
Symbolic-Algebraic Computations
in a Modeling Language

for Mathematical Programming

David M. Gay
Bell Labs, Murray Hill, NJ
dmg@bell-labs.com

Technical Report 00-3-02
Computing Sciences Research Center

Bell Laboratories
Murray Hill, NJ 07974

July 21, 2000

This paper was written for the proceedings of a seminar on ‘‘Symbolic-algebraic
Methods and Verification Methods — Theory and Applications’’, held 21–26
November 1999 at Schloss Dagstuhl, Germany.

Symbolic-Algebraic Computations in a
Modeling Language for Mathematical Programming

David M. Gay

1 Introduction
AMPL is a language and environment for expressing and manipulating

mathematical programming problems, i.e., minimizing or maximizing an algebraic
objective function subject to algebraic constraints. The AMPL processor simplifies
problems, as discussed in more detail below, but calls on separate solvers to actually
solve problems. Solvers obtain information about the problems they solve, including
first and, for some solvers, second derivatives, from the AMPL/solver interface
library.

This paper gives an overview of symbolic and algebraic computations within
the AMPL processor and its associated solver interface library. The next section
gives a more detailed overview of AMPL. Section 3 discusses communications with
solvers. Correctly rounded decimal-to-binary and binary-to-decimal conversions
reduce one possible source of confusion and are discussed in section 4. An overview
of AMPL’s problem simplifications appears in section 5. Directed roundings help
these simplifications, as described in section 6; a short discussion of the inconve-
nience this currently entails appears in section 7. Finally, section 8 provides conclud-
ing remarks and section 9 gives references.

2 AMPL overview
AMPL is a language and computing environment designed to simplify the tasks

of stating, solving, and generally manipulating mathematical programming problems,
such as the problem of finding x ∈ I Rn to

subject to ≤ x ≤ u

minimize f (x)
(1)

where f : I Rn → I R and c: I Rn → I Rm are algebraically defined functions.

AMPL began when Bob Fourer spent a sabbatical at Bell Labs. He had written
in Fourer (1983) about the need for modeling languages in the context of mathemati-
cal programming, and his sabbatical came at a time of interest in ‘‘little languages’’ at
Bell Labs — see Bentley (1986). AMPL permits stating problem (1) in a notation
close to conventional mathematical notation that can by typed on an ordinary key-
board. In the spirit of a little language, AMPL does not solve problems itself, but
rather translates them to a form that is easily manipulated with the help of the
AMPL/solver interface library: see Gay (1997). AMPL can invoke various solvers
that use the interface library to obtain information about (1), such as objective func-
tion values f (x), constraint bodies c(x), the constraint bounds and u, gradients
∇ f (x), Lagrangian Hessians

W(x , λ) = ∇2 f (x) −
i = 1
Σ
m

λ i ∇2 c i (x) ,

21 July 2000

- 2 -

etc. After computing a solution, a solver uses the interface library to return solution
information, such as ‘‘optimal’’ primal (x) and dual (λ) variable values, to the AMPL
processor. A growing AMPL command language facilitates inspecting solutions and
other problem data and modifying problems, perhaps to solve a sequence of problems.

One powerful feature of the AMPL modeling language is its ability to state
problems involving sets of entities without knowledge of the specific values of the
sets. This permits separating a model, i.e., a class of optimization problems parame-
terized by some fundamental sets and ‘‘parameters’’, from the data needed to specify
a particular problem instance. Models usually involve both fundamental and derived
sets and parameters; the derived entities are computed from fundamental entities or
previously computed derived ones. The AMPL command language permits changing
the values of fundamental entities, in which case derived entities are recomputed as
necessary.

Though it started as a little language, by the early 1990s AMPL had grown suf-
ficiently that we felt it reasonable to write the book of Fourer et al. (1993) about it.
AMPL continues to grow. Extensions since the AMPL book appeared are described
in the AMPL web site

http://www.ampl.com/ampl/

which contains much more information about AMPL, including pointers to various
papers about it.

