
1

Chapter #999

Conveying Problem Structure from an Algebraic
Modeling Language to Optimization Algorithms

Robert Fourer and David M. Gay
Northwestern University; Bell Laboratories

Key words: Optimization, mathematical programming, linear programming, modeling
languages

Abstract: Optimization algorithms can exploit problem structures of various kinds, such
as sparsity of derivatives, complementarity conditions, block structure,
stochasticity, priorities for discrete variables, and information about piecewise-
linear terms. Moreover, some algorithms deduce additional structural
information that may help the modeler. We review and discuss some ways of
conveying structure, with examples from our designs for the AMPL modeling
language. We show in particular how Òdeclared suffixesÓ provide a new and
useful way to express structure and acquire solution information.

1. INTRODUCTION

A modeling language can provide a useful way to express the elaborate
optimization problems that often arise in practice. Many of these problems
have structure that an optimization algorithm can exploit, such as sparsity of
first and second derivatives, complementarity conditions, block structure,
time-dependent stochasticity, priorities for discrete variables, and informa-
tion about piecewise-linear terms. Moreover, some algorithms deduce addi-
tional structural information that may help the modeler Ñ the person who
formulated the problem Ñ to understand whether it is the intended problem
or how the formulation needs to be changed.

In this paper, we review some ways of conveying structure to and from
solution algorithms and discuss experience with the AMPL modeling

2 Chapter #999

language (Fourer, Gay and Kernighan 1990, 1993). In particular, declared
suffixes, a recent addition to AMPL, provide a new and useful way to
express structure and acquire solution information.

The next section of this paper briefly describes the general form of
mathematical programming problems and some of their structure. Then ¤3
introduces builtin and declared suffix notations, and ¤4 provides several ex-
amples of declared suffixes. Some other kinds of structural information are
discussed in ¤5, and the potential for future uses of the suffix feature is
addressed by the concluding remarks in ¤6.

2. BASIC PROBLEM STRUCTURE

Mathematical programming problems can generally be stated in the fol-
lowing form: given smooth functions f: Ân ® Â and c : Â n ® Âm,
m-vectors l and u, and n-vectors x_ and xø, with components li, xi Î [Ð¥, ¥),
ui, xøi Î (Ð¥, ¥], li £ ui, and xi £ xøi,

minimize f(x) (1a)
subject to l £ c(x) £ u (1b)
and x_ £ x £ xø, (1c)

with inequalities understood componentwise. Some components of x may
also be required to be integers. Although the simple-bound constraints (1c)
could be folded into the general constraints (1b), AMPL distinguishes these
constraint types in the information it makes available to solution algorithms,
since many algorithms gain efficiency by dealing separately with simple-
bound constraints, and some only handle such constraints.

Algorithms for solving (1) often use the first derivatives of f and c, the
gradient Ñf(x) and Jacobian matrix J(x) = Ñc(x) with Jij = ¶ci/¶xj. In large
problems, it is important to know and exploit the sparsity structure of J (that
is, the knowledge of which components of J are always zero).

Solvers Ñ implementations of solution algorithms Ñ are generally idio-
syncratic in how one conveys problems to them. Often they require subrou-
tines (or, in object-oriented parlance, methods) that compute f, c and the
requisite derivatives, but they may also operate by reverse communication,
returning to the caller with a request to be called again with arguments con-
taining updated problem information, such as function and constraint values
and derivatives. Because of the great variety of solver interfacing require-
ments, we have found it convenient to prepare an AMPL/solver interface
library (Gay 1997) to assist in providing various kinds of problem informa-

Conveying Problem Structure to Optimization Algorithms 3

tion. Solver-specific drivers obtain problem information from calls to the
library, transform the information as necessary, and convey it to the solver.

Information provided to drivers from AMPL/solver interface library calls
includes problem statistics, sparsity, and routines for computing constraint
and objective functions and their first and second derivatives. Detailed in-
structions for using the library appear in Gay (1997). Efficiently computing
second derivatives (in the form of the Hessian of the Lagrangian function)
explicitly or in the form of Hessian-vector products is a particular challenge.
We use backwards automatic differentiation for both gradient and Hessian
computations; see Gay (1991, 1996) for more details and references.

