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Diet and Other Input Models:
Minimizing Costs

To complement the profit-maximizing models of Chapter 1, we now consider linear
programming models in which the objective is to minimize costs. Where the constraints
of maximization models tend to be upper limits on the availability of resources, the con-
straints in minimization models are more likely to be lower limits on the amounts of cer-
tain ‘‘qualities’’ in the solution.

As an intuitive example of a cost-minimizing model, this chapter uses the well-known
‘‘diet problem’’, which finds a mix of foods that satisfies requirements on the amounts of
various vitamins. We will again construct a small, explicit linear program, and then show
how a general model can be formulated for all linear programs of that kind. Since you
are now more familiar with AMPL, however, we will spend more time on AMPL and less
with algebraic notation.

After formulating the diet model, we will discuss a few changes that might make it
more realistic. The full power of this model, however, derives from its applicability to
many situations that have nothing to do with diets. Thus we conclude this chapter by
rewriting the model in a more general way, and discussing its application to blending,
economics, and scheduling.

2.1 A linear program for the diet problem

Consider the problem of choosing prepared foods to meet certain nutritional require-
ments. Suppose that precooked dinners of the following kinds are available for the fol-
lowing prices per package:
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BEEF beef $3.19
CHK chicken 2.59
FISH fish 2.29
HAM ham 2.89
MCH macaroni & cheese 1.89
MTL meat loaf 1.99
SPG spaghetti 1.99
TUR turkey 2.49

These dinners provide the following percentages, per package, of the minimum daily
requirements for vitamins A, C, B1 and B2:

A C B1 B2

BEEF 60% 20% 10% 15%
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10

The problem is to find the cheapest combination of packages that will meet a week’s
requirements — that is, at least 700% of the daily requirement for each nutrient.

Let us write X BEEF for the number of packages of beef dinner to be purchased, X CHK

for the number of packages of chicken dinner, and so forth. Then the total cost of the diet
will be:

total cost =
3.19 X BEEF + 2.59 X CHK + 2.29 X FISH + 2.89 X HAM +
1.89 X MCH + 1.99 X MTL + 1.99 X SPG + 2.49 X TUR

The total percentage of the vitamin A requirement is given by a similar formula, except
that X BEEF , X CHK , and so forth are multiplied by the percentage per package instead of
the cost per package:

total percentage of vitamin A daily requirement met =
60 X BEEF + 8 X CHK + 8 X FISH + 40 X HAM +
15 X MCH + 70 X MTL + 25 X SPG + 60 X TUR

This amount needs to be greater than or equal to 700 percent. There is a similar formula
for each of the other vitamins, and each of these also needs to be ≥ 700.

Putting these all together, we have the following linear program:
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Minimize
3.19 X BEEF + 2.59 X CHK + 2.29 X FISH + 2.89 X HAM +
1.89 X MCH + 1.99 X MTL + 1.99 X SPG + 2.49 X TUR

Subject to
60 X BEEF + 8 X CHK + 8 X FISH + 40 X HAM +
15 X MCH + 70 X MTL + 25 X SPG + 60 X TUR ≥ 700

20 X BEEF + 0 X CHK + 10 X FISH + 40 X HAM +
35 X MCH + 30 X MTL + 50 X SPG + 20 X TUR ≥ 700

10 X BEEF + 20 X CHK + 15 X FISH + 35 X HAM +
15 X MCH + 15 X MTL + 25 X SPG + 15 X TUR ≥ 700

15 X BEEF + 20 X CHK + 10 X FISH + 10 X HAM +
15 X MCH + 15 X MTL + 15 X SPG + 10 X TUR ≥ 700

X BEEF ≥ 0, X CHK ≥ 0, X FISH ≥ 0, X HAM ≥ 0,
X MCH ≥ 0, X MTL ≥ 0, X SPG ≥ 0, X TUR ≥ 0

At the end we have added the common-sense requirement that no fewer than zero pack-
ages of a food can be purchased.

