Optimal Power Flow with AMPL and Python - conventional Power Flow#

opf1.ipynb Open In Colab Kaggle Gradient Open In SageMaker Studio Lab Hits

Description: Optimal Power Flow

Tags: AMPL, amplpy, Optimal Power Flow, Python

Notebook author: Nicolau Santos <nicolau@ampl.com>

# Install dependencies
%pip install -q amplpy pandas
# Google Colab & Kaggle integration
from amplpy import AMPL, ampl_notebook

ampl = ampl_notebook(
    modules=["coin"],  # modules to install
    license_uuid="default",  # license to use
)  # instantiate AMPL object and register magics

Introduction#

Content will be available soon!

Problem description#

\[P_i(V, \delta) = P_i^G - P_i^L, \forall i \in N\]
\[Q_i(V, \delta) = Q_i^G - Q_i^L, \forall i \in N\]
\[P_i(V, \delta) = V_i \sum_{k=1}^{N}V_k(G_{ik}\cos(\delta_i-\delta_k) + B_{ik}\sin(\delta_i-\delta_k)), \forall i \in N\]
\[Q_i(V, \delta) = V_i \sum_{k=1}^{N}V_k(G_{ik}\sin(\delta_i-\delta_k) - B_{ik}\cos(\delta_i-\delta_k)), \forall i \in N\]

AMPL model#

%%writefile pf.mod
# data

set N;                              # set of buses in the network 
param nL;                           # number of branches in the network
set L within 1..nL cross N cross N; # set of branches in the network
set GEN within N;                   # set of generator buses
set REF within N;                   # set of reference (slack) buses
set PQ within N;                    # set of load buses
set PV within N;                    # set of voltage-controlled buses
set YN :=                           # index of the bus admittance matrix
    setof {i in N} (i,i) union 
    setof {(i,k,l) in L} (k,l) union
    setof {(i,k,l) in L} (l,k);

# bus data

param V0     {N}; # initial voltage magnitude
param delta0 {N}; # initial voltage angle
param PL     {N}; # real power load
param QL     {N}; # reactive power load
param g_s    {N}; # shunt conductance
param b_s    {N}; # shunt susceptance


# generator data

param PG {GEN}; # real power generation
param QG {GEN}; # reactive power generation

# branch indexed data

param T    {L}; # initial voltage ratio
param phi  {L}; # initial phase angle
param R    {L}; # branch resistance
param X    {L}; # branch reactance
param g_sh {L}; # shunt conductance
param b_sh {L}; # shunt susceptance

param g {(l,k,m) in L} := R[l,k,m]/(R[l,k,m]^2 + X[l,k,m]^2);  # series conductance
param b {(l,k,m) in L} := -X[l,k,m]/(R[l,k,m]^2 + X[l,k,m]^2); # series susceptance

# bus admittance matrix real part
param G {(i,k) in YN} =
    if (i == k) then (
        g_s[i] +
        sum{(l,i,u) in L} (g[l,i,u] + g_sh[l,i,u]/2)/T[l,i,u]**2 +
        sum{(l,u,i) in L} (g[l,u,i] + g_sh[l,u,i]/2)
    )
    else (
        -sum{(l,i,k) in L} ((
            g[l,i,k]*cos(phi[l,i,k])-b[l,i,k]*sin(phi[l,i,k])
        )/T[l,i,k]) -
        sum{(l,k,i) in L} ((
            g[l,k,i]*cos(phi[l,k,i])+b[l,k,i]*sin(phi[l,k,i])
        )/T[l,k,i])
    );

# bus admittance matrix imaginary part
param B {(i,k) in YN} =
    if (i == k) then (
        b_s[i] +
        sum{(l,i,u) in L} (b[l,i,u] + b_sh[l,i,u]/2)/T[l,i,u]**2 +
        sum{(l,u,i) in L} (b[l,u,i] + b_sh[l,u,i]/2)
    )
    else (
        -sum{(l,i,k) in L} (
            g[l,i,k]*sin(phi[l,i,k])+b[l,i,k]*cos(phi[l,i,k])
        )/T[l,i,k] -
        sum{(l,k,i) in L} (
            -g[l,k,i]*sin(phi[l,k,i])+b[l,k,i]*cos(phi[l,k,i])
        )/T[l,k,i]
    );