3. SUFFIXES

 This section examines AMPLÕs suffix notations and their uses for con-
veying structure. AMPL suffixes are of two kinds, builtin and declared.
Builtin suffixes have values derived from the current problem state, and are
found in some form in most large-scale modeling languages. Declared suf-
fixes may be assigned values by the modeler or by solvers, and are a rela-
tively recent addition to the AMPL language; we are not aware of any
attempts to extend other modeling languages with any comparable feature.

3.1 Motivation for declared suffixes

 Over the course of AMPLÕs development, we have found it convenient to
make various kinds of auxiliary information about variables and constraints
available via ÒdotÓ or ÒsuffixÓ notations, which involve appending a period
(ÒdotÓ) to the possibly subscripted name of a model entity, followed by a
suffix name. For example, if Buy[j] denotes a variable that represents the
amount of food j to be purchased, then Buy[j].rc refers to that variableÕs
reduced cost; a display of the values and reduced costs of all such variables
is produced by the command display Buy, Buy.rc. Suffixes may also
appear on so-called generic synonyms for variables, so that display
_varname, _var, _var.rc will produce a table of all variables, with
their names in the first column, their values in the second, and their reduced
costs in the third. Table 1 shows AMPLÕs builtin suffixes for problem and
solution information associated with variables.

Builtin suffixes work in a similar way to denote values associated with
constraints and with objectives. Complete tables of builtin suffix names
appear in Fourer, Gay and Kernighan (1993), pp. 320Ð322, and in http://
www.ampl.com/ampl/NEW/suffbuiltin.html .

4 Chapter #999

Particular kinds of solvers can often make use of additional information
associated with optimization model components. For example, solvers that
employ the simplex method maintain a basis status for each variable and
constraint of a problem. Communicating a good starting basis along with a
problem can save these solvers considerable time. When solving a problem
from scratch, a suitable starting basis may be hard to guess, but many appli-
cations involve the solution of a sequence of related problems, and the final
basis for one problem may make a good initial basis for the next one. Thus
it may be desirable to receive basis status information from a solver as well
as to send it back later.

As another example, when some variables are restricted to integer values,
the solver may need to carry out a branch-and-bound process, searching a
tree of progressively more restricted cases so as to continually improve
known solutions and bounds. Supplementary information associated with
integer variables can enable the solver to make much more effective choices
of the cases to be analyzed at each level of the search.

Auxiliary information can also arise as a result of applying a solver, in
which case a means is needed for conveying it back to the modeling lan-
guageÕs user. If a linear programming problem is unbounded, for example, it
is sometimes useful to know a ray along which the objective can decrease
without bound. The specification of the rayÕs direction associates an addi-
tional floating-point number with each variable.

We can never anticipate all the kinds of auxiliary information that solvers
will find useful, either when solving a problem or when communicating
information about the solution(s) it has found. Therefore we have chosen to
permit declarations of suffixes, an open-ended scheme that adapts easily to
the needs of various solvers and the problem classes they address. Each de-
clared suffix associates one auxiliary value with each variable, constraint,
objective, or problem subset of an AMPL model.

Table 1. AMPL builtin suffixes for variables
Suffix Associated value
.lb .ub Lower, upper bound
.lb0 .ub0 Bounds from variableÕs definition (var statement)
.lb1 .ub1 Weaker bounds from presolve
.lb2 .ub2 Stronger bounds from presolve
.init Most recent initial value
.init0 Original initial value
.rc Reduced cost
.lrc Lower bound reduced cost
.urc Upper bound reduced cost
.slack Slack (distance from bound)
.lslack Lower bound slack
.uslack Upper bound slack

Conveying Problem Structure to Optimization Algorithms 5

3.2 Declarations of suffixes

AMPL requires each model entity to be introduced by a declaration be-
fore it is used. Examples of such entities are parameters, sets, variables,
constraints, and objective functions. Declared suffixes are a new entity that
must be introduced by a declaration.

Parameters in AMPL are named data values, introduced by param decla-
rations. Often it is natural for a parameter to assume only numeric values,
but sometimes it is convenient to have string-valued parameters. Since
numeric values are more common, AMPLÕs convention is that a parameter is
restricted to numeric values unless the keyword symbolic appears in its
declaration.