As we first did with the production LP of Chapter 1, we can transcribe to a file, say
diet0.mod, an AMPL statement of the explicit diet LP:

var Xbeef >= 0; var Xchk >= 0; var Xfish >= 0;
var Xham >= 0; var Xmch >= 0; var Xmtl >= 0;
var Xspg >= 0; var Xtur >= 0;

minimize cost:
3.19*Xbeef + 2.59*Xchk + 2.29*Xfish + 2.89*Xham +
1.89*Xmch + 1.99*Xmtl + 1.99*Xspg + 2.49*Xtur;

subject to A:
60*Xbeef + 8*Xchk + 8*Xfish + 40*Xham +
15*Xmch + 70*Xmtl + 25*Xspg + 60*Xtur >= 700;

subject to C:
20*Xbeef + 0*Xchk + 10*Xfish + 40*Xham +
35*Xmch + 30*Xmtl + 50*Xspg + 20*Xtur >= 700;

subject to B1:
10*Xbeef + 20*Xchk + 15*Xfish + 35*Xham +
15*Xmch + 15*Xmtl + 25*Xspg + 15*Xtur >= 700;

subject to B2:
15*Xbeef + 20*Xchk + 10*Xfish + 10*Xham +
15*Xmch + 15*Xmtl + 15*Xspg + 10*Xtur >= 700;

Again a few AMPL commands then suffice to read the file, send the LP to a solver, and
retrieve the results:
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ampl: model diet0.mod;
ampl: solve;
MINOS 5.5: optimal solution found.
6 iterations, objective 88.2
ampl: display Xbeef,Xchk,Xfish,Xham,Xmch,Xmtl,Xspg,Xtur;
Xbeef = 0
Xchk = 0
Xfish = 0
Xham = 0
Xmch = 46.6667
Xmtl = -3.69159e-18
Xspg = -4.05347e-16
Xtur = 0

The optimal solution is found quickly, but it is hardly what we might have hoped for.
The cost is minimized by a monotonous diet of 462/3 packages of macaroni and cheese!
You can check that this neatly provides 15% × 462/3 = 700% of the requirement for vita-
mins A, B1 and B2, and a lot more vitamin C than necessary; the cost is only $1.89 ×
462/3 = $88.20. (The tiny negative values for meat loaf and spaghetti can be regarded as
zeros, like the tiny positive values we saw in Section 1.6.)

You might guess that a better solution would be generated by requiring the amount of
each vitamin to equal 700% exactly. Such a requirement can easily be imposed by
changing each >= to = in the AMPL constraints. If you go ahead and solve the changed
LP, you will find that the diet does indeed become more varied: approximately 19.5 pack-
ages of chicken, 16.3 of macaroni and cheese, and 4.3 of meat loaf. But since equalities
are more restrictive than inequalities, the cost goes up to $89.99.

2.2 An AMPL model for the diet problem

Clearly we will have to consider more extensive modifications to our linear program
in order to produce a diet that is even remotely acceptable. We will probably want to
change the sets of food and nutrients, as well as the nature of the constraints and bounds.
As in the production example of the previous chapter, this will be much easier to do if we
rely on a general model that can be coupled with a variety of specific data files.

This model deals with two things: nutrients and foods. Thus we begin an AMPL
model by declaring sets of each:

set NUTR;
set FOOD;

Next we need to specify the numbers required by the model. Certainly a positive cost
should be given for each food:

param cost {FOOD} > 0;

We also specify that for each food there are lower and upper limits on the number of
packages in the diet:
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param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

Notice that we need a dummy index j to run over FOOD in the declaration of f_max, in
order to say that the maximum for each food must be greater than or equal to the corre-
sponding minimum.

To make this model somewhat more general than our examples so far, we also specify
similar lower and upper limits on the amount of each nutrient in the diet:

param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

Finally, for each combination of a nutrient and a food, we need a number that represents
the amount of the nutrient in one package of the food. You may recall from Chapter 1
that such a ‘‘product’’ of two sets is written by listing them both:

param amt {NUTR,FOOD} >= 0;

References to this parameter require two indices. For example, amt[i,j] is the amount
of nutrient i in a package of food j.

The decision variables for this model are the numbers of packages to buy of the differ-
ent foods:

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

The number of packages of some food j to be bought will be called Buy[j]; in any
acceptable solution it will have to lie between f_min[j] and f_max[j].