3 Communication with solvers
Solvers run as separate processes, possibly on remote machines. AMPL com-

municates with solvers via files; it encodes problem descriptions in ‘‘.nl’’ files,
which include sparse-matrix representations of the nonzero structure and linear parts
of constraints and objectives and expression graphs for nonlinear expressions. The
AMPL/solver interface library offers several .nl file readers that read .nl files and
may prepare for nonlinear function and derivative evaluations. Expression graphs are
encoded in a Polish prefix form, but this detail is invisible outside of the .nl file
readers.

The interface library’s computations of first derivatives (gradients) proceed by
backwards automatic differentiation, as Gay (1991) describes. Preparations for Hes-
sian computations are more elaborate; they involve several ‘‘tree walks’’, i.e., passes
over the expression graphs, in part to identify and exploit partially separable structure:
objective functions (and constraint bodies) often have the form

f (x) =
i
Σ f i (A i x) , (2)

in which each A i matrix has just a few rows and represents a linear change of vari-
ables. As Griewank and Toint (1981, 1984) have pointed out, partially separable
structure is well worth exploiting when one computes or approximates the Hessian
matrix (of second partial derivatives) ∇2 f, which has the form

∇2 f (x) =
i
Σ Ai

T ∇2 f i A i . (3)

21 July 2000

- 3 -

Indeed, computing or approximating each term in (3) sometimes leads to substantially
faster Hessian computations than would otherwise occur. Gay (1996) gives many
more details about how the AMPL/solver interface library finds and exploits partially
separable structure, including a more elaborate form, ‘‘group partial separability’’,
that Conn et al. (1992) exploit in their solver LANCELOT:

f (x) =
i
Σ f i (

j ∈ Si

Σ φ i , j (A i , j x)) ,

in which φ i , j is a function of one variable.

Some solvers deal only with linear and quadratic objectives. The interface
library provides a special reader for such solvers. It does a tree walk that extracts the
(constant) Hessian of a quadratic function and complains if the function is nonlinear
but not quadratic.

4 Binary ↔ decimal conversions
By default, AMPL writes binary .nl files, but it can also write equivalent

ASCII (text) files. Binary files are faster to read and write, but ASCII files are more
portable: they can be written by one kind of computer and read by another. Both
kinds begin with 10 lines of text that provide problem statistics and a code that indi-
cates the format in which the rest of the file is written.

Most current computers use binary ‘‘IEEE arithmetic’’, or at least the represen-
tation for floating-point numbers described in the IEEE (1985) arithmetic standard.
The AMPL/solver interface library will automatically swap bytes if necessary so that
a binary .nl file written on a machine that uses big-endian IEEE arithmetic can be
read on a machine that uses little-endian IEEE arithmetic and vice versa.

To remove one source of confusion and inaccuracy and make binary and ASCII
.nl files completely interchangeable, AMPL and its solver interface library use cor-
rectly rounded binary ↔ decimal conversions, which is now possible on all machines
where AMPL has run other than old Cray machines. Details are described in Gay
(1990).

Part of the reason for mentioning binary ↔ decimal conversions here is to point
out a recent extension to Gay (1990) that carries out correctly rounded conversions for
other arithmetics with properties similar to binary IEEE arithmetic. This includes cor-
rect directed roundings and rounding of a decimal string to a floating-point interval of
width at most one unit in the last place, both of which are obviously useful for rigor-
ous interval computations. There is no paper yet about this work, but the source files
are available as

ftp://netlib.bell-labs.com/netlib/fp/gdtoa.tgz

which includes a README file for documentation.

5 Presolve
The AMPL processor simplifies problems in some ways before sending them to

solvers, a process called ‘‘presolving’’. The original motivation was just to permit
flexibility in stating bounds on variables: a solver should see the same problem

21 July 2000

- 4 -

independently of whether bounds on a variable are stated in the variable’s declaration
or in explicit constraints. But we have incorporated all of the ‘‘primal’’ simplifica-
tions described by Brearley et al. (1975), since this sometimes permits diagnosing
infeasibility without invoking a solver and it sometimes permits transmitting a signifi-
cantly smaller problem to the solver. Moreover, while some solvers have their own
presolver (generally also based on Brearley et al. (1975)), others do not, and these
other solvers sometimes solve problems significantly faster after AMPL’s presolve
phase has acted.