# variables
var V     {i in N} := V0[i];     # voltage magnitude
var delta {i in N} := delta0[i]; # voltage angle

# real power injection
var P {i in N} =
    V[i] * sum{(i,k) in YN} V[k] * (
        G[i,k] * cos(delta[i] - delta[k]) +
        B[i,k] * sin(delta[i] - delta[k])
    );

# reactive power injection
var Q {i in N} =
    V[i] * sum{(i,k) in YN} V[k] * (
        G[i,k] * sin(delta[i] - delta[k]) -
        B[i,k] * cos(delta[i] - delta[k])
    );

# constraints

s.t. p_flow {i in (PQ union PV)}:
    P[i] == (if (i in GEN) then PG[i] else 0) - PL[i];

s.t. q_flow {i in PQ}:
    Q[i] == (if (i in GEN) then QG[i] else 0) - QL[i];

s.t. fixed_angles {i in REF}:
    delta[i] == delta0[i];

s.t. fixed_voltages {i in (REF union PV)}:
    V[i] == V0[i];
Overwriting pf.mod

Numerical example#

df_bus = pd.DataFrame(
	[
		[1, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0],
		[2, 0.0, 0.0, 0.0, 0.3, 0.95, 1.05],
		[3, 0.0, 0.0, 0.05, 0.0, 0.95, 1.05],
		[4, 0.9, 0.4, 0.0, 0.0, 0.95, 1.05],
		[5, 0.239, 0.129, 0.0, 0.0, 0.95, 1.05]
	],
	columns=[
		"bus", "PL", "QL", "g_s", "b_s", "V_min", "V_max"
	]
).set_index("bus")

df_branch = pd.DataFrame(
	[
		[1, 1, 2, 0.0, 0.3, 0.0, 0.0, 1.0, 0.0],
		[2, 1, 3, 0.023, 0.145, 0.0, 0.04, 1.0, 0.0],
		[3, 2, 4, 0.006, 0.032, 0.0, 0.01, 1.0, 0.0],
		[4, 3, 4, 0.02, 0.26, 0.0, 0.0, 1.0, -3.0],
		[5, 3, 5, 0.0, 0.32, 0.0, 0.0, 0.98, 0.0],
		[6, 4, 5, 0.0, 0.5, 0.0, 0.0, 1.0, 0.0]
	],
	columns=[
		"row", "from", "to", "R", "X", "g_sh", "b_sh", "T", "phi"
	]
).set_index(["row", "from", "to"])

gen = [1, 3, 4]
ref = [1]
pq = [3, 4]
pv = [2, 5]

#print(df_bus)
#print(df_branch)
# data preprocessing

ampl_bus = pd.DataFrame()
cols = ["PL", "QL", "g_s", "b_s"]
for col in cols:
	ampl_bus.loc[:, col] = df_bus.loc[:, col]
ampl_bus["V0"] = 1.0
ampl_bus["delta0"] = 0.0

ampl_branch = pd.DataFrame()
ampl_branch = df_branch.copy()

ampl_gen = pd.DataFrame()
ampl_gen.index = gen
ampl_gen["PG"] = 0.0
ampl_gen["QG"] = 0.0

# convert degrees to radians
ampl_bus["delta0"] = ampl_bus["delta0"].apply(radians)
ampl_branch["phi"] = ampl_branch["phi"].apply(radians)

