primal presolve’’ algorithm, a combination of (i), (ii), and (iii) that offers a choice
of deduced bounds explained below.

Presolve Details

Most solvers treat bounds on variables separately from more general constraints. AMPL therefore
conveys variable bounds separately from general constraints when transmitting a problem to a solver. Sup-
pose a linear constraint is a ‘‘singleton row’’, i.e., involves just one variable. If it is an equality constraint,
then it fixes the variable, i.e., determines its value, and we can remove both the constraint and the variable
from the problem. Removing the variable entails updating b and d in (2) or (4), i.e., the left- and right-hand
sides of the general constraints. Otherwise, a singleton row implies a lower or upper bound on the variable,
and we can remove the constraint after folding the bounds it implies into and u in (3).

For each constraint, we maintain strengthened versions ˜ and ũ of and u, and vectors b̃ and d̃ of
deduced bounds on the range {g(x) : ˜ ≤ x ≤ ũ} of the constraint body g(x). The body (component of g)
of each general constraint consists of a sum of terms; for a linear constraint, each term has the form
constant × variable. Each deduced bound has two components: a bound computed from the finitely
bounded terms in the constraint, and a count of unbounded terms; the bound is considered infinite unless
the count is zero. Presently we treat all nonlinear terms as having infinite range, i.e., as contributing one to
the count of infinities for its components in b̃ and d̃; we clearly have room for improvement here. Each
time we sharpen a variable’s bounds (or fix the variable), we update b̃ and d̃, possibly reducing some counts
of unbounded terms.

Our presolve algorithm consists of two parts: a basic part that carries out the steps (i) and (ii) just dis-
cussed, and an extended part that deduces bounds from constraints which involve two or more linear terms.
The basic algorithm maintains a stack of constraints to process. The overall algorithm begins by pushing
all linear constraints involving at most one term onto the stack. (It is possible for an AMPL model and data
to specify empty constraints: constraints whose bodies have no terms. Moreover, a constraint may become
empty when the presolve algorithm fixes a variable.) The basic presolve algorithm proceeds by processing
the constraint on top of the stack. Constraints having one term either fix the involved variable or imply
bounds on it. Constraints whose term count drops below 2 as a result of fixing a variable are pushed onto
the stack (unless they are already on it, as determined from a constraint status vector). Feasible empty con-
straints can simply be removed from the problem. Constraints diagnosed as infeasible after a variable is
fixed elicit an error message and are retained. (AMPL denies the first request to solve a problem that the
presolve algorithm finds infeasible, but it honors subsequent requests by passing the problem to the desig-
nated solver. Most solvers have feasibility tolerances that allow small infeasibilities. AMPL’s diagnosis of
infeasibility may arise from roundoff error, in which case the solver may report successful solution of the
problem.)

Once the basic presolve algorithm ends (when the stack is empty), we examine linear constraints hav-
ing two or more terms. If, say, d i < ∞ and b̃ i involves one infinity caused by variable xk , then the ith con-
straint has the form

b i ≤
j
Σ A i , j x j ≤ d i
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and either A i ,k < 0 and ũ k = + ∞, or else A i ,k > 0 and ˜
k = − ∞. If A i ,k > 0, constraint i implies

xk ≤ (d i −

Ai, j > 0
j ≠ k
Σ A i , j

˜
j −

Ai, j < 0
j ≠ k
Σ A i , j ũ j ) / A i ,k ; (5)

if the right-hand side of (5) is less than ũ k , then we can reduce ũ k accordingly. Similarly, if A i ,k < 0, con-
straint i implies

xk ≥ (b i −

Ai, j > 0
j ≠ k
Σ A i , j

˜
j −

Ai, j < 0
j ≠ k
Σ A i , j ũ j ) / A i ,k ; (6)

and if the right-hand side of (6) exceeds ˜
k , we can accordingly increase ˜

k . If d̃ i involves no infinities, we
have a similar opportunity to update bounds on all the variables involved in constraint i; moreover, if the
updates result in ˜

k = ũ k , constraint i fixes all its variables. The situation is analogous if b̃ i involves at
most one infinity: we deduce a lower bound on xk if A i ,k > 0, and an upper bound if A i ,k < 0; and we may
be able to fix all the hitherto unfixed variables appearing in constraint i.