Declared suffixes are introduced by a suffix declaration. For example,

suffix priority;

introduces suffix .priority. For consistency with AMPLÕs declarations
of parameters, and because we expect that numeric-valued declared suffixes
will be more common than string-valued ones, a declared suffix is also
restricted to having numeric values unless symbolic appears in its decla-
ration.

In addition to suffixes declared explicitly by a modeler, AMPL provides a
few ÒpredeclaredÓ suffixes for common purposes, such as handling the
previously mentioned basis statuses. Solvers are also provided with a
mechanism for causing suffixes to be defined. Examples of these options
appear in subsequent sections.

For convenience in communicating with solvers (by explicitly transmit-
ting only nonzero suffix values), all declared suffix values are initially zero.
We originally intended to allow a default-value clause in suffix declarations,
analogous to the existing default-value clause in parameter declarations. The
expression for the default value may involve model parameters, however,
whose values may be changed by assignments and various other mecha-
nisms. In some of these cases, it is not clear when the default expression
should be evaluated, and any of the reasonable resolutions of this issue
would complicate the specification and implementation of suffixes. (Simi-
larly, for simplicity, derived parameters Ñ whose values are permanently
defined by expressions in their declarations Ñ may not depend on declared
suffixes.)

6 Chapter #999

3.3 Symbolic suffix tables

Although many kinds of auxiliary information are naturally numeric,
some information is more conveniently considered to be symbolic. Solvers
that maintain a basis, for instance, generally place each variable and con-
straint slack into one of a small number of categories such as ÒbasicÓ or
Ònonbasic at upper boundÓ. It is convenient to associate short symbolic
names with these categories, and symbolic declared suffixes are valuable for
this purpose.

In the uses we have so far seen for symbolic declared suffixes, only a
relatively few symbolic values are of interest. For convenience and effi-
ciency in communicating with solvers, we use a kind of Òsuper sparsityÓ to
maintain symbolic suffix values and exchange them with solvers: symbolic
suffixes always have an underlying numeric value that is associated with a
string value by a Òsuffix tableÓ. For example, .sstatus is predeclared to
serve as a symbolic suffix for recording the basis status of variables and of
(the slack or artificial variables associated with) constraints. The default
value for the suffix table associated with .sstatus is

0 none no status assigned
1 bas basic
2 sup superbasic
3 low nonbasic <= (normally =) lower bound
4 upp nonbasic >= (normally =) upper bound
5 equ nonbasic at equal lower and upper bounds
6 btw nonbasic between bounds

Numeric values in the first column are associated with string values in the
second column, and the rest of each line is an optional description of the
value. Thus the default numeric value 0 is associated with none, 1 is associ-
ated with bas, 2 with sup, and so forth. The numeric values themselves can
be accessed by appending _num to the name of a symbolic suffix. For
example,

ampl: model diet.mod;
ampl: data diet2a.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032

Conveying Problem Structure to Optimization Algorithms 7

ampl: display _varname, _var,
ampl? _var.sstatus, _var.sstatus_num;

: _varname _var _var.sstatus _var.sstatus_num :=
1 "Buy['BEEF']" 5.36061 bas 1
2 "Buy['CHK']" 2 low 3
3 "Buy['FISH']" 2 low 3
4 "Buy['HAM']" 10 upp 4
5 "Buy['MCH']" 10 upp 4
6 "Buy['MTL']" 10 upp 4
7 "Buy['SPG']" 9.30605 bas 1
8 "Buy['TUR']" 2 low 3
;

The correspondence between symbolic suffixes and suffix tables is main-
tained through AMPL environments, which are collections of name-value
pairs. Some common operating systems, such as Unix, MS-DOS, and
Microsoft Windows, maintain an environment, and AMPL inherits its initial
environment from the operating system (and supplies default values for
some environment variables if they do not appear in the operating systemÕs
environment). AMPLÕs option command can display or change environ-
ment values, and these values can also be accessed in commands by a
ÒdollarÓ notation, a $ followed by the name of the environment variable.