The total cost of buying a food j is the cost per package, cost[j], times the num-
ber of packages, Buy[j]. The objective to be minimized is the sum of this product over
all foods j:

minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];

This minimize declaration works the same as maximize did in Chapter 1.
Similarly, the amount of a nutrient i supplied by a food j is the nutrient per package,

amt[i,j], times the number of packages Buy[j]. The total amount of nutrient i sup-
plied is the sum of this product over all foods j:

sum {j in FOOD} amt[i,j] * Buy[j]

To complete the model, we need only specify that each such sum must lie between the
appropriate bounds. Our constraint declaration begins

subject to Diet {i in NUTR}:

to say that a constraint named Diet[i] must be imposed for each member i of NUTR.
The rest of the declaration gives the algebraic statement of the constraint for nutrient i:
the variables must satisfy

n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i]
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________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

set NUTR;
set FOOD;

param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

param amt {NUTR,FOOD} >= 0;

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j];

subject to Diet {i in NUTR}:
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

Figure 2-1: Diet model in AMPL (diet.mod).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A ‘‘double inequality’’ like this is interpreted in the obvious way: the value of the sum in
the middle must lie between n_min[i] and n_max[i]. The complete model is shown
in Figure 2-1.

2.3 Using the AMPL diet model

By specifying appropriate data, we can solve any of the linear programs that corre-
spond to the above model. Let’s begin by using the data from the beginning of this chap-
ter, which is shown in AMPL format in Figure 2-2.

The values of f_min and n_min are as given originally, while f_max and n_max
are set, for the time being, to large values that won’t affect the optimal solution. In the
table for amt, the notation (tr) indicates that we have ‘‘transposed’’ the table so the
columns correspond to the first index (nutrients), and the rows to the second (foods).
Alternatively, we could have changed the model to say

param amt {FOOD,NUTR}

in which case we would have had to write amt[j,i] in the constraint.
Suppose that model and data are stored in the files diet.mod and diet.dat,

respectively. Then AMPL is used as follows to read these files and to solve the resulting
linear program:

ampl: model diet.mod;
ampl: data diet.dat;

ampl: solve;
MINOS 5.5: optimal solution found.
6 iterations, objective 88.2
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________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;

param: cost f_min f_max :=
BEEF 3.19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;

param: n_min n_max :=
A 700 10000
C 700 10000
B1 700 10000
B2 700 10000 ;

param amt (tr):
A C B1 B2 :=

BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10 ;

Figure 2-2: Data for diet model (diet.dat).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ampl: display Buy;
Buy [*] :=
BEEF 0
CHK 0
FISH 0
HAM 0
MCH 46.6667
MTL -1.07823e-16
SPG -1.32893e-16
TUR 0
;

Naturally, the result is the same as before.
Now suppose that we want to make the following enhancements. To promote variety,

the weekly diet must contain between 2 and 10 packages of each food. The amount of
sodium and calories in each package is also given; total sodium must not exceed 40,000
mg, and total calories must be between 16,000 and 24,000. All of these changes can be
made through a few modifications to the data, as shown in Figure 2-3. Putting this new
data in file diet2.dat, we can run AMPL again:
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________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

set NUTR := A B1 B2 C NA CAL ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;

param: cost f_min f_max :=
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10 ;

param: n_min n_max :=
A 700 20000
C 700 20000
B1 700 20000
B2 700 20000
NA 0 40000
CAL 16000 24000 ;

param amt (tr):
A C B1 B2 NA CAL :=

BEEF 60 20 10 15 938 295
CHK 8 0 20 20 2180 770
FISH 8 10 15 10 945 440
HAM 40 40 35 10 278 430
MCH 15 35 15 15 1182 315
MTL 70 30 15 15 896 400
SPG 25 50 25 15 1329 370
TUR 60 20 15 10 1397 450 ;

Figure 2-3: Data for enhanced diet model (diet2.dat).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ampl: model diet.mod;
ampl: data diet2.dat;

ampl: solve;
MINOS 5.5: infeasible problem.
9 iterations

The message infeasible problem tells us that we have constrained the diet too
tightly; there is no way that all of the restrictions can be satisfied.