Sometimes we can improve bounds by allowing a constraint to participate in the above deductions
more than once. Indeed, each time we improve a bound on one of the variables involved in constraint i, it
is worth considering whether constraint i might imply better bounds on some other variables. This could
lead to an infinite sequence of bound improvements. Specifically, if q + 1 constraints jointly imply fixed
values for q > 1 variables, the iteration just described amounts to a Gauss-Seidel (or more general chaotic
relaxation) iteration for computing the values of those variables. Consider, for example, the constraints

c1: x 1 + x 2 ≥ 2

c2: x 1 − x 2 ≤ 0

c3: 0. 1.x 1 + x 2 ≤ 1. 1

c4: x 1 ≥ 0 .

Constraints c1, c2, and c3 jointly imply that x 1 = x 2 = 1. Although the singleton c4 ends up being slack,
it is needed to start the process by giving b̃ 3 an infinity count of 1: then

c3 implies x 2 ≤ 1. 1
c2 implies x 1 ≤ 1. 1
c1 implies x 1 ≥ 0. 9
c2 implies x 2 ≥ 0. 9
c3 implies x 2 ≤ 1. 01
c2 implies x 1 ≤ 1. 01
c1 implies x 1 ≥ 0. 99
c2 implies x 2 ≤ 0. 99
c3 implies x 2 ≤ 1. 001
etc.

We limit the number of Gauss-Seidel iterations by allowing only a finite number of ‘‘passes’’. After
the basic presolve algorithm stops, we push onto the constraint stack all constraints having 2 or more
remaining terms and at most one infinity in either b̃ or d̃. Then we return to the basic algorithm, augmented
by logic for deducing bounds from constraints with two or more terms. During this pass, we push onto a
separate stack any linear constraint whose infinity count drops to one or whose infinity count is at most one
and one of whose variables has a bound updated. This limits the work of a pass to time proportional to the
remaining number of nonzeros in the remaining constraints. At the end of a pass, if the separate stack is not
empty and we have not reached the pass limit, we transfer the separate stack to the presolve stack and begin
another pass.

Once the iterative part of the presolve algorithm ends, the deduced bounds b̃ and d̃ may imply that
some constraints can be discarded without changing the problem’s feasible region. If b̃ i > b i , then we
change b i to − ∞. (If the count of infinite terms for b̃ i is positive, we regard b̃ i as − ∞, and similarly for d̃ i .)
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Likewise, if d̃ i < d i , we change d i to + ∞. These changes may turn constraint i from a range constraint
(one with 0 < d i − b i < ∞) into a one-sided constraint or may let us discard the constraint altogether
(from the problem presented to the solver).

Degeneracy

Bounds deduced in the extended presolve passes are redundant and thus make the problem more
degenerate. Not surprisingly, if AMPL passes the strongest variable bounds it can deduce to a simplex-
based solver, the solver often takes more iterations than it takes with variable bounds relaxed to those
implied by eliminated constraints. AMPL therefore maintains two sets of variable bounds — the strongest
bounds it can deduce, and bounds that it does not know to be redundant with the constraints passed to the
solver. By default it passes the latter set, but the ‘‘var_bounds 2’’ results reported below correspond to
the stronger bounds. Degeneracy is much less of an issue for interior-point than for simplex algorithms, but
the effect of changing bound sets is very problem- and algorithm-dependent. Interior-point algorithms
sometimes fare worse with tighter bounds because they expend more work per iteration when variables
must lie between finite bounds than when variables are bounded only on one side. And despite increased
degeneracy, simplex algorithms sometimes run better with the tighter bounds because they choose a differ-
ent pivot order.