Fourer and Gay (1994) describe much of AMPL’s presolve algorithm, and Fer-
ris et al. (1999) describe extensions to it for complementarity constraints. For this
paper, a short overview will suffice. The simplification method of Brearley et al.
(1975) applies to linear constraints and objectives; it proceeds to recursively

1. fold singleton rows into variable bounds;
2. omit slack inequalities;
3. deduce bounds from other rows;
4. deduce bounds on dual variables.

AMPL currently omits step 4, since in general there can be several objectives (e.g.,
for a multi-objective solver) and some solvers can be asked to reverse the sense of
optimization, maximizing an objective declared as intended to be minimized and vice
versa.

AMPL’s presolver currently treats nonlinearities quite primitively, assuming
simply that a nonlinear expression can produce values in all of (− ∞ , + ∞); this is
clearly an area in which there is plenty of opportunity to do better. But even now it is
possible for a variable that appears in a nonlinear expression to be ‘‘fixed’’, i.e., have
its value determined, by other constraints, in which case AMPL replaces the nonlinear
variable by a constant, which may turn previously nonlinear constraints into linear
ones that can now participate in presolve simplifications.

In slightly more detail, AMPL maintains a stack of constraints to process,
which permits folding simple bound constraints into variable bounds in linear time.
For linear constraints involving more than one one variable, AMPL makes several
passes, which amount to Gauß-Seidel iterations. For example, consider the con-
straints

x

0. 1.x + y

x − y

x + y

≥
≤
≤
≥

0

1. 1

0

2

(4)

System (4) has a single feasible point, (1 , 1), which the Gauß-Seidel iterations only
approximate; AMPL’s default 9 passes deduce the bounds

0. 99999 ≤ x ≤ 1. 00001 ,

0. 99999 ≤ y ≤ 1. 00001 .

Such bounds, while an overestimate, sometimes permit deducing that other inequali-
ties can never be tight — or are inconsistent.

21 July 2000

- 5 -

Some solvers use an active-set strategy: they maintain a ‘‘basis’’ that involves
inequality constraints currently holding as equalities. Degeneracy is said to occur
when the choice of basis is not unique; solvers sometimes must carry out extra itera-
tions when degeneracy occurs. Conveying the tightest deduced bounds to solvers can
introduce extra degeneracy, so by default AMPL does not convey the tightest variable
bounds it has deduced when those bounds are implied by other constraints that the
solver sees. Solvers that do not use a basis, such as interior-point solvers, may not be
bothered by degeneracy, and it is possible to tell AMPL to send the tightest deduced
bounds to such solvers.

Table 1 illustrates several of the above points. It shows results for two variants
of a small shipping problem, one (git2) with variable bounds stated in separate con-
straints, the other (git3) with variable bounds stated in variable declarations, and
with various settings of AMPL’s presolve and var_bounds options in the
columns labeled ps and vb, respectively: ps = 0 omits all presolve simplifications;
this is the only ps setting under which git2 and git3 differ in the solver’s eyes.
For ps = 1, presolve deductions involving two or more nonzeros per constraint are
omitted, whereas for ps = 10 (the default, permitting 9 Gauß-Seidel iterations), they
are allowed; only one iteration is required for this particular problem, but the stronger
deductions do permit reducing the problem size. Under the (default) setting of
vb = 1, variable bounds implied by constraints that the solver sees are not transmitted
to the solver, whereas they are transmitted for vb = 2. The columns labeled m, n, and
nz give the number of constraints, variables, and constraint nonzeros in the problem
seen by the solver; in this particular example, the number of variables does not
change, but it does in other examples. The time column shows execution times for
MINOS 5.5, a nonlinear solver by Murtagh and Saunders (1982) that uses an active-
set strategy and solves linear problems (such as the git problems) as a special case.
MINOS benefits from AMPL’s presolve phase, as it does not have its own presolver,
and it is affected by the var_bounds setting. The times are CPU seconds on a
machine with a 466 MHz DEC Alpha 21164A processor, running Red Hat Linux 6.0
(with compilation by the egcs-2.91.66 C compiler after conversion of the MINOS
source from Fortran to C by the Fortran 77 to C converter f2c of Feldman et al.
(1990)).