Various environment variables affect AMPLÕs behavior. For example,
$solver determines which solver AMPL invokes in response to a solve
command. Solvers run as separate programs, and when AMPL invokes a
solver or other program, it passes along the current environment. Solvers
often respond to particular environment variables. For example, by conven-
tion appending _options to the name of a solver gives an associated
environment variable that can be used to specify values for operational
parameters and switches. Thus the value of $minos_options, for exam-
ple, affects the behavior of solver minos.

The situation with suffix tables for symbolic suffixes is analogous:
appending _table to the suffix name gives the name of an environment
variable that contains the suffix table. For example, the AMPL command
print $sstatus_table causes the table shown above to be displayed
(so long as $sstatus_table has its default value).

What about _num values that do not appear in the suffix table? The suffix
table mechanism is also used in situations where it is convenient for a range
of numeric values to correspond to a single symbolic value. For example,
the results of executing a solver may fall into one of the six broad categories
shown in AMPLÕs default $solve_result_table:

8 Chapter #999

0 solved
100 solved?
200 infeasible
300 unbounded
400 limit
500 failure

Solvers can return a value for the builtin parameter solve_result_num
that gives more detail about how they fared. Often it suffices to base a
test on the broad category, however, which is available in the builtin
symbolic parameter solve_result. The value that AMPL assigns to
solve_result is taken from the last line of $solve_result_table
whose numerical value is less than or equal to solve_result_num. (For
solve_result_num < 0, solve_result is "?".)

Suffix tables for declared symbolic suffixes work analogously to
$solve_result_table, except that _num values less than the first value
in the suffix table are simply rendered as the _num value itself.

3.4 Declarations and manipulations

AMPL offers various facilities for consistency checking. For example, a
parameterÕs declaration may specify inequalities and set memberships that
the parameter must satisfy. A suffix declaration can similarly specify
inequalities and set memberships that the suffix must satisfy. For instance,
the .priority suffix could be limited to nonnegative values less than ten
thousand by declaring it as

suffix priority >= 0, < 10000;

One of the keywords IN, OUT, INOUT, or LOCAL may also appear in a suf-
fix declaration to indicate whether the suffix should be only sent to solvers
(IN), only returned by solvers (OUT), both sent to and returned by solvers
(INOUT, the default), or neither sent to nor returned by solvers (LOCAL).

Standard commands for manipulating AMPL model components also
work for declared suffixes: one can remove them with a delete command,
reset all values for a particular suffix or for all suffixes to 0 with a reset
suffix command, modify a suffixÕs declaration with a redeclare
suffix statement, and exhibit the current declaration for a suffix with a
show suffix command.

Conveying Problem Structure to Optimization Algorithms 9

4. EXAMPLES OF DECLARED SUFFIXES

To exhibit the usefulness of the declared suffix concept, we next describe
a few specific cases in more detail. We first consider suffixes (of type IN)
defined by the modeler and subsequently recognized by certain solvers.
(Solvers may simply ignore any suffixes they receive but are not prepared to
recognize.) We then describe some uses of suffixes (of type OUT) that may
be declared by solvers so as to return auxiliary information relating to a
solution.

4.1 Suffixes declared by the modeler

For solvers that use a branch-and-bound algorithm to handle integer vari-
ables, the fundamental operation is to ÒbranchÓ on a variable by dividing its
domain in two. Often a human modeler can offer useful guidance about the
order in which to branch on integer variables and about which branch to try
first. For example, it is usually a good idea to first branch on a variable that
controls whether a facility is built, and only later to branch on variables that
specify details of the facility. If the former variable takes the value 1 or 0
when the facility is or isnÕt built, then it may be better to branch first in the
ÒupÓ direction, so that a value of 1 is tried initially.

To provide for such guidance, some solvers recognize the declared suf-
fixes .priority and .direction. Here is a simple illustration that
settings of these suffixes can make a difference:

ampl: model multmip3.mod; data multmip3.dat;
ampl: option solver cplex;

solve;
CPLEX 6.0.1: optimal integer solution; objective 235625
602 simplex iterations
91 branch-and-bound nodes

ampl: reset; model multmip3.mod; data multmip3.dat;
ampl: suffix priority;
ampl: let {i in ORIG, j in DEST} Use[i,j].priority :=
ampl? sum {p in PROD} demand[j,p];
ampl: suffix direction;
ampl: let Use["GARY","FRE"].direction := -1;

solve;
CPLEX 6.0.1: optimal integer solution; objective 235625
447 simplex iterations
64 branch-and-bound nodes

10 Chapter #999

(With the subsequent version 6.5 of this solver, the above choices of
.priority and .direction require more rather than fewer nodes and
iterations than the default settings. In general the best choice depends not
only on the problem, but also on the implementation of the solution
algorithm.)