Directed Roundings

A preliminary version of the computational experience reported below revealed a case (netlib’s
lp/data/maros) where AMPL’s default presolve settings made it discard constraints that kept the prob-
lem from being unbounded. Of course, roundoff error was to blame for this difficulty. When we modified
the presolve algorithm to use the directed roundings that are available with IEEE arithmetic [1, 2], this
difficulty went away. On four other problems from netlib’s lp/data (greenbea, greenbeb, perold , and
woodw), AMPL’s presolve reported inconsistent constraints before we introduced directed roundings.
Because they allow small infeasibilities, the solvers we tried found ‘‘correct’’ solutions to these four prob-
lems despite AMPL’s diagnoses of infeasibility. Again, these diagnoses went away when we introduced
directed roundings. Interestingly enough, on an IBM Risc System 6000, which by default computes
α × β + γ with just one rounding error (a ‘‘fused multiply-add’’), one of these infeasibility diagnostics
returned. Our current policy is to use a compiler option that forbids fused multiply-adds in the presolve
algorithm.

Using directed roundings to compute b̃ and d̃ usually only increases by a few percent the time AMPL
spends to process a problem. For the larger problems we have examined, the directed roundings seldom
add more than 1% to the sum of times for AMPL and the solver.

Primarily for machines that do not offer directed roundings, we have introduced a tolerance τ (option
constraint_drop_tol, which is 0 by default) and have adjusted AMPL’s presolve algorithm so it
only changes b i to − ∞ if b̃ i − b i ≥ τ and only changes d̃ i to + ∞ if d i − d̃ i ≥ τ. For example, before we
added directed roundings, setting τ to 10 − 13 sufficed to eliminate the trouble with problem maros.

Recovering Dual Variables

Suppose x solves (1), (2), and (4). Then there exist dual variables y for (1), (2), and (4) that satisfy

(c − A T y) j





 = 0 if j < x j < u j

≤ 0 if x j = u j

≥ 0 if x j = j

(7a)

with

y i





 = 0 if b i < (Ax) i < d i

≤ 0 if (Ax) i = d i

≥ 0 if (Ax) i = b i

(7b)
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where c = ∇ f (x) is the gradient of the objective function f. When it invokes a solver, AMPL expects the
solver to return dual values for the constraints it sees. To compute dual variables for constraints eliminated
by presolving, it is necessary to record which eliminated constraints were responsible for the bounds con-
veyed to the solver. We then examine the eliminated constraints in the reverse order of their elimination.
Constraints i that did not imply any of the bounds conveyed to the solver get y i = 0. Constraints i that
implied a single bound must have had one remaining nonzero coefficient A i , j , and we choose y i to satisfy
component j of (7a) and i of (7b); this has no effect on the other components of (7) for variables and con-
straints not yet fixed or removed when constraint i was eliminated.

The only other case is a constraint i that, together with several then-current variable bounds, fixed
several variables, say x j for j ∈ J. The use described above of a stack in the presolve algorithm ensures
that the variable bounds ˜ and ũ that were current when constraint i was processed satisfied ˜

j < ũ j for all
j ∈ J. Thus if J+ = { j ∈ J: A i , j > 0 } and J− = { j ∈ J: A i , j < 0 }, then J = J+ ∪ J− and exactly one
of

j ∈ J+
Σ A i , j ũ j +

j ∈ J−
Σ A i , j

˜
j = b̃ i (8)

or

j ∈ J+
Σ A i , j

˜
j +

j ∈ J−
Σ A i , j ũ j = d̃ i (9)

holds. In either case, there is a whole ray of y values that will satisfy the relevant components of (7). Let
σ = 1 if (8) holds and − 1 if (9) holds. Then all sufficiently large choices of σy i can satisfy the compo-
nents of (7a) corresponding to J and component i of (7b). AMPL chooses y i to make one of these condi-
tions hold with equality.