AMPL lets us examine a variety of values produced by a solver as it attempts to find a
solution. In Chapter 1, we used marginal (or dual) values to investigate the sensitivity of
an optimum solution to changes in the constraints. Here there is no optimum, but the
solver does return the last solution that it found while attempting to satisfy the con-
straints. We can look for the source of the infeasibility by displaying some values associ-
ated with this solution:



SECTION 2.3 USING THE AMPL DIET MODEL 35

ampl: display Diet.lb, Diet.body, Diet.ub;
: Diet.lb Diet.body Diet.ub :=
A 700 1993.09 20000
B1 700 841.091 20000
B2 700 601.091 20000
C 700 1272.55 20000
CAL 16000 17222.9 24000
NA 0 40000 40000
;

For each nutrient, Diet.body is the sum of the terms amt[i,j] * Buy[j] in the
constraint Diet[i]. The Diet.lb and Diet.ub values are the ‘‘lower bounds’’ and
‘‘upper bounds’’ on the sum in Diet[i] — in this case, just the values n_min[i] and
n_max[i]. We can see that the diet returned by the solver does not supply enough vita-
min B2, while the amount of sodium (NA) has reached its upper bound.

At this point, there are two obvious choices: we could require less B2 or we could
allow more sodium. If we try the latter, and relax the sodium limit to 50,000 mg, a feasi-
ble solution becomes possible:

ampl: let n_max["NA"] := 50000;

ampl: solve;
MINOS 5.5: optimal solution found.
5 iterations, objective 118.0594032

ampl: display Buy;
Buy [*] :=
BEEF 5.36061
CHK 2
FISH 2
HAM 10
MCH 10
MTL 10
SPG 9.30605
TUR 2
;

This is at least a start toward a palatable diet, although we have to spend $118.06, com-
pared to $88.20 for the original, less restricted case. Clearly it would be easy, now that
the model is set up, to try many other possibilities. (Section 11.3 describes ways to
quickly change the data and re-solve.)

One still disappointing aspect of the solution is the need to buy 5.36061 packages of
beef, and 9.30605 of spaghetti. How can we find the best possible solution in terms of
whole packages? You might think that we could simply round the optimal values to
whole numbers — or integers, as they’re often called in the context of optimization —
but it is not so easy to do so in a feasible way. Using AMPL to modify the reported solu-
tion, we can observe that rounding up to 6 packages of beef and 10 of spaghetti, for
example, will violate the sodium limit:
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ampl: let Buy["BEEF"] := 6;
ampl: let Buy["SPG"] := 10;

ampl: display Diet.lb, Diet.body, Diet.ub;
: Diet.lb Diet.body Diet.ub :=
A 700 2012 20000
B1 700 1060 20000
B2 700 720 20000
C 700 1730 20000
CAL 16000 20240 24000
NA 0 51522 50000
;

(The let statement, which permits modifications of data, is described in Section 11.3.)
You can similarly check that rounding the solution down to 5 of beef and 9 of spaghetti
will provide insufficient vitamin B2. Rounding one up and the other down doesn’t work
either. With enough experimenting you can find a nearby all-integer solution that does
satisfy the constraints, but still you will have no guarantee that it is the least-cost all-
integer solution.

AMPL does provide for putting the integrality restriction directly into the declaration
of the variables:

var Buy {j in FOOD} integer >= f_min[j], <= f_max[j];

This will only help, however, if you use a solver that can deal with problems whose vari-
ables must be integers. For this, we turn to CPLEX, a solver that can handle these so-
called integer programs. If we add integer to the declaration of variable Buy as
above, save the resulting model in the file dieti.mod, and add the higher sodium limit
to diet2a.dat, then we can re-solve as follows:

ampl: reset;
ampl: model dieti.mod;
ampl: data diet2a.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 8.0.0: optimal integer solution; objective 119.3
11 MIP simplex iterations
1 branch-and-bound nodes

ampl: display Buy;
Buy [*] :=
BEEF 9
CHK 2
FISH 2
HAM 8
MCH 10
MTL 10
SPG 7
TUR 2
;
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Since integrality is an added constraint, it is no surprise that the best integer solution costs
about $1.24 more than the best ‘‘continuous’’ one. But the difference between the diets
is unexpected; the amounts of 3 foods change, each by two or more packages. In general,
integrality and other ‘‘discrete’’ restrictions make solutions for a model much harder to
find. We discuss this at length in Chapter 20.