Suffixes also seem a natural candidate for conveying certain auxiliary
block structure to solvers. The implementation of this idea is a project for
the future, however, as indicated in ¤6.

4.2 Suffixes declared by solvers

Information frequently returned by solvers is handled by AMPLÕs builtin
suffixes. Declared suffixes provide a complementary mechanism for re-
turning auxiliary information in particular circumstances.

The AMPL/solver interface library permits solvers to declare and return
arbitrary suffixes to AMPL, and to supply corresponding _table options
for symbolic suffixes. When reading a solution file that introduces a new
suffix, AMPL echoes the new declaration to inform the modeler about it.

For example, if a linear programming problem is unbounded, the solver
may find a direction of infeasibility Ñ a ray along which the objective func-
tion can decrease without bound. Such a direction is essential to iterative
schemes, such as Benders and Dantzig-Wolfe decomposition, that generate a
certain column or cut based on each ray returned from an unbounded sub-
problem. Several solvers can send AMPL the direction vector for such a ray
by declaring a new suffix, .unbdd, on variables. The solver introduces this
suffix into an AMPL session only if an unbounded problem is encountered.

When a problem is infeasible, the modeler may want help in diagnosing
the source(s) of infeasibility. One helpful technique offered by some solvers
is to identify an irreducible infeasible subset (or IIS) of constraints and vari-
able bounds (Chinneck and Dravnieks 1991). Since this computation may be
time-consuming, and since an IIS is not always wanted, the usual arrange-
ment is that the solver only computes an IIS on request. When it does
identify an IIS, the solver can return it to AMPL via a symbolic suffix on
variables and constraints, conventionally named .iis. In the following
example from an AMPL session, a solve command first reveals that the
problem is infeasible:

ampl: model diet.mod; data diet2.dat;
ampl: option solver osl; solve;
OSL 2.0: primal infeasible; objective 164.8854098
8 dual simplex iterations

Conveying Problem Structure to Optimization Algorithms 11

Then the solver directive iisfind=1 is set, causing a second solve to
return an IIS:

ampl: option osl_options 'iisfind=1'; solve;
OSL 2.0: iisfind=1
OSL 2.0: primal infeasible; objective 164.8854098
0 dual simplex iterations
Returning iis of 7 variables and 2 constraints.

suffix iis symbolic OUT;

option iis_table '\
0 non not in the iis\
1 low at lower bound\
2 fix fixed\
3 upp at upper bound\
';

(The second solve requires 0 simplex iterations because AMPL has sent it
the previously described .sstatus values that were returned by the first
solve.)

The .iis suffix can now be used to view the IIS. If we are not willing
to consider changes to the bounds on the variables, then it is sufficient to
examine the constraints whose IIS status is other than non:

ampl: display {i in 1.._ncons: _con[i].iis != "non"}
ampl? (_conname[i],_con[i].iis);

: _conname[i] _con[i].iis :=
3 "diet['B2']" low
5 "diet['NA']" upp
;

Here we can conclude that, to achieve a feasible solution, we will at least
have to relax either the lower limit constraint on B2 or the upper limit con-
straint on NA in the diet.

Sensitivity analysis is a common topic in courses that cover the simplex
method for linear programming. Given an optimal basis, how much can one
change a single right-hand side value or a single cost coefficient while
keeping the basis optimal? The usefulness of this information for practical
purposes is unclear, but modelers continue to ask for it, perhaps because they
are familiar with it from their studies. Accordingly, on request, some solvers
will compute this information and return it in suffixes .down (for the lowest
value), .up (for the highest value), and .current (for the current value of
the right-hand side or cost value).

12 Chapter #999

5. OTHER STRUCTURAL INFORMATION

The AMPL processor manipulates several other kinds of structural
information, sometimes exchanging it with solvers by the declared suffix
mechanism, as discussed in the following subsections.