Computational Experience

As one example of the effects of AMPL’s presolve, Table 1 shows resulting problem sizes and times
for some of the problems considered in our first AMPL paper, [7]. Here and below, presolve 0 means even
the basic presolve algorithm was omitted; presolve 1 means just the basic algorithm was used; presolve 10
means 9 passes of the extended presolve algorithm were allowed. The var_bounds 2 lines are for the alter-
nate stronger bounds computed for presolve 10 . The final column shows ‘‘solve’’ times (exclusive of the
relatively small problem input and solution output times) for MINOS 5.4 running on an SGI Indigo with 50
MHz clock (R4000 processor with R4010 floating-point chip). This small sample of results illustrates how
problem-dependent the effects of presolving are; as subsequent graphs show, these effects also depend on
the solver used.

The figures below show solve-time ratios (defined below) for several solvers on the LP test problems
in the lp/data directory [9] of netlib [6]. These problems are expressed in ‘‘MPS format’’ (which is
described, e.g., in chapter 9 of [12]). We used an awk script, m2a, to turn the MPS format into data for a
suitable AMPL model, mps1.mod, both of which are available from netlib’s ampl/models directory;
the appendix gives problem sizes resulting from the three presolve settings. The time needed to present the
problem to the solvers was generally small compared with the time the solvers needed to find a solution,
particularly for the larger problems. For instance, Table 2 shows times (seconds of user plus system time
under default conditions, corresponding to the presolve 10 time results) for the major AMPL and solver
steps to solve problem pilot. In Table 2, ‘‘input’’ time consists mostly of reading the data for pilot, ‘‘gen-
mod’’ time is everything else before presolving, and ‘‘output’’ time is for writing a binary file that encodes
the problem. Table 2 also gives times for several solvers: alpo is one of Vanderbei’s interior-point codes
[15, 17], and loqo is another [16, 18]; cplex is CPLEX [4] version 2.0; minos is MINOS [13, 14] ver-
sion 5.4; and osl uses the default simplex algorithm of OSL [3, 10] version 1.2.

In the figures that follow, we have sorted the problems in order of increasing solve time by CPLEX
with all defaults (again corresponding to the presolve 10 results). Table 3 shows the sort order we used.

The figures that follow show solve-time ratios. Again using an SGI Indigo with 50 MHz clock, we
measured the time each solver needed to solve each problem (after it had been read into memory and before
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_ _________________________________________________________________
Problem option rows cols nonzeros iters seconds

cms presolve 0 2521 24277 142893 6681 324.83
presolve 1 1681 24277 142053 12285 517.97
presolve 10 1681 24277 142053 12285 517.44
var_bounds 2 " " " 10041 433.23

dist08 presolve 0 789 2728 8085 298 2.72
presolve 1 448 2451 7252 350 2.05
presolve 10 393 2123 6268 303 1.68
var_bounds 2 " " " 335 1.70

dist13 presolve 0 1264 2262 6629 280 3.39
presolve 1 447 1563 4510 325 1.58
presolve 10 377 1363 3910 245 1.06
var_bounds 2 " " " 249 1.08

git2 presolve 0 410 1089 3756 383 1.35
presolve 1 376 1089 3746 359 1.26
presolve 10 286 1089 3051 324 0.97
var_bounds 2 " " " 402 1.09

git3 presolve 0 1330 12745 47980 3881 60.80
presolve 1 1330 12745 47980 3381 60.60
presolve 10 1239 12745 46441 3634 53.60
var_bounds 2 " " " 6014 86.28

prod08 presolve 0 469 560 1807 321 1.44
presolve 1 417 551 1716 278 1.17
presolve 10 417 551 1716 278 1.17
var_bounds 2 " " " 273 1.13

prod13 presolve 0 729 885 2887 463 3.11
presolve 1 647 871 2736 539 3.20
presolve 10 647 871 2736 539 3.17
var_bounds 2 " " " 466 2.83_ _________________________________________________________________ 
















































