2.4 Generalizations to blending, economics and scheduling

Your personal experience probably suggests that diet models are not widely used by
people to choose their dinners. These models would be much better suited to situations in
which packaging and personal preferences don’t play such a prominent role — for exam-
ple, the blending of animal feed or perhaps food for college dining halls.

The diet model is a convenient, intuitive example of a linear programming formula-
tion that appears in many contexts. Suppose that we rewrite the model in a more general
way, as shown in Figure 2-4. The objects that were called foods and nutrients in the diet
model are now referred to more generically as ‘‘inputs’’ and ‘‘outputs’’. For each input
j, we must decide to use a quantity X[j] that lies between in_min[j] and
in_max[j]; as a result we incur a cost equal to cost[j] * X[j], and we create
io[i,j] * X[j] units of each output i. Our goal is to find the least-cost combination
of inputs that yields, for each output i, an amount between out_min[i] and
out_max[i].

In one common class of applications for this model, the inputs are raw materials to be
mixed together. The outputs are qualities of the resulting blend. The raw materials could
be the components of an animal feed, but they could equally well be the crude oil deriva-
tives that are blended to make gasoline, or the different kinds of coal that are mixed as
input to a coke oven. The qualities can be amounts of something (sodium or calories for
animal feed), or more complex measures (vapor pressure or octane rating for gasoline), or
even physical properties such as weight and volume.

In another well-known application, the inputs are production activities of some sector
of an economy, and the outputs are various products. The in_min and in_max param-
eters are limits on the levels of the activities, while out_min and out_max are regu-
lated by demands. Thus the goal is to find levels of the activities that meet demand at the
lowest cost. This interpretation is related to the concept of an economic equilibrium, as
we will explain in Chapter 19.

In still another, quite different application, the inputs are work schedules, and the out-
puts correspond to hours worked on certain days of a month. For a particular work
schedule j, io[i,j] is the number of hours that a person following schedule j will
work on day i (zero if none), cost[j] is the monthly salary for a person following
schedule j, and X[j] is the number of workers assigned that schedule. Under this inter-
pretation, the objective becomes the total cost of the monthly payroll, while the con-
straints say that for each day i, the total number of workers assigned to work that day
must lie between the limits out_min[i] and out_max[i]. The same approach can
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________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

set INPUT; # inputs
set OUTPUT; # outputs

param cost {INPUT} > 0;
param in_min {INPUT} >= 0;
param in_max {j in INPUT} >= in_min[j];

param out_min {OUTPUT} >= 0;
param out_max {i in OUTPUT} >= out_min[i];

param io {OUTPUT,INPUT} >= 0;

var X {j in INPUT} >= in_min[j], <= in_max[j];

minimize Total_Cost: sum {j in INPUT} cost[j] * X[j];

subject to Outputs {i in OUTPUT}:
out_min[i] <= sum {j in INPUT} io[i,j] * X[j] <= out_max[i];

Figure 2-4: Least-cost input model (blend.mod).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

be used in a variety of other scheduling contexts, where the hours, days or months are
replaced by other periods of time.

Although linear programming can be very useful in applications like these, we need to
keep in mind the assumptions that underlie the LP model. We have already mentioned
the ‘‘continuity’’ assumption whereby X[j] is allowed to take on any value between
in_min[j] and in_max[j]. This may be a lot more reasonable for blending than for
scheduling.

As another example, in writing the objective as

sum {j in INPUT} cost[j] * X[j]

we are assuming ‘‘linearity of costs’’, that is, that the cost of an input is proportional to
the amount of the input used, and that the total cost is the sum of the inputs’ individual
costs.

In writing the constraints as

out_min[i] <= sum {j in INPUT} io[i,j] * X[j] <= out_max[i]

we are also assuming that the yield of an output i from a particular input is proportional
to the amount of the input used, and that the total yield of an output i is the sum of the
yields from the individual inputs. This ‘‘linearity of yield’’ assumption poses no problem
when the inputs are schedules, and the outputs are hours worked. But in the blending
example, linearity is a physical assumption about the nature of the raw materials and the
qualities, which may or may not hold. In early applications to refineries, for example, it
was recognized that the addition of lead as an input had a nonlinear effect on the quality
known as octane rating in the resulting blend.

