open (14 notebooks)#

AMPL Development Tutorial 1/6 – Capacitated Facility Location Problem#

AMPL Development Tutorial 2/6 – Stochastic Capacitated Facility Location Problem#

AMPL Development Tutorial 3/6 – Benders Decomposition via AMPL scripting#

3_benders_stoch_floc.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: In this third installment of our six-part series, we continue our exploration by addressing the complexities introduced by the stochastic programming formulation presented in part two.

AMPL Development Tutorial 4/6 – Benders Decomposition via PYTHON scripting#

4_benders_in_python_stoch_floc.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: In this fourth installment of our six-part series, we advance our exploration by demonstrating how to adapt our AMPL script for use with AMPL’s Python API.

AMPL Development Tutorial 5/6 – Parallelizing Subproblem Solves in Benders Decomposition#

5_benders_parallel_stoch_floc.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: In the fifth installment of our six-part series, we delve deeper by showing how to evolve our Benders decomposition Python script from a serial execution to one that solves subproblems in parallel.

Debugging Model Infeasibility#

debug_infeas.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: This notebook offers a concise guide on troubleshooting model infeasibility using AMPL’s presolve feature and other language capabilities.

Introduction to Linear and Integer Programming#

intro_to_linear_prorgramming.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: Basic introduction to linear programming and AMPL via a lemonade stand example

Introduction to Mathematical Optimization#

intro_to_optimization.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: Basic introduction to optimization and AMPL via unconstrained optimization

Largest small polygon#

largest_small_polygon.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: lecture about models for the Largest Small Polygon Problem

Magic sequences#

magic_sequences.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: Solving magic sequences through reinforced formulations and constrained programming. Some comparison between models and solvers is done, and we look into the “Another solution” problem for these sequences.

Network Linear Programs#

network.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: Basic introduction to network linear programms and AMPL via max flow and shortest path problems

P-Median problem#

p_median.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: this notebook states the p-median problem with a simple example, and a MIP formulation in amplpy. The problem is parametrized with a class, so it is easier to sample and replicate experiments. A graphical solution is plotted.

Production Model: lemonade stand example#

production_model.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: Basic introduction to AMPL’s indexed entities and the Pygwalker Python package via a lemonade stand example

Supply chain network#

supply_chain_simple_routes.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab
Description: Compute optimal routes to connect suppliers/demanding nodes in a network. Routes have an associated fixed and variable cost. There are different products to ship. The problem is formulated as a MIP with binary variables. Python data structures are used to load the data into the model.