Table 1. Sample presolve results.
Times are minos solve seconds on a 50MHz SGI Indigo.

the solution was written back) with several presolve variants: none ( presolve 0), basic presolve ( presolve
1), and 9 extended presolve passes with either conservative ( presolve 10) or aggressive (var_bounds 2)
variable bounds. We divided the latter three times by the first to obtain the solve-time ratios presented in
the figures, denoted ‘‘1’’, ‘‘+’’ and ‘‘∗’’, respectively. Table 4 shows the means and standard deviations of
these ratios, excluding any whose time for presolve 10 was less than 0.2 seconds.

_ _______________________________________
AMPL times Solver Read Solve

input 4.31 alpo 0.51 414.61
genmod 2.45 cplex 0.63 374.36
presolve 1.68 loqo 0.41 409.2
output 0.41 loqo 0.41 409.2
Total 8.85 minos 0.41 949.32_ _______________________________________ 



























Table 2. Indigo seconds for ‘‘pilot’’.
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________________________________________________________________________________
Seq Name Seq Name Seq Name Seq Name Seq Name

1 afiro 20 share1b 39 ship12s 58 wood1p 77 pilot.we
2 recipe 21 agg3 40 finnis 59 czprob 78 pilotnov
3 sc50a 22 scorpion 41 tuff 60 sctap3 79 bnl2
4 kb2 23 standata 42 scagr25 61 scsd8 80 80bau3b
5 beaconfd 24 sc205 43 shell 62 degen2 81 fit2d
6 sc50b 25 ship04s 44 grow7 63 scfxm3 82 truss
7 stocfor1 26 sctap1 45 etamacro 64 maros 83 greenbeb
8 agg 27 forplan 46 gfrd-pnc 65 d6cube 84 pilot.ja
9 adlittle 28 brandy 47 fffff800 66 fit1p 85 greenbea

10 sc105 29 israel 48 boeing1 67 grow15 86 degen3
11 vtp.base 30 seba 49 ship08l 68 woodw 87 d2q06c
12 scagr7 31 standmps 50 fit1d 69 cycle 88 fit2p
13 blend 32 ship04l 51 sctap2 70 pilot4 89 pilot
14 share2b 33 scfxm1 52 scfxm2 71 bnl1 90 stocfor3
15 bore3d 34 ship08s 53 scrs8 72 grow22 91 pilot87
16 boeing2 35 e226 54 sierra 73 stocfor2 92 dfl001
17 agg2 36 bandm 55 stair 74 nesm
18 lotfi 37 scsd6 56 ship12l 75 perold
19 scsd1 38 capri 57 ganges 76 25fv47________________________________________________________________________________ 




















































Table 3. Ordering of lp/data problems in subsequent figures.
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Figure 1. Time ratios for minos.
1 = presolve 1; + = presolve 10; ∗ = var_bounds 2.
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Figure 2. Time ratios for cplex.
1 = presolve 1; + = presolve 10; ∗ = var_bounds 2.
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Figure 3. Time ratios for osl.
1 = presolve 1; + = presolve 10; ∗ = var_bounds 2.
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Figure 4. Time ratios for alpo.
1 = presolve 1; + = presolve 10; ∗ = var_bounds 2.
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Figure 5. Time ratios for loqo.
1 = presolve 1; + = presolve 10; ∗ = var_bounds 2.
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_ ___________________________________________________
presolve 1 presolve 10 var_bounds 2

Solver mean dev. mean dev. mean dev.

alpo 0.95 0.12 0.83 0.18 0.87 0.19
cplex 0.94 0.18 0.88 0.19 0.91 0.23
loqo 0.95 0.15 0.87 0.18 0.90 0.19
minos 0.93 0.14 0.85 0.19 0.88 0.22
osl 0.93 0.17 0.85 0.19 0.87 0.22_ ___________________________________________________ 




















Table 4. Time ratio statistics.