AMPL makes it easy to express discrete or nonlinear models, but any departure from
continuity or linearity is likely to make an optimal solution much harder to obtain. At the
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least, it takes a more powerful solver to optimize the resulting mathematical programs.
Chapters 17 through 20 discuss these issues in more detail.
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Exercises

2-1. Suppose the foods listed below have calories, protein, calcium, vitamin A, and costs per
pound as shown. In what amounts should these food be purchased to meet at least the daily
requirements listed while minimizing the total cost? (This problem comes from George B.
Dantzig’s classic book, Linear Programming and Extensions , page 118. We will take his word on
nutritional values, and for nostalgic reasons have left the prices as they were when the book was
published in 1963.)

bread meat potatoes cabbage milk gelatin required

calories 1254 1457 318 46 309 1725 3000
protein 39 73 8 4 16 43 70 g.
calcium 418 41 42 141 536 0 800 mg.
vitamin A 0 0 70 860 720 0 500 I.U.

cost/pound $0.30 $1.00 $0.05 $0.08 $0.23 $0.48

2-2. (a) You have been advised by your doctor to get more exercise, specifically, to burn off at
least 2000 extra calories per week by some combination of walking, jogging, swimming, exercise-
machine, collaborative indoor recreation, and pushing yourself away from the table at mealtimes.
You have a limited tolerance for each activity in hours/week; each expends a certain number of
calories per hour, as shown below:

walking jogging swimming machine indoor pushback

Calories 100 200 300 150 300 500
Tolerance 5 2 3 3.5 3 0.5

How should you divide your exercising among these activities to minimize the amount of time you
spend?
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(b) Suppose that you should also have some variety in your exercise — you must do at least one
hour of each of the first four exercises, but no more than four hours total of walking, jogging, and
exercise-machine. Solve the problem in this form.

2-3. (a) A manufacturer of soft drinks wishes to blend three sugars in approximately equal quanti-
ties to ensure uniformity of taste in a product. Suppliers only provide combinations of the sugars,
at varying costs/ton:

SUPPLIER

Sugar A B C D E F G

Cane 10% 10 20 30 40 20 60
Corn 30% 40 40 20 60 70 10
Beet 60% 50 40 50 0 10 30

Cost/ton $10 11 12 13 14 12 15

Formulate an AMPL model that minimizes the cost of supply while producing a blend that contains
52 tons of cane sugar, 56 tons of corn sugar, and 59 tons of beet sugar.

(b) The manufacturer feels that to ensure good relations with suppliers it is necessary to buy at least
10 tons from each. How does this change the model and the minimum-cost solution?

(c) Formulate an alternative to the model in (a) that finds the lowest-cost way to blend one ton of
supplies so that the amount of each sugar is between 30 and 37 percent of the total.

2-4. At the end of Chapter 1, we indicated how to interpret the marginal (or dual) values of con-
straints and the reduced costs of variables in a production model. The same ideas can be applied to
this chapter’s diet model.

(a) Going back to the diet problem that was successfully solved in Section 2.3, we can display the
marginal values as follows:

ampl: display Diet.lb,Diet.body,Diet.ub,Diet;
: Diet.lb Diet.body Diet.ub Diet :=
A 700 1956.29 20000 0
B1 700 1036.26 20000 0
B2 700 700 20000 0.404585
C 700 1682.51 20000 0
CAL 16000 19794.6 24000 0
NA 0 50000 50000 -0.00306905
;

How can you interpret the two that are nonzero?

(b) For the same problem, this listing gives the reduced costs:

ampl: display Buy.lb,Buy,Buy.ub,Buy.rc;
: Buy.lb Buy Buy.ub Buy.rc :=
BEEF 2 5.36061 10 8.88178e-16
CHK 2 2 10 1.18884
FISH 2 2 10 1.14441
HAM 2 10 10 -0.302651
MCH 2 10 10 -0.551151
MTL 2 10 10 -1.3289
SPG 2 9.30605 10 0
TUR 2 2 10 2.73162
;
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Based on this information, if you want to save money by eating more than 10 packages of some
food, which one is likely to be your best choice?