Table 1. Illustration of presolve settings (see text).
_ __
Problem ps vb m n nz iters time
git2 0 1 1299 1089 4645 341 1.03
git3 0 1 410 1089 3756 383 0.39
git3 1 1 376 1089 3746 359 0.36
git3 10 1 286 1089 3051 324 0.30
git3 10 2 286 1089 3051 402 0.32_ __ 
















6 Directed rounding benefits
Rounding errors could lead to incorrect deductions in AMPL’s presolve algo-

rithm. Assume the i-th constraint has the form

b i ≤ f i (x) ≤ d i . (5)

AMPL’s presolve algorithm deduces bounds b̃ i ≤ f i (x) ≤ d̃ i on f i (x) from bounds

21 July 2000

- 6 -

on x; if the arithmetic were exact, then b̃ i ≥ b i would imply that the lower inequality
in (5) could be discarded without changing the set of feasible x values, and similarly
d̃ i ≤ d i would imply that the upper inequality in (5) could be discarded. Initially we
attempted to cope with rounding errors by introducing a tolerance τ (option
constraint_drop_tol, which is 0 by default) and requiring

b̃ i − b i ≥ τ

or

d i − d̃ i ≥ τ

before discarding the lower or upper inequality in (5). For example, on the maros test
problem of netlib’s lp/data collection of Gay (1985), under binary IEEE arith-
metic, τ = 10 − 13 suffices, whereas the default τ = 0 leads to incorrect deductions.
(Problems in netlib’s lp/data collection can be fed to AMPL with the help of a
model, mps.mod, and awk script, m2a, that are available from netlib.)

Rather than requiring users to guess suitable values for τ, it is safer to use
directed roundings in computing deduced bounds b̃ i and d̃ i . On machines with IEEE
arithmetic, AMPL has been using directed roundings in this context since the early
1990s. These roundings sometimes eliminate incorrect warnings about infeasibility.

Directed roundings can also affect the number of Gauß-Seidel iterations in
AMPL’s presolve algorithm. Table 2 shows the numbers of such iterations required
without (column ‘‘near’’) and with directed roundings on the problems in netlib’s
lp/data directory where directed roundings matter here.

Table 2. Presolve iterations with
IEEE nearest and directed rounding.

_ ________________________
Rounding

problem near directed

80bau3b 10 9
blend 6 5
czprob 10 5
israel 6 5
kb2 5 4_ ________________________ 


















Table 3 compares the performance of MINOS, running on the previously
described machine, without and with directed roundings in AMPL’s presolve algo-
rithm on the problems in netlib’s lp/data directory where this rounding makes a
difference. It is disappointing that the directed roundings often lead MINOS to take
more time (CPU seconds) and iterations.

7 Directed rounding frustrations
The directed roundings discussed in the previous section are merely a special

case of interval computations; directed roundings are obviously important for interval
computations in general. Although machines that with IEEE arithmetic must provide
directed roundings, the means of accessing them remain system dependent and some-
times even require use of assembly code. The recently updated C standard does

21 July 2000

- 7 -

Table 3. MINOS times and iterations affected by
presolve rounding on netlib’s lp/data problems.

_ __
problem rounding rows cols nonzeros iters time

greenbea near 1962 4153 24480 15072 103
dir. 2014 4270 24145 15342 116

greenbeb near 1966 4151 24474 7942 54
dir. 2033 4311 25393 8862 62

maros near 691 1112 7554 1235 2.6∗
dir. 697 1127 7717 1504 3.3

perold near 600 1276 5678 3395 11.1
dir. 597 1269 5637 3388 8.5

∗ Unbounded_ __ 





























finally provide facilities for controlling rounding direction, but (as of this writing)
these facilities are not yet widely available. Similarly, a forthcoming update to the
Fortran standard will probably include control of the rounding direction (where possi-
ble), but portable specification of the rounding direction so far remains elusive.

The situation is even worse in the currently popular Java world. Although Java
makes a big fuss about using part of the IEEE arithmetic standard, it makes no provi-
sion for directed roundings. To get them, one must resort to using the Java Native
Interface to call functions written in another language.