OSL has its own presolve algorithm that does some of the same things as AMPL’s presolve algo-
rithm, and that can also be asked to eliminate equality constraints involving two variables (simplify 1) or
equality constraints of the form

x j =
k ∈ S
Σ xk

with j ∉ S and x i ≥ 0, i ∈ { j} ∪ S (simplify 2). Figures 6 and 7 show time ratios for osl with simplify
1 and simplify 2 , respectively. The numerator is the time for osl with OSL’s presolve divided by the time
for osl with no presolving (by either AMPL or OSL); ‘‘0’’, ‘‘1’’, ‘‘+’’ and ‘‘∗’’ signify numerator runs
with AMPL settings presolve 0 , presolve 1 , presolve 10 and var_bounds 2 (with presolve 10). Table 5
gives summary statistics for the osl runs; simplify –1 is for runs with osl’s presolver turned off. Table 5
and Figures 6 and 7 omit ratios for runs where the presolve 10 times were less than 0.2 seconds.
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Figure 6. Time ratios for osl with simplify 1.
0 = presolve 0; 1 = presolve 1;

+ = presolve 10; ∗ = var_bounds 2.
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Figure 7. Time ratios for osl with simplify 2.
0 = presolve 0; 1 = presolve 1;

+ = presolve 10; ∗ = var_bounds 2.

_ ____________________________________________________________
simplify –1 simplify 1 simplify 2

mean dev. mean dev. mean dev.
presolve 0 1.00 0.00 0.95 0.29 0.90 0.25
presolve 1 0.93 0.17 0.90 0.29 0.90 0.26
presolve 10 0.85 0.19 0.85 0.27 0.86 0.27
var_bounds 2 0.87 0.22 0.90 0.35 0.90 0.30_ ____________________________________________________________ 
















Table 5. Time ratio statistics for osl.

Discussion

The results illustrated in the figures and summarized in Table 4 appear to be consistent with results
reported by Lustig, Marsten, and Shanno in Figures 2 and 3 of [11]. All these results confirm that presolv-
ing can save time.

The summary statistics in Table 5 suggest that it can often be worthwhile for AMPL to carry out its
presolve algorithm even when sending a problem to a solver that has its own presolve algorithm.

Though it is not obvious from Table 5, Figures 3, 6 and 7 reveal that OSL’s simplify 1 and simplify 2
strategies are well worth using on some problems. Adding these strategies to AMPL’s presolve algorithm
would probably be worthwhile.
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Appendix: Problem Sizes for lp/data Problems

The tables that follow show the problem sizes for presolve 0 , presolve 1 , and presolve 10 on succes-
sive lines. The Seq column gives the sequence numbers from Table 3.

___________________________________________________________________________________
Seq Name Rows Cols Nonzeros Seq Name Rows Cols Nonzeros

76 25fv47 821 1571 10400 15 bore3d 233 315 1429
777 1546 10247 189 273 1272
777 1546 10247 138 189 726___________________________________________________________________________________

80 80bau3b 2262 9799 21002 28 brandy 220 249 2148
2026 9266 20046 124 208 1906
2021 9247 19979 123 205 1882___________________________________________________________________________________

9 adlittle 56 97 383 38 capri 271 353 1767
53 96 374 255 321 1590
53 96 374 249 321 1545___________________________________________________________________________________

1 afiro 27 32 83 69 cycle 1903 2857 20720
25 32 81 1605 2750 17139
23 32 77 1528 2530 15426___________________________________________________________________________________

8 agg 488 163 2410 59 czprob 929 3523 10669
432 163 2304 737 3104 9417
174 112 898 689 2770 8337___________________________________________________________________________________