5.1 Statuses

The modelerÕs view and the solverÕs view of an optimization problem
may differ for many reasons: because some variables are currently fixed
(such as by AMPLÕs fix command), because some constraints are being
ignored (such as through use of AMPLÕs drop command), because of
AMPLÕs presolve phase (Fourer and Gay 1994), because of manipulations to
convey complementarity constraints (Ferris, Fourer and Gay 1999), because
of linearization of piecewise-linear terms (discussed below), or because of
manipulations to express Òdefined variablesÓ (Fourer, Gay and Kernighan
1993, pp. 337Ð338). Accordingly, there are two variants of many builtin suf-
fixes, one for each view. The builtin suffix .astatus reflects AMPLÕs
view of a variable, constraint, or objective, as summarized in the default
$astatus_table:

0 in normal state (in problem)
1 drop removed by drop command
2 pre eliminated by presolve
3 fix fixed by fix command
4 sub defined variable, substituted out
5 unused not used in current problem

As mentioned above, solvers that maintain a basis have their own notion of
variable and constraint statuses. Conventionally, such solvers can take in-
coming status values from the .sstatus (Òsolver statusÓ) suffix and return
updated status values to AMPL in the same suffix.

Modelers are usually most interested in .sstatus values for variables
and constraints that are seen by the solver, but in .astatus values for
other variables and constraints. Accordingly, the builtin suffix .status
assumes the .sstatus value if the .astatus value is in and assumes
the .astatus value otherwise.

5.2 Special ordered sets and piecewise-linear terms

Special ordered sets (Beale and Tomlin 1970, Beale and Forrest 1976)
are useful for expressing problems that contain piecewise-linear functions,
variables restricted to a discrete set of values, and (in conjunction with some

Conveying Problem Structure to Optimization Algorithms 13

other auxiliary variables and constraints) semicontinuous variables (which
must be either 0 or at least a given positive value). There are two flavors of
special ordered sets: in a type 1 (SOS1) set, exactly one member of an or-
dered set of variables may be nonzero; in a type 2 (SOS2) set, at most two
adjacent variables may be nonzero.

AMPL has special syntax for expressing piecewise-linear terms. For ex-
ample, if x is a variable, then

<<{i in 1..n} b[i]; {i in 0..n} s[i]>> x

denotes the piecewise-linear function whose slope is s[i] for b[i] £ x £
b[i+1] (regarding b[0] as Ð¥ and b[n+1] as +¥), and whose value is 0
at x = 0. AMPL linearizes piecewise-linear terms that appear linearly in
objectives or constraints. In some cases Ñ for example, if the term is convex
and appears in the objective of a minimization problem Ñ introducing some
new inequality constraints is sufficient for linearization and no integer vari-
ables or special ordered sets are required. But in hard cases, such as where a
nonconvex piecewise-linear term appears in an objective to be minimized,
AMPL uses a special ordered set in expressing the linearized term.

Since only some solvers recognize SOS variables, AMPL introduces
auxiliary binary (zero-one) variables and constraints to enforce each SOS
restriction, and also uses the suffix mechanism to convey information about
these variables and constraints. Drivers for solvers that do recognize SOS
members may make use of a recent addition to the AMPL/solver interface
library, a function suf_sos(), which removes the auxiliary variables and
constraints and makes the SOS information available directly.

Occasionally a modeler finds it useful to indicate SOS1 or SOS2 sets ex-
plicitly. The function suf_sos() also recognizes user-defined suffixes
.sosno and .ref for this purpose. All variables with the same nonzero
.sosno value are put into the same SOS, which is of type 1 if the .sosno
value is positive and of type 2 if it is negative. The .ref values describe
the discrete values or breakpoint values (b[i] above) for the variables.
This representation is sufficient except in the (seemingly rare) case where
the sets overlap.

5.3 Complementarity

The optimality conditions for (1) are a special case of a complementarity
problem: when f and c are smooth and no components of x are required to be
integers, the first-order necessary conditions for solving (1) state that either
an inequality constraint is satisfied as an equality, or its associated Lagrange
multiplier is zero. Various other problems involve explicit complementarity

14 Chapter #999

conditions. Thus, as described in Ferris, Fourer and Gay (1999), we have
found it helpful to add explicit syntactic forms to AMPL, including some
new builtin suffixes, for purposes of expressing complementarity problems.