8 Conclusion
AMPL permits separating a model, i.e., a symbolic representation of a class of

problems, from the data required to specify a particular problem instance. Once
AMPL has a problem instance, it can make simplifications before transmitting the
problem to a solver; these simplifications sometimes benefit from use of directed
roundings. Expression graphs sent to the solver can be manipulated by the
AMPL/solver interface library to arrange for efficient gradient and Hessian computa-
tions. The net effect is that hidden symbolic and algebraic manipulations play a sig-
nificant role in making life easier for AMPL users, who usually want to concentrate
on formulating and using their intended mathematical programming problems, rather
than worrying about arcane technical details.

Acknowledgement. I thank Bob Fourer for helpful comments on the manuscript.

9 References

IEEE Standard for Binary Floating-Point Arithmetic, Institute of Electrical and Elec-
tronics Engineers, New York, NY, 1985. ANSI/IEEE Std 754-1985.

Bentley, J. L. (Aug. 1986), ‘‘Little Languages,’’ Communications of the ACM 29
#8: 711–721.

Conn, A. R.; Gould, N. I. M.; and Toint, Ph. L., LANCELOT, a Fortran Package for
Large-Scale Nonlinear Optimization (Release A), Springer-Verlag, 1992. Springer
Series in Computational Mathematics 17.

21 July 2000

- 8 -

Feldman, S. I.; Gay, D. M.; Maimone, M. W.; and Schryer, N. L., ‘‘A Fortran-to-C
Converter,’’ Computing Science Technical Report No. 149 (1990), Bell Laboratories,
Murray Hill, NJ.

Ferris, Michael C.; Fourer, Robert; and Gay, David M. (1999), ‘‘Expressing Comple-
mentarity Problems in an Algebraic Modeling Language and Communicating Them to
Solvers,’’ SIAM Journal on Optimization 9 #4: 991–1009.

Fourer, R. (1983), ‘‘Modeling Languages Versus Matrix Generators for Linear Pro-
gramming,’’ ACM Trans. Math. Software 9 #2: 143–183.

Fourer, Robert; Gay, David M.; and Kernighan, Brian W., AMPL: A Modeling Lan-
guage for Mathematical Programming, Duxbury Press/Wadsworth, 1993. ISBN: 0-
89426-232-7.

Gay, D. M. (1985), ‘‘Electronic Mail Distribution of Linear Programming Test Prob-
lems,’’ COAL Newsletter #13: 10–12.

Gay, D. M., ‘‘Correctly Rounded Binary-Decimal and Decimal-Binary Conversions,’’
Numerical Analysis Manuscript 90-10 (11274-901130-10TMS) (1990), Bell Labora-
tories, Murray Hill, NJ.

Gay, David M., ‘‘Automatic Differentiation of Nonlinear AMPL Models,’’ pp. 61–73
in Automatic Differentiation of Algorithms: Theory, Implementation, and Application,
ed. A. Griewank and G. F. Corliss, SIAM (1991).

Gay, D. M., ‘‘More AD of Nonlinear AMPL Models: Computing Hessian Informa-
tion and Exploiting Partial Separability,’’ in Computational Differentiation: Applica-
tions, Techniques, and Tools, ed. George F. Corliss, SIAM (1996).

Gay, David M., ‘‘Hooking Your Solver to AMPL,’’ Technical Report 97-4-06 (April,
1997), Computing Sciences Research Center, Bell Laboratories. See http://-
www.ampl.com/ampl/REFS/hooking2.ps.gz.

Griewank, A. and Toint, Ph. L., ‘‘On the Unconstrained Optimization of Partially
Separable Functions,’’ pp. 301–312 in Nonlinear Optimization 1981, ed. M. J. D.
Powell, Academic Press (1982).

Griewank, A. and Toint, Ph. L. (1984), ‘‘On the Existence of Convex Decompositions
of Partially Separable Functions,’’ Math. Programming 28: 25–49.

Murtagh, B. A. and Saunders, M. A. (1982), ‘‘A Projected Lagrangian Algorithm and
its Implementation for Sparse Nonlinear Constraints,’’ Math. Programming Study
16: 84–117.

21 July 2000