17 agg2 516 302 4284 87 d2q06c 2171 5167 32417
481 301 4238 2098 5157 32321
317 301 2814 2097 5157 32319___________________________________________________________________________________

21 agg3 516 302 4300 65 d6cube 415 6184 37704
481 301 4254 403 6183 37696
322 301 2856 403 6183 37696___________________________________________________________________________________

36 bandm 305 472 2494 62 degen2 444 534 3978
258 425 2034 444 534 3978
246 401 1927 442 534 3974___________________________________________________________________________________

5 beaconfd 173 262 3375 86 degen3 1503 1818 24646
136 229 3058 1503 1818 24646
96 175 1995 1503 1818 24646___________________________________________________________________________________

13 blend 74 83 491 92 dfl001 6071 12230 35632
72 83 489 6071 12230 35632
71 83 487 6071 12230 35632___________________________________________________________________________________

71 bnl1 643 1175 5121 35 e226 223 282 2578
572 1169 5049 164 271 2432
558 1113 4818 161 260 2306___________________________________________________________________________________

79 bnl2 2324 3489 13999 45 etamacro 400 688 2409
2123 3455 13671 334 542 1868
2110 3432 13557 333 542 1852___________________________________________________________________________________

48 boeing1 351 384 3485 47 fffff800 524 854 6227
304 380 2789 476 817 6042
292 373 2309 475 817 6038___________________________________________________________________________________

16 boeing2 166 143 1196 40 finnis 497 614 2310
125 143 801 419 549 1957
125 143 801 397 543 1904___________________________________________________________________________________ 
























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
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
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

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_ __________________________________________________________________________________
Seq Name Rows Cols Nonzeros Seq Name Rows Cols Nonzeros

50 fit1d 24 1026 13404 74 nesm 662 2923 13288
24 1026 13404 646 2740 13054
24 1026 13404 646 2740 13054_ __________________________________________________________________________________

66 fit1p 627 1677 9868 75 perold 625 1376 6018
627 1677 9868 620 1308 5819
627 1677 9868 597 1269 5630_ __________________________________________________________________________________

81 fit2d 25 10500 129018 89 pilot 1441 3652 43167
25 10500 129018 1428 3447 41059
25 10500 129018 1391 3397 40805_ __________________________________________________________________________________

88 fit2p 3000 13525 50284 84 pilot.ja 940 1988 14698
3000 13525 50284 881 1673 11643
3000 13525 50284 825 1591 11319_ __________________________________________________________________________________

27 forplan 161 421 4563 77 pilot.we 722 2789 9126
134 418 4493 722 2711 8862
131 415 4396 704 2680 8734_ __________________________________________________________________________________

57 ganges 1309 1681 6912 70 pilot4 410 1000 5141
1125 1497 6544 402 962 5025
1124 1497 6532 393 951 4961_ __________________________________________________________________________________

46 gfrd-pnc 616 1092 2377 91 pilot87 2030 4883 73152
590 1066 2325 2010 4658 70639
590 1066 2325 2003 4646 70595_ __________________________________________________________________________________

85 greenbea 2392 5405 30877 78 pilotnov 975 2172 13057
2315 5229 30144 886 1939 11988
1967 4156 24106 871 1919 11880_ __________________________________________________________________________________

83 greenbeb 2392 5405 30877 2 recipe 91 180 663
2313 5215 30074 83 151 622
1976 4167 24206 75 137 596_ __________________________________________________________________________________

67 grow15 300 645 5620 10 sc105 105 103 280
300 645 5620 104 103 280
300 645 5620 104 103 280_ __________________________________________________________________________________

72 grow22 440 946 8252 24 sc205 205 203 551
440 946 8252 203 202 550
440 946 8252 203 202 550_ __________________________________________________________________________________

44 grow7 140 301 2612 3 sc50a 50 48 130
140 301 2612 49 48 130
140 301 2612 49 48 130_ __________________________________________________________________________________