To make complementarity information available to solvers, the AMPL
processor puts complementarity problems into a standard form in which each
complementarity condition pairs an inequality constraint with a variable. An
array of these pairings (with a special value to indicate ordinary constraints)
is all we have had to add to the data structures in the AMPL/solver interface
library. More details appear in Ferris, Fourer and Gay (1999).

6. CONCLUSION

Various problem structures are useful to solvers, including derivatives,
complementarity conditions, and a variety of details that can be conveyed
with declared suffixes. Declared suffixes also permit solvers to return vari-
ous kinds of auxiliary information.

The suffix scheme that we describe is not the most general, and so does
not cover all cases of interest. Sometimes, for example, it might be desirable
to have a whole vector of auxiliary information for each variable or con-
straint. Nevertheless, the mechanism that we have described is able to handle
many common situations.

Many optimization problems have a block structure of some kind, corre-
sponding for example to a series of time periods or a collection of scenarios.
This information is clear to the modeler, but solvers may have a hard time
recovering it. Suffixes seem a natural candidate for conveying some of this
auxiliary block information to solvers. The case of stochastic programming
seems particularly promising for this approach, as there are a variety of spe-
cialized stochastic solvers that require detailed structural information.

The flexibility of declared suffixes might allow such a stochastic pro-
gramming feature to be added without any further change to the AMPL
language. More generally, we expect that suffixes will eventually be used
for many purposes that we did not have in mind when the suffix feature was
originally designed.

REFERENCES

Beale, E.M.L. and Forrest, J.J..H. (1976), ÒGlobal Optimization Using Special Ordered Sets,Ó
Mathematical Programming, vol. 10, pp. 52Ð69.

Beale, E.M.L. and Tomlin, J.A. (1970), ÒSpecial Facilities in a General Mathematical System
for Non-Convex Problems Using Ordered Sets of Variables,Ó in Proceedings of the Fifth

Conveying Problem Structure to Optimization Algorithms 15

International Conference on Operational Research, J. Lawrence, ed., Tavistock Publica-
tions, London, pp. 447Ð454.

Chinneck, J.W. and Dravnieks, E.W. (1991), ÒLocating Minimal Infeasible Constraint Sets in
Linear Programs,Ó ORSA Journal on Computing, vol. 3, pp. 157Ð168.

Ferris, M.C., Fourer, R. and Gay, D.M. (1999), ÒExpressing Complementarity Problems in an
Algebraic Modeling Language and Communicating Them to Solvers,Ó forthcoming in
SIAM Journal on Optimization.

Fourer, R. and Gay, D.M. (1994), ÒExperience with a Primal Presolve Algorithm,Ó in Large
Scale Optimization: State of the Art, W.W. Hager, D.W. Hearn and P.M. Pardalos, eds.,
Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 135Ð154.

Fourer, R., Gay, D.M. and Kernighan, B.W. (1990), ÒA Modeling Language for Mathematical
Programming,Ó Management Science, vol. 36, pp. 519Ð554.

Fourer, R., Gay, D.M. and Kernighan, B.W. (1993), AMPL: A Modeling Language for
Mathematical Programming, Duxbury Press-Brooks/Cole Publishing, Pacific Grove, CA.

Gay, D.M. (1991), ÒAutomatic Differentiation of Nonlinear AMPL Models,Ó in Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, A.ÊGriewank and
G.F. Corliss, eds., SIAM, Philadelphia, pp. 61Ð73.

Gay, D.M. (1996), ÒMore AD of Nonlinear AMPL Models: Computing Hessian Information
and Exploiting Partial Separability,Ó in Computational Differentiation: Applications,
Techniques, and Tools, M. Berz, C. Bischof, G. Corliss and A. Griewank, eds., SIAM,
Philadelphia, pp. 173Ð184.

Gay, D.M. (1997), ÒHooking Your Solver to AMPL,Ó Technical Report 97-4-06, Computing
Sciences Research Center, Bell Laboratories, Murray Hill, NJ. See http://
www.ampl.com/ampl/REFS/.