print(ampl_bus)
print(ampl_branch)
print(ampl_gen)
        PL     QL   g_s  b_s   V0  delta0
bus                                      
1    0.000  0.000  0.00  0.0  1.0     0.0
2    0.000  0.000  0.00  0.3  1.0     0.0
3    0.000  0.000  0.05  0.0  1.0     0.0
4    0.900  0.400  0.00  0.0  1.0     0.0
5    0.239  0.129  0.00  0.0  1.0     0.0
                 R      X  g_sh  b_sh     T      phi
row from to                                         
1   1    2   0.000  0.300   0.0  0.00  1.00  0.00000
2   1    3   0.023  0.145   0.0  0.04  1.00  0.00000
3   2    4   0.006  0.032   0.0  0.01  1.00  0.00000
4   3    4   0.020  0.260   0.0  0.00  1.00 -0.05236
5   3    5   0.000  0.320   0.0  0.00  0.98  0.00000
6   4    5   0.000  0.500   0.0  0.00  1.00  0.00000
    PG   QG
1  0.0  0.0
3  0.0  0.0
4  0.0  0.0
def pf_run(bus, branch, gen, ref, pq, pv):

    # initialyze AMPL and read the model
    ampl = AMPL()
    ampl.read("pf.mod")

    # load the data
    ampl.set_data(bus, "N")
    ampl.param["nL"] = branch.shape[0]
    ampl.set_data(branch, "L")
    ampl.set_data(gen, "GEN")
    ampl.set["REF"] = ref
    ampl.set["PQ"] = pq
    ampl.set["PV"] = pv

    ampl.solve(solver=SOLVER)

    solve_result = ampl.get_value("solve_result")
    if solve_result != "solved":
        print("WARNING: solver exited with %s status." %(solve_result,))

    return ampl.get_data("V", "delta").to_pandas(), solve_result

df_res, solver_status = pf_run(ampl_bus, ampl_branch, ampl_gen, ref, pq, pv)

# convert radians back to degrees
df_res["delta"] = df_res["delta"].apply(degrees)

# print results
print("solver status:", solver_status)
print(df_res)
Ipopt 3.12.13: 

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This is Ipopt version 3.12.13, running with linear solver mumps.
NOTE: Other linear solvers might be more efficient (see Ipopt documentation).

Number of nonzeros in equality constraint Jacobian...:       30
Number of nonzeros in inequality constraint Jacobian.:        0
Number of nonzeros in Lagrangian Hessian.............:       18

Total number of variables............................:        6
                     variables with only lower bounds:        0
                variables with lower and upper bounds:        0
                     variables with only upper bounds:        0
Total number of equality constraints.................:        6
Total number of inequality constraints...............:        0
        inequality constraints with only lower bounds:        0
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  0.0000000e+00 7.00e-01 0.00e+00  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0
   1  0.0000000e+00 4.87e-02 0.00e+00  -1.7 1.71e-01    -  1.00e+00 1.00e+00h  1
   2  0.0000000e+00 2.17e-04 0.00e+00  -2.5 4.08e-03    -  1.00e+00 1.00e+00h  1
   3  0.0000000e+00 4.11e-09 0.00e+00  -5.7 1.76e-05    -  1.00e+00 1.00e+00h  1

Number of Iterations....: 3

                                   (scaled)                 (unscaled)
Objective...............:   0.0000000000000000e+00    0.0000000000000000e+00
Dual infeasibility......:   0.0000000000000000e+00    0.0000000000000000e+00
Constraint violation....:   4.1074473979318246e-09    4.1074473979318246e-09
Complementarity.........:   0.0000000000000000e+00    0.0000000000000000e+00
Overall NLP error.......:   4.1074473979318246e-09    4.1074473979318246e-09


Number of objective function evaluations             = 4
Number of objective gradient evaluations             = 4
Number of equality constraint evaluations            = 4
Number of inequality constraint evaluations          = 0
Number of equality constraint Jacobian evaluations   = 4
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations             = 3
Total CPU secs in IPOPT (w/o function evaluations)   =      0.002
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Optimal Solution Found.
 
Ipopt 3.12.13: Optimal Solution Found

suffix ipopt_zU_out OUT;
suffix ipopt_zL_out OUT;
solver status: solved
          V     delta
1  1.000000  0.000000
2  1.000000 -8.657929
3  0.981536 -5.893046
4  0.983056 -9.440548
5  1.000000 -9.950946

Conclusion#

Bibliography#

Stephen Frank & Steffen Rebennack (2016) An introduction to optimal power flow: Theory, formulation, and examples, IIE Transactions, 48:12, 1172-1197.