29 israel 174 142 2269 6 sc50b 50 48 118
163 142 2258 48 48 118
163 142 2258 48 48 118_ __________________________________________________________________________________

4 kb2 43 41 286 42 scagr25 471 500 1554
43 41 286 347 499 1423
43 41 286 347 499 1423_ __________________________________________________________________________________

18 lotfi 153 308 1078 12 scagr7 129 140 420
134 300 1017 95 139 379
134 300 1017 95 139 379_ __________________________________________________________________________________

64 maros 846 1443 9614 33 scfxm1 330 457 2589
803 1391 9437 287 448 2515
694 1112 7237 281 439 2476_ __________________________________________________________________________________ 




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_ ___________________________________________________________________________________
Seq Name Rows Cols Nonzeros Seq Name Rows Cols Nonzeros

52 scfxm2 660 914 5183 49 ship08l 778 4283 12802
574 896 5035 680 4259 12676
562 878 4957 520 3149 9346_ ___________________________________________________________________________________

63 scfxm3 990 1371 7777 34 ship08s 778 2387 7114
861 1344 7555 408 2091 6172
843 1317 7438 326 1632 4795_ ___________________________________________________________________________________

22 scorpion 388 358 1426 56 ship12l 1151 5427 16170
297 335 1254 833 5223 15504
292 331 1227 687 4224 12507_ ___________________________________________________________________________________

53 scrs8 490 1169 3182 39 ship12s 1151 2763 8178
452 1137 3042 461 2187 6396
450 1134 3031 417 1996 5823_ ___________________________________________________________________________________

19 scsd1 77 760 2388 54 sierra 1227 2036 7302
77 760 2388 1212 2016 7242
77 760 2388 1135 2016 7088_ ___________________________________________________________________________________

37 scsd6 147 1350 4316 55 stair 356 467 3856
147 1350 4316 356 385 3666
147 1350 4316 356 385 3666_ ___________________________________________________________________________________

61 scsd8 397 2750 8584 23 standata 359 1075 3031
397 2750 8584 311 1046 2889
397 2750 8584 301 1038 2843_ ___________________________________________________________________________________

26 sctap1 300 480 1692 31 standmps 467 1075 3679
284 480 1638 419 1046 3537
284 480 1638 403 1038 3275_ ___________________________________________________________________________________

51 sctap2 1090 1880 6714 7 stocfor1 117 111 447
1033 1880 6489 98 100 398
1033 1880 6489 98 100 398_ ___________________________________________________________________________________

60 sctap3 1480 2480 8874 73 stocfor2 2157 2031 8343
1408 2480 8595 2129 2015 8255
1408 2480 8595 2129 2015 8255_ ___________________________________________________________________________________

30 seba 515 1028 4352 90 stocfor3 16675 15695 64875
515 1028 4352 16617 15663 64567
450 898 4114 16617 15663 64567_ ___________________________________________________________________________________

20 share1b 117 225 1151 82 truss 1000 8806 27836
110 220 1118 1000 8806 27836
110 220 1118 1000 8806 27836_ ___________________________________________________________________________________

14 share2b 96 79 694 41 tuff 333 587 4520
93 79 691 292 582 4514
93 79 691 286 563 4324_ ___________________________________________________________________________________

43 shell 536 1775 3556 11 vtp.base 198 203 908
487 1476 2958 165 182 764
487 1476 2958 54 118 339_ ___________________________________________________________________________________

32 ship04l 402 2118 6332 58 wood1p 244 2594 70215
348 2114 6292 243 2594 70214
317 1915 5695 171 1802 48578_ ___________________________________________________________________________________

25 ship04s 402 1458 4352 68 woodw 1098 8405 37474
260 1366 4048 1097 8405 37473
241 1291 3823 736 5549 24114_ ___________________________________________________________________________________ 
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