2-5. A chain of fast-food restaurants operates 7 days a week, and requires the following minimum
number of kitchen employees from Monday through Sunday: 45, 45, 40, 50, 65, 35, 35. Each
employee is scheduled to work one weekend day (Saturday or Sunday) and four other days in a
week. The management wants to know the minimum total number of employees needed to satisfy
the requirements on every day.

(a) Set up and solve this problem as a linear program.

(b) In light of the discussion in Section 2.4, explain how this problem can be viewed as a special
case of the blending model in Figure 2-4.

2-6. The output of a paper mill consists of standard rolls 110 inches (110") wide, which are cut
into smaller rolls to meet orders. This week there are orders for rolls of the following widths:

Width Orders
20" 48
45" 35
50" 24
55" 10
75" 8

The owner of the mill wants to know what cutting patterns to apply so as to fill the orders using the
smallest number of 110" rolls.

(a) A cutting pattern consists of a certain number of rolls of each width, such as two of 45" and one
of 20", or one of 50" and one of 55" (and 5" of waste). Suppose, to start with, that we consider
only the following six patterns:

Width 1 2 3 4 5 6
20" 3 1 0 2 1 3
45" 0 2 0 0 0 1
50" 1 0 1 0 0 0
55" 0 0 1 1 0 0
75" 0 0 0 0 1 0

How many rolls should be cut according to each pattern, to minimize the number of 110" rolls
used? Formulate and solve this problem as a linear program, assuming that the number of smaller
rolls produced need only be greater than or equal to the number ordered.

(b) Re-solve the problem, with the restriction that the number of rolls produced in each size must
be between 10% under and 40% over the number ordered.

(c) Find another pattern that, when added to those above, improves the optimal solution.

(d) All of the solutions above use fractional numbers of rolls. Can you find solutions that also sat-
isfy the constraints, but that cut a whole number of rolls in each pattern? How much does your
whole-number solution cause the objective function value to go up in each case? (See Chapter 20
for a discussion of how to find optimal whole-number, or integer, solutions.)

2-7. In the refinery model of Exercise 1-6, the amount of premium gasoline to be produced is a
decision variable. Suppose instead that orders dictate a production of 42,000 barrels. The octane
rating of the product is permitted to be in the range of 89 to 91, and the vapor pressure in a range of
11.7 to 12.7. The five feedstocks that are blended to make premium gasoline have the following
production and/or purchase costs:



42 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS CHAPTER 2

SRG 9.57
N 8.87
RF 11.69
CG 10.88
B 6.75

Other data are as in Exercise 1-6. Construct a blending model and data file to represent this prob-
lem. Run them through AMPL to determine the optimal composition of the blend.

2-8. Recall that Figure 2-4 generalizes the diet model as a minimum-cost input selection model,
with constraints on the outputs.

(a) In the same way, generalize the production model of Figure 1-6a as a maximum-revenue output
selection model, with constraints on the inputs.

(b) The concept of an ‘‘input-output’’ model was one of the first applications of linear program-
ming in economic analysis. Such a model can be described in terms of a set A of activities and a
set M of materials. The decision variables are the levels X j ≥ 0 at which the activities are run; they
have lower limits uj

− and upper limits uj
+ .

Each activity j has either a revenue per unit c j > 0, or a cost per unit represented by c j < 0. Thus
total profit from all activities is Σ j ∈A

c j X j , which is to be maximized.

Each unit of activity j produces an amount of material i given by a i j ≥ 0, or consumes an amount
of material i represented by a i j < 0. Thus if Σ j ∈A

a i j X j is > 0 it is the total production of material

i by all activities; if < 0, it is the total consumption of material i by all activities.

For each material i, there is either an upper limit on the total production given by bi
+ > 0, or a lower

limit on the total consumption given by bi
+ < 0. Similarly, there is either a lower limit on the total

production given by bi
− > 0, or an upper limit on the total consumption given by bi

− < 0.

Write out a formulation of this model in AMPL.

(c) Explain how the minimum-cost input selection model and maximum-revenue output-selection
model can be viewed as special cases of the input-output